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1. Introduction

There are numerous problems wherein fractional derivatives (non-integer order derivatives and
integrals) attain a valuable position [4, 5, 8, 16, 24, 27, 31, 36, 41, 60, 62, 63, 70]. It must be emphasized
that fractional derivatives are furnished in many techniques, especially, characterizing three distinct
approaches, which we are able to mention in an effort to grow the work in certainly one of them.
Every classical fractional operator is typically described in terms of a particular significance. Many of
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the most well recognized definitions of fractional operators we can also point out the
Riemann-Liouville, Caputo, Grunwald-Letnikov, and Hadamard operators [13], whose formulations
include integrals with singular kernels and which may be used to have a check, as an example, issues
involving the reminiscence effect [34]. However, within the years 2010, specific formulations of
fractional operators have seemed inside the literature [42].

On the other hand, there are numerous approaches to acquire a generalization of classical
fractional integrals. Many authors introduce parameters in classical definitions or in some unique
specific function [45], as we shall do below. Moreover, in a present paper, the authors introduce a
parameter and enunciate a generalization for fractional integrals on a selected space, which they name
generalized K-fractional integrals, and further advocate an Ostrowski type inequality modification of
this generalization. A verity of such type of new definitions of fractional integrals and derivatives
promotes future research to establish more new ideas and fractional integral inequalities by utilizing
new fractional derivative and integral operators. Integral inequalities are used in countless
mathematical problems such as approximation theory and spectral analysis, statistical analysis and the
theory of distributions. Studies involving integral inequalities play an important role in several areas
of science and engineering. In [53], the authors established certain Grüss type inequalities and some
other inequalities containing generalized proportional fractional and generalized proportional
fractional with respect to another function. Khan et al. [3] studied several inequalities for the
conformable fractional integral operators. Nisar et al. [44] presented Gronwall inequalities involving
the generalized Riemann-Liouville and Hadamard K-fractional derivatives with applications. In [39],
Kwun et al. proved integrals associated with Ostrowski type inequalities and error bounds of
Hadamard inequalities involving the generalized Riemann-Liouville K-fractional integral operators.
Especially, several striking inequalities, properties, and applicability for the fractional integrals and
derivatives are recently studied by various researchers. We refer the interesting readers to the works
by [30, 37, 52, 55].

In 1937, Ostrowski [46] established an interesting integral inequality associated with differentiable
mappings in one dimension stipulates a bound between a function evaluated at an interior point z and
the average of the function ~ over an interval. That is

∣∣∣∣∣∣~(z) −
1

ς2 − ς1

ς2∫
ς1

~(λ)dλ

∣∣∣∣∣∣ ≤
1
4

+

(
z − ς1+ς2

2

)2

ς2 − ς1

 (ς2 − ς1)‖~‖∞ (1.1)

holds for all z ∈ [ς1, ς2], where ~ ∈ L∞(ς1, ς2) and ~ : [ς1, ς2] → R is a differentiable mapping
on (ς1, ς2). The constant 1

4 is sharp in the sense that it cannot be replaced by a smaller one. We
also observe that the tightest bound is obtained at z =

ς1+ς2
2 , resulting in the well-known mid-point

inequality. Ostrowski inequalities have great importance while studying the error bounds of different
numerical quadrature rules, for example, the midpoint rule, Simpson’s rule, the trapezoidal rule, and
other generalized K-fractional integrals, see [19, 21].

Almost every mathematician knows the importance of convexity theory in every field of
mathematics, for example in nonlinear programming and optimization theory. By using the concept of
convexity, several integral inequalities have been introduced such as Jensen, Hermite-Hadamard and
Slater inequalities, and so forth. Exponentially convex functions have emerged as a significant new
class of convex functions, which have important applications in technology, data science, and
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statistics. The main motivation of this paper depends on new Ostrowski inequalities that have been
proved via K-fractional integrals and applied for exponentially convex functions. Ostrowski
inequality offers some new estimation of a function to its integral mean. It is beneficial in error
estimations of quadrature rules in numerical analysis. Some particular cases have been discussed,
which can be deduced from these consequences.

Recall the definition of an exponentially convex function, which is investigated by Dragomir and
Gomm [20].

Definition 1.1. ( [20]) A positive real-valued function ~ : K ⊆ R −→ (0,∞) is said to be exponentially
convex on K if the inequality

e~(λς1+(1−λ)ς2) ≤ λe~(ς1) + (1 − λ)e~(ς2)

holds for all ς1, ς2 ∈ K and λ ∈ [0, 1].

Exponentially convex function explored by Bernstein [14] in covariance formation then Avriel [11]
established and investigated this concept by imposing the condition of r-convex functions. Dragomir
and Gomm [20] proved the Hermite-Hadamard inequality by employing exponentially convex
functions. Pal [47], Alirezai and Mathar [9] provided the fertile application of exponentially convex
functions in information theory, optimization theory, and statistical theory. For observing various
other kinds of exponentially convex functions and their generalizations,
see [1,2,6,7,10,12,40,54,66,67]. Due to its significance, Jakšetić and Pečarić [28] used another kind
of exponentially convex function introduced in reference [14] and have provided some applications in
Euler-Radau expansions and stolarsky means. Our intention is to use the exponentially convexity
property of the functions as well as the absolute values of their derivatives in order to establish
estimates for generalized K-fractional integrals.

Inspired by the above works, we give a novel approach for deriving new generalizations of
Ostrowski type that correlates with exponentially convex functions and generalized K-fractional
techniques in this paper. One highlight is that our consequences, which are more consistent and
efficient, are accelerated via the fractional calculus technique. In addition, our consequences also
taking into account the estimates for Hermite-Hadamard inequality for exponentially convex
functions by employing Remark 2.1. We also investigate the applications of the two proposed
methods to exponentially convex functions and fractional calculus. Furthermore, we give some
numerical examples to illustrate the convergence efficiency of our theorems. The proposed numerical
experiments show that our results are superior to some related results.

2. Preliminaries

In this section, we demonstrate some important concepts from fractional calculus that play a major
role in proving the results of the present paper. The essential points of interest are exhibited in the
monograph by Kilbas et al. [38].

Definition 2.1. ( [38]) Let p ≥ 1, u ≥ 0 and ς1, ς2 ∈ R with ς1 < ς2. Then the Lp,u[ς1, ς2] space is
defined by

Lp,u[ς1, ς2] =

~ : ‖~‖Lp,u[ς1,ς2] =

(∫ ς2

ς1

|~(λ)|pλudλ
) 1

p

< ∞

 .
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In particular, we denote
‖~‖Lp[ς1,ς2] = ‖~‖Lp,0[ς1,ς2]

and
Lp[ς1, ς2] = Lp,0[ς1, ς2]

Definition 2.2. ( [32]) Let p ≥ 1 and Φ be an increasing and positive function on [0,∞) such that Φ′ is
continuous on [0,∞) with Φ(0) = 0. Then the χp

Φ
[0,∞) space is the set of all the real-valued Lebesgue

measurable functions ~ ∈ L1[0,∞) such that

‖~‖χp
Φ

=


∞∫

0

|~(λ)|pΦ′(λ)dλ


1
p

< ∞.

In particular, if p = ∞, then ‖~‖χ∞
Φ

is defined by

‖~‖χ∞
Φ

= ess sup
0≤λ<∞

[
Φ′(λ)~(λ)

]
.

We clearly see that χp
Φ

[0,∞) becomes to Lp[0,∞) if Φ(z) = z, and χp
Φ

[0,∞) reduces to Lp,u[0,∞) if
Φ(z) = 1

u+1zu+1.
Now, we present a new fractional operator that is known as the generalized K-fractional integral

operator of a function in the sense of another function Φ.

Definition 2.3. Let ~ ∈ χq
Φ

(0,∞) and Φ be an increasing positive function defined on [0,∞) such that
Φ′(z) is continuous on [0,∞) with Φ(0) = 0. Then the left and right generalized K-fractional integral
operators of the function ~ in the sense of the function Φ of order ρ > 0 are defined by

J
ρ,K

ς+
1 ,Φ
~(z) =

1
KΓK (ρ)

z∫
ς1

Φ′(λ)(Φ(z) − Φ(λ))
ρ
K
−1~1(λ)dλ (ς1 < z) (2.1)

and

J
ρ,K

ς−2 ,Φ
~(z) =

1
KΓK (ρ)

ς2∫
z

Φ′(λ)(Φ(λ) − Φ(z))
ρ
K
−1~1(λ)dλ (z < ς2), (2.2)

respectively, where ρ ∈ C, <(ρ) > 0 and ΓK (z) =
∞∫
0
λz−1e−

λK

K dλ (<(z) > 0) is the K-Gamma

function [18].

Remark 2.1. From (2.1) and (2.2) we clearly see that
(1) They turn into the both sided generalized RL-fractional integral operators [38] if K = 1.
(2) They reduce to the both-sided K-fractional integral operators [43] if Φ(z) = z.
(3) They lead to the both-sided RL-fractional integral operators if Φ(z) = z and K = 1.
(4) They become to the both-sided Hadamard fractional integral operators [38] if Φ(z) = log z and
K = 1.

AIMS Mathematics Volume 5, Issue 3, 2629–2645.



2633

(5) They degenerate to the both-sided Katugampola fractional integral operators [33] if Φ(z) = zβ
β

(β > 0) and K = 1.
(6) They turn out to be the both-sided conformable fractional integral operators defined by Jarad et
al. [29] if Φ(z) =

(z−a)β

β
(β > 0) and K = 1.

(7) They change into the both-sided generalized conformable fractional integrals defined by Khan and
Adil Khan [35] if Choosing Φ(z) = zu+v

u+v and K = 1.

3. Main results

In what follows, we assume that ς1, ς2 ∈ R with ς1 < ς2, I = [ς1, ς2] is a finite or infinite interval,
~ is a positive integrable function defined on I and Φ is an increasing and positive function on (ς1, ς2]
such that Φ′ is continuous on (ς1, ς2).

Now, we are going to present several new Ostrowski-type inequalities for the exponentially convex
functions via the generalized K-fractional integrals.

Theorem 3.1. Let ρ, δ,K ,M > 0, I◦ be the interior of I, and ~ : I → R be differentiable on I◦. Then
the inequality∣∣∣∣∣∣ ((Φ(z) − Φ(ς1))

ρ
K + (Φ(ς2) − Φ(z))

δ
K

)
e~(z) −

(
ΓK (ρ +K)Iρ,K

ς+
1 ,Φ

e~(z) + ΓK (δ +K)Iδ,K
ς−2 ,Φ

e~(z)
) ∣∣∣∣∣∣

≤
Mρ

ρ +K
(Φ(z) − Φ(ς1))

ρ
K

+1 +
Mδ

δ +K
(Φ(ς2) − Φ(z))

δ
K

+1 (3.1)

holds if Φ′(z) ≥ 1 and |(e~(λ))′| ≤ M for all z, λ ∈ I.

Proof. It follows from the monotonicity of Φ that(
Φ(z) − Φ(λ)

) ρ
K ≤

(
Φ(z) − Φ(ς1)

) ρ
K (3.2)

for λ ∈ [ς1, z].
From (3.2) and the hypothesis |(e~(λ))′| ≤ M we clearly see that

z∫
ς1

(
MΦ′(λ) − e~(λ)~′(λ)

)
(Φ(z) − Φ(λ))

ρ
K dλ

≤ (Φ(z) − Φ(ς1))
ρ
K

z∫
ς1

(
MΦ′(λ) − e~(λ)~′(λ)

)
dλ

and
z∫

ς1

(
MΦ′(λ) + e~(λ)~′(λ)

)
(Φ(z) − Φ(λ))

ρ
K dλ

≤ (Φ(z) − Φ(ς1))
ρ
K

z∫
ς1

(
MΦ′(λ) + e~(λ)~′(λ)

)
dλ.
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After integrating above inequalities and then using Definition 2.3 we get

(Φ(z) − Φ(ς1))
ρ
K e~(z) − ΓK (ρ +K)Iρ,K

ς+
1 ,Φ

e~(z) ≤
Mρ

ρ +K
(Φ(z) − Φ(ς1))

ρ
K

+1 (3.3)

and
ΓK (ρ +K)Iρ,K

ς+
1 ,Φ

e~(z) − (Φ(z) − Φ(ς1))
ρ
K e~(z) ≤

Mρ

ρ +K
(Φ(z) − Φ(ς1))

ρ
K

+1 . (3.4)

Inequalities (3.3) and (3.4) lead to the following modulus inequality∣∣∣∣∣∣ (Φ(z) − Φ(ς1))
ρ
K e~(z) − ΓK (ρ +K)Iρ,K

ς+
1 ,Φ

e~(z)

∣∣∣∣∣∣ ≤ Mρ

ρ +K
(Φ(z) − Φ(ς1))

ρ
K

+1 . (3.5)

Analogously, we have (
Φ(λ) − Φ(z)

) δ
K ≤

(
Φ(ς2) − Φ(z)

) δ
K (3.6)

for λ ∈ [z, ς2].
Making use of (3.6) and adopting the same procedure as we did for obtaining (3.5), we get the

following modulus inequality∣∣∣∣∣∣ (Φ(ς2) − Φ(z))
ρ
K e~(z) − ΓK (δ +K)Iδ,K

ς−2 ,Φ
e~(z)

∣∣∣∣∣∣ ≤ Mδ

δ +K
(Φ(ς2) − Φ(z))

δ
K

+1 . (3.7)

Therefore, inequality (3.1) follows from (3.5) and (3.7). �

Corollary 3.1. Letting ρ = δ. Then Theorem 3.1 leads to∣∣∣∣∣∣ ((Φ(z) − Φ(ς1))
ρ
K + (Φ(ς2) − Φ(z))

ρ
K

)
e~(z) − ΓK (ρ +K)

(
I
ρ,K

ς+
1 ,Φ

e~(z) + I
ρ,K

ς−2 ,Φ
e~(z)

) ∣∣∣∣∣∣
≤
Mρ

ρ +K

(
(Φ(z) − Φ(ς1))

ρ
K

+1 + (Φ(ς2) − Φ(z))
ρ
K

+1
)
.

Corollary 3.2. Let K = 1. Then Theorem 3.1 gives the Ostrowski-type inequality as follows∣∣∣∣∣∣ ((Φ(z) − Φ(ς1))ρ + (Φ(ς2) − Φ(z))δ
)

e~(z) −

(
Γ(ρ + 1)Iρ

ς+
1 ,Φ

e~(z) + Γ(δ + 1)Iδς−2 ,Φe~(z)
) ∣∣∣∣∣∣

≤
Mρ

ρ + 1
(Φ(z) − Φ(ς1))ρ+1 +

Mδ

δ + 1
(Φ(ς2) − Φ(z))δ+1 .

Corollary 3.3. Letting Φ(z) = (z). Then Theorem 3.1 reduces to the following Ostrowski-type
inequality for K-fractional integral∣∣∣∣∣∣ ((z − ς1)

ρ
K + (ς2 − z)

δ
K

)
e~(z) −

(
ΓK (ρ +K)Iρ,K

ς+
1

e~(z) + ΓK (δ +K)Iδ,K
ς−2

e~(z)
) ∣∣∣∣∣∣
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≤
Mρ

ρ +K
(z − ς1)

ρ
K

+1 +
Mδ

δ +K
(ς2 − z)

δ
K

+1 .

Corollary 3.4. Let Φ(z) = (z) and K = 1. Then Theorem 3.1 leads to∣∣∣∣∣∣ ((z − ς1
)ρ

+ (ς2 − z)δ
)

e~(z) −

(
Γ(ρ + 1)Iρ

ς+
1
e~(z) + Γ(δ + 1)Iδς−2 e~(z)

) ∣∣∣∣∣∣
≤
Mρ

ρ + 1
(z − ς1)ρ +

Mδ

δ + 1
(ς2 − z)δ .

Corollary 3.5. Let Φ(z) = (z) and ρ = δ = K = 1. Then Theorem 3.1 becomes to the Ostrowski-type
inequality ∣∣∣∣∣∣e~(z) −

1
ς2 − ς1

ς2∫
ς1

e~(λ)dλ

∣∣∣∣∣∣ ≤
1
4

+

(
z − ς1+ς2

2

)2

(ς2 − ς1)2

 (ς2 − ς1)M.

In addition, we can get more results by use of Theorem 3.1 as follows.
(I) By choosing z = ς1 and z = ς2 in (3.1), then adding the concluding terms, we have∣∣∣∣∣∣ (Φ(ς2) − Φ(ς1))

δ
K e~(ς1) + (Φ(ς2) − Φ(ς1))

ρ
K e~(ς2) −

(
ΓK (δ +K)Iδ,K

ς−2 ,Φ
e~(ς1) + ΓK (ρ +K)Iρ,K

ς+
1 ,Φ

e~(ς2)
) ∣∣∣∣∣∣

≤
Mδ

δ +K
(Φ(ς2) − Φ(ς1))

δ
K

+1 +
Mρ

ρ +K
(Φ(ς2) − Φ(ς1))

ρ
K

+1 . (3.8)

(II) By choosing ρ = δ in (3.8), then we have∣∣∣∣∣∣ (Φ(ς2) − Φ(ς1))
ρ
K

(
e~(ς1) + e~(ς2)

)
− ΓK (ρ +K)

(
I
ρ,K

ς−2 ,Φ
e~(ς1) + I

ρ,K

ς+
1 ,Φ

e~(ς2)
) ∣∣∣∣∣∣

≤
2Mρ

ρ +K
(Φ(ς2) − Φ(ς1))

ρ
K

+1 . (3.9)

(III) By choosing Φ(z) = z in (3.9), then we get the Hermite-Hadamard type inequality for K-
fractional integrals∣∣∣∣∣∣e~(ς1) + e~(ς2)

2
−

ΓK (ρ +K)

2(ς2 − ς1)
ρ
K

(
I
ρ,K

ς−2
e~(ς1) + I

ρ,K

ς+
1

e~(ς2)
) ∣∣∣∣∣∣ ≤ Mρ

ρ +K
(ς2 − ς1) . (3.10)

Theorem 3.2. Let ρ, δ,K ,M > 0, m ≤ 0, ~ : I → R be differentiable on I◦, and Φ : [ς1, ς2] → R
be a strictly increasing function such that Φ′(z) ≥ 1, |(e~(λ))′| ≤ M and m ≤ (e~(λ))′ ≤ M for all
z, λ ∈ [ς1, ς2]. Then we have the inequalities for generalized K-fractional integrals as follows∣∣∣∣∣∣ ((Φ(z) − Φ(ς1))

ρ
K − (Φ(ς2) − Φ(z))

δ
K

)
e~(z) −

(
ΓK (ρ +K)Iρ,K

ς+
1 ,Φ

e~(z) − ΓK (δ +K)Iδ,K
ς−2 ,Φ

e~(z)
) ∣∣∣∣∣∣
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≤ M

(
ρ

ρ +K
(Φ(z) − Φ(ς1))

ρ
K

+1 +
δ

δ +K
(Φ(ς2) − Φ(z))

δ
K

+1
)

(3.11)

and ∣∣∣∣∣∣ ((Φ(ς2) − Φ(z))
δ
K − (Φ(z) − Φ(ς1))

ρ
K

)
e~(z) +

(
ΓK (ρ +K)Iρ,K

ς+
1 ,Φ

e~(z) − ΓK (δ +K)Iδ,K
ς−2 ,Φ

e~(z)
) ∣∣∣∣∣∣

≤ −m

(
ρ

ρ +K
(Φ(z) − Φ(ς1))

ρ
K

+1 +
δ

δ +K
(Φ(ς2) − Φ(z))

δ
K

+1
)
. (3.12)

Proof. It follows from (3.2) and the hypothesis in Theorem 3.2 that

z∫
ς1

(
MΦ′(λ) − e~(λ)~′(λ)

)
(Φ(z) − Φ(λ))

ρ
K dλ

≤ (Φ(z) − Φ(ς1))
ρ
K

z∫
ς1

(
MΦ′(λ) − e~(λ)~′(λ)

)
dλ

and
z∫

ς1

(
e~(λ)~′(λ) −mΦ′(λ)

)
(Φ(z) − Φ(λ))

ρ
K dλ

≤ (Φ(z) − Φ(ς1))
ρ
K

z∫
ς1

(
e~(λ)~′(λ) −mΦ′(λ)

)
dλ.

After integrating above inequalities and by using Definition 3.2 we get

(Φ(z) − Φ(ς1))
ρ
K e~(z) − ΓK (ρ +K)Iρ,K

ς+
1 ,Φ

e~(z)

≤
Mρ

ρ +K
(Φ(z) − Φ(ς1))

ρ
K

+1 (3.13)

and
ΓK (ρ +K)Iρ,K

ς+
1 ,Φ

e~(z) − (Φ(z) − Φ(ς1))
ρ
K e~(z)

≤ −
mρ

ρ +K
(Φ(z) − Φ(ς1))

ρ
K

+1 . (3.14)

Analogously, we have

ΓK (δ +K)Iδ,K
ς−2 ,Φ

e~(z) − (Φ(ς2) − Φ(z))
ρ
K e~(z)

≤
Mδ

δ +K
(Φ(ς2) − Φ(z))

δ
K

+1 (3.15)

and
(Φ(ς2) − Φ(z))

ρ
K e~(z) − ΓK (δ +K)Iδ,K

ς−2 ,Φ
e~(z)
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≤ −
mδ

δ +K
(Φ(ς2) − Φ(z))

δ
K

+1 . (3.16)

Therefore, inequality (3.11) follows from (3.13) and (3.15), and inequality (3.12) follows from (3.14)
and (3.16). �

Remark 3.1. Theorem 3.2 leads to the conclusion that
(i) If K = 1, then we attain the Ostrowski-type inequality for GRLFI.
(ii) If Φ(z) = z, then we get the Ostrowski-type inequality for K-fractional integral.
(iii) If K = 1 and Φ(z) = z, then we obtain the the Ostrowski-type inequality for RLFI.
(iv) If m = −M, then after some calculations it constitutes Theorem 3.1.

Theorem 3.3. Let ρ, δ,K ,M > 0, m ≤ 0, ~ : I → R be differentiable on I◦, and Φ : [ς1, ς2] → R
be a strictly increasing function such that Φ′(z) ≥ 1, |(e~(λ))′| ≤ M and m ≤ (e~(λ))′ ≤ M for all
z, λ ∈ [ς1, ς2]. Then one has the generalized K-fractional integrals inequalities∣∣∣∣∣∣ ((Φ(z) − Φ(ς1))

ρ
K + (Φ(ς2) − Φ(z))

δ
K

)
e~(z) −

(
ΓK (ρ +K)Iρ,K

ς+
1 ,Φ

e~(z) + ΓK (δ +K)Iδ,K
ς−2 ,Φ

e~(z)
) ∣∣∣∣∣∣

≤
Mρ

ρ +K
(Φ(z) − Φ(ς1))

ρ
K

+1
−
mδ

δ +K
(Φ(ς2) − Φ(z))

δ
K

+1 (3.17)

and ∣∣∣∣∣∣ − (
(Φ(ς2) − Φ(z))

δ
K + (Φ(z) − Φ(ς1))

ρ
K

)
e~(z) +

(
ΓK (ρ +K)Iρ,K

ς+
1 ,Φ

e~(z) + ΓK (δ +K)Iδ,K
ς−2 ,Φ

e~(z)
) ∣∣∣∣∣∣

≤

(
−mρ

ρ +K
(Φ(z) − Φ(ς1))

ρ
K

+1 +
Mδ

δ +K
(Φ(ς2) − Φ(z))

δ
K

+1
)
. (3.18)

Proof. Inequality (3.17) follows from (3.13) and (3.16), and inequality (3.18) follows from (3.14) and
(3.15). �

Theorem 3.4. Let ρ, δ,K ,M > 0, I◦ be the interior of I, and ~ : I → R be differentiable on I◦. Then
the inequality∣∣∣∣∣∣ ((Φ(ς2) − Φ(z))

δ
K e~(ς2) + (Φ(z) − Φ(ς1))

ρ
K e~(ς1)

)
−

(
ΓK (ρ +K)Iρ,Kz−,Φe~(ς1) + ΓK (δ +K)Iδ,Kz+,Φe~(ς2)

) ∣∣∣∣∣∣
≤ M

(
ρ

ρ +K
(Φ(z) − Φ(ς1))

ρ
K

+1 +
δ

δ +K
(Φ(ς2) − Φ(z))

δ
K

+1
)

(3.19)

holds if Φ′(z) ≥ 1 and |(e~(λ))′| ≤ M for all z, λ ∈ I.

Proof. It follows from the monotonicity of Φ that(
Φ(λ) − Φ(ς1)

) ρ
K ≤

(
Φ(z) − Φ(ς1)

) ρ
K (3.20)

for λ ∈ [ς1, z].
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Inequality (3.20) and the hypothesis on (e~)′ lead to
z∫

ς1

(
MΦ′(λ) − e~(λ)~′(λ)

)
(Φ(λ) − Φ(ς1))

ρ
K dλ

≤ (Φ(z) − Φ(ς1))
ρ
K

z∫
ς1

(
MΦ′(λ) − e~(λ)~′(λ)

)
dλ

and
z∫

ς1

(
MΦ′(λ) + e~(λ)~′(λ)

)
(Φ(λ) − Φ(ς1))

ρ
K dλ

≤ (Φ(z) − Φ(ς1))
ρ
K

z∫
ς1

(
MΦ′(λ) + e~(λ)~′(λ)

)
dλ.

Integrating above inequalities and using the Definition 2.3 lead to

ΓK (ρ +K)Iρ,Kz−,Φe~(ς1) − (Φ(z) − Φ(ς1))
ρ
K e~(ς1)

≤
Mρ

ρ +K
(Φ(z) − Φ(ς1))

ρ
K

+1 (3.21)

and
(Φ(z) − Φ(ς1))

ρ
K e~(ς1) − ΓK (ρ +K)Iρ,Kz−,Φe~(ς1)

≤
Mρ

ρ +K
(Φ(z) − Φ(ς1))

ρ
K

+1 . (3.22)

From (3.21) and (3.22) we obtain the modulus inequality∣∣∣∣∣∣ (Φ(z) − Φ(ς1))
ρ
K e~(ς1) − ΓK (ρ +K)Iρ,Kz−,Φe~(ς1)

∣∣∣∣∣
≤
Mδ

δ +K
(Φ(z) − Φ(ς1))

ρ
K

+1 . (3.23)

Again, making use of the fact the monotonicity of Φ we have

(Φ(ς2) − Φ(λ))
δ
K ≤ (Φ(ς2) − Φ(z))

δ
K . (3.24)

for λ ∈ [z, ς2].
Using (3.24) and adopting the same procedure as we did for obtaining (3.23), we get∣∣∣∣∣∣ (Φ(ς2) − Φ(z))

δ
K e~(ς1) − ΓK (δ +K)Iδ,Kz+,Φe~(ς1)

∣∣∣∣∣
≤
Mδ

δ +K
(Φ(ς1) − Φ(z))

δ
K

+1 . (3.25)

Therefore, inequality (3.19) follows easily from (3.23) and (3.25). �
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Remark 3.2. From Theorem 3.4 we clearly see that
(i) If K = 1, then we get the Ostrowski type inequality for the GRLFI.
(ii) If Φ(z) = z, then we attain the Ostrowski type inequality for the K-fractional integral.
(iii) If Φ(z) = z and K = 1, then we have the Ostrowski type inequality for the RLFI.

4. Examples

The generalized K-fractional integral operator is very a useful operator in the theory of fractional
calculus and its applications since it is already mentioned that it is eligible to use it as a solution
of fractional order differential equations, integral equations and fractional Schrödinger equations. To
show the accuracy of our results, we present two examples to support our obtained results in the
previous section.

Example 4.1. Let K = 1, ς1 = 0, ς2 = π
2 , ρ = 1, δ = 3,M = 1, ~(z) = ln(cos z), and Φ(z) = sin z. Then

all the assumptions in Theorem 3.1 are satisfied. It is not difficult to verify that(
(Φ(z) − Φ(ς1))

ρ
K + (Φ(ς2) − Φ(z))

δ
K

)
e~(z)

=

((
sin

π

4
− sin 0

)
+

(
sin

π

2
− sin

π

4

)3
)

cos
π

4
≈ 0.5178, (4.1)

ΓK (ρ +K)Iρ,K
ς+

1 ,Φ
e~(z) = ΓK (ρ +K)

z∫
ς1

Φ′(λ) (Φ(z) − Ψ(λ))
ρ
K
−1 e~(λ)dλ

=

π
4∫

0

cos2 λdλ ≈ 0.6427

and

ΓK (δ +K)Iδ,K
ς−2 ,Φ

e~(z) = ΓK (δ +K)

ς2∫
z

Φ′(λ) (Ψ(λ) − Φ(z))
δ
K
−1 e~(λ)dλ

= 6

π
2∫

π
4

cos2 λ
(
sin λ − sin

π

4

)2
dλ ≈ 0.01715.

Adding the above equations, we get the left-hand side term of (3.1) as follows∣∣∣∣∣∣ ((Φ(z) − Φ(ς1))
ρ
K + (Φ(ς2) − Φ(z))

δ
K

)
e~(z)

−

(
ΓK (ρ +K)Iρ,K

ς+
1 ,Φ

e~(z) + ΓK (δ +K)Iδ,K
ς−2 ,Φ

e~(z)
) ∣∣∣∣∣∣ ≈ 0.1432. (4.2)

On the other hand, we have

Mρ

ρ +K
(Φ(z) − Φ(ς1))

ρ
K

+1 +
Mδ

δ +K
(Φ(ς2) − Φ(z))

δ
K

+1
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=

[(
sin

π

4

)
+

(
sin

π

2
− sin

π

4

)3
]

cos
π

4
≈ 0.5178. (4.3)

It is nice to see that the following implications hold in (4.2) and (4.3)

0.1432 < 0.5178.

Example 4.2. Let K = 1, ς1 = 0, ς2 = 4, ρ = 1
2 , δ = 5

2 , m = −6, M = 2, ~(z) = 2 ln(z − 3) and
Φ(z) = 2(z + 3). Then all the assumptions of Theorem 3.3 are satisfied, and Theorem 3.3 leads to the
Ostrowski type inequalities∣∣∣∣∣∣ ((2(z + 3) − 6)0.5 + (14 − 2(z + 3))2.5

)
(z − 3)2 −

(
Γ(1.5)I0.5,1

0+,Φ(z − 3)2 + Γ(3.5)I2.5,1
4−,Φ(z − 3)2

) ∣∣∣∣∣∣
≤

2
5
(
2(z + 3) − 6)

)1.5
+

30
7

(
14 − 2(z + 3)

)3.5

and∣∣∣∣∣ − (
(14 − 2(z + 3))2.5 + (2(z + 3) − 10)0.5

)
(z − 3)2 +

(
Γ(1.5)I0.5,1

0+,Φ(z − 3)2 + Γ(3.5)I2.5,1
4−,Φ(z − 3)2

) ∣∣∣∣∣
≤ 2 (2(z + 3) − 10))1.5 +

10
7

(14 − 2(z + 3))3.5 .

5. Applications

A real-valued function M : (0,∞)×(0,∞)→ (0,∞) is said to be a bivariate mean [15] if min{a, b} ≤
M(a, b) ≤ max{a, b} for all a, b ∈ (0,∞). Recently, the properties and applications for the bivariate
means and their related special functions have attracted the attention of many researchers [17, 22, 23,
25, 26, 48–51, 56–59, 61, 64, 65, 68, 69].

Let µ1, ν1 > 0 with µ1 , ν1. Then the arithmetic mean A(µ1, ν1), harmonic mean H(µ1, ν1),
logarithmic mean L(µ1, ν1) and n-th generalized logarithmic mean Ln(µ1, ν1) are defined by

A(µ1, ν1) =
µ1 + ν1

2
, H(µ1, ν1) =

2µ1ν1

µ1 + ν1
,

L(µ1, ν1) =
ν1 − µ1

ln ν1 − ln µ1
, Ln(µ1, ν1) =

[
νn+1

1 − µn+1
1

(n + 1)(ν1 − µ1)

]1/n

(n , 0,−1),

L0(µ1, ν1) =
1
e

(
νν1

1

µ
µ1
1

)1/(ν1−µ1)

, L−1(µ1, ν1) = L(µ1, ν1),

respectively.
In this section, we use our obtained results in section 3 to provide several novel inequalities

involving the special bivariate means mentioned above.

Proposition 5.1. Let η1, η2 > 0 with η2 > η1. Then∣∣∣A(eη1 , eη2) − L(eη1 , eη2)
∣∣∣ ≤ (η2 − η1)

2
eη2 .
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Proof. Let ρ = K = 1 and e~(z) = ez. Then the desired result follows from the assertion (III) of
Theorem 3.1. �

Proposition 5.2. Let η1, η2 > 0 with η1 < η2. Then

∣∣∣H−1(η1, η2) − L−1(η1, η2)
∣∣∣ ≤ (

η2 − η1
)

2η2
1

.

Proof. Let ρ = K = 1 and e~(z) = 1
z . Then the desired result can be derived from the assertion (III) of

Theorem 3.1. �

Proposition 5.3. Let η1, η2 > 0 with η1 < η2. Then∣∣∣A(η2
1, η

2
2) − L2

2(η1, η2)
∣∣∣ ≤ (η2 − η1

)
η2.

Proof. Let ρ = K = 1 and e~(z) = z2. Then the desired result can be obtained from the assertion (III)
of Theorem 3.1. �

Proposition 5.4. Let η1, η2 > 0 with η1 < η2. Then

∣∣∣A(ηn
1, η

n
2) − Ln

n(η1, η2)
∣∣∣ ≤ |n|(η2 − η1

)
2

max
{
|η1|

n−1, |η2|
n−1

}
.

Proof. Proposition 5.4 follows easily from the assertion (III) of Theorem 3.1 and e~(z) = zn together
with K = ρ = 1. �

6. Conclusion

In this paper, we proposed a novel technique with two different approaches for deriving several
generalizations for an exponentially convex function that accelerates with generalized K-fractional
integral operator. We also established strong convergence theorems for Ostrowski type inequalities
via exponentially convex functions. By choosing different parameter values K and Φ, we analyzed
the convergence behavior of our proposed methods in form of corollaries. Another aspect is that, to
show the effectiveness of our novel generalizations, our results have potential applications in fractional
integrodifferential, difference equations and fractional Schrödinger equations. Numerical examples
show that our findings are consistent and efficient. Finally, we remark that the framework of the
generalized K-fractional integral operator, it is of interest to further our results to the framework of
Riemann-Liouville, Hadamard and conformable fractional integral operators.
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29. F. Jarad, E. Uǧurlu, T. Abdeljawad, et al. On a new class of fractional operators, Adv. Differ. Equ.,
2017 (2017), 1–16.

30. F. Jarad, T. Abdeljawad, D. Baleanu, On the generalized fractional derivatives and their Caputo
modification, J. Nonlinear Sci. Appl., 10 (2017), 2607–2619.

31. Y. J. Jiang, X. J. Xu, A monotone finite volume method for time fractional Fokker-Planck equations,
Sci. China Math., 62 (2019), 783–794.

32. E. Kacar, Z. Kacar, H. Yildirim, Integral inequalities for Riemann-Liouville fractional integrals of
a function with respect to another function, Iran. J. Math. Sci. Inform., 13 (2018), 1–13.

33. U. N. Katugampola, New fractional integral unifying six existing fractional integrals,
arXiv:1612.08596.

34. R. Khalil, M. Al Horani, A. Yousef, et al. A new definition of fractional derivative, J. Comput.
Appl. Math., 264 (2014), 65–70.

35. T. U. Khan, M. Adil Khan, Generalized conformable fractional operators, J. Comput. Appl. Math.,
346 (2019), 378–389.

36. S. Khan, M. Adil Khan, Y. M. Chu, Converses of the Jensen inequality derived from the Green
functions with applications in information theory, Math. Method. Appl. Sci., 30 (2020), 2577–
2587.

37. Y. Khurshid, M. Adil Khan, Y. M. Chu, et al. Hermite-Hadamard-Fejér inequalities for
conformable fractional integrals via preinvex functions, J. Funct. Space., 2019 (2019), 1–9.

AIMS Mathematics Volume 5, Issue 3, 2629–2645.



2644

38. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential
Equations, Elsevier Science B.V., Amsterdam, 2006.

39. Y. C. Kwun, G. Farid, W. Nazeer, et al. Generalized Riemann-Liouville k-fractional integrals
associated with Ostrowski type inequalities and error bounds of Hadamard inequalities, IEEE
Access, 6 (2018), 64946–64953.

40. M. A. Latif, S. Rashid, S. S. Dragomir, et al. Hermite-Hadamard type inequalities for co-ordinated
convex and qausi-convex functions and their applications, J. Inequal. Appl., 2019 (2019), 1–33.

41. F. W. Liu, L. B. Feng, V. Anh, et al. Unstructured-mesh Galerkin finite element method for the two-
dimensional multi-term time-space fractional Bloch-Torrey equations on irregular convex domains,
Comput. Math. Appl., 78 (2019), 1637–1650.

42. F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity, Imperial College Press,
London, 2010.

43. S. Mubeen, G. M. Habibullah, k-fractional integrals and application, Int. J. Contemp. Math. Sci.,
7 (2012), 89–94.

44. K. S. Nisar, G. Rahman, J. Choi, et al. Certain Gronwall type inequalities associated with Riemann-
Liouville k- and Hadamard k-fractional derivatives and their applications, East Asian Math. J., 34
(2018), 249–263.

45. D. S. Oliveira, E. Capelas de Oliveira, Hilfer-Katugampola fractional derivative,
arXiv:1705.07733.
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