In this paper, we investigate the existence, uniqueness and stability results for a class of nonlinear impulsive Hilfer-Katugampola problems. Our reasoning is founded on the Banach contraction principle and Krasnoselskii's fixed point theorem. In addition, an example is provided to demonstrate the effectiveness of the main results.
Citation: Soufyane Bouriah, Mouffak Benchohra, Juan J. Nieto, Yong Zhou. Ulam stability for nonlinear implicit differential equations with Hilfer-Katugampola fractional derivative and impulses[J]. AIMS Mathematics, 2022, 7(7): 12859-12884. doi: 10.3934/math.2022712
In this paper, we investigate the existence, uniqueness and stability results for a class of nonlinear impulsive Hilfer-Katugampola problems. Our reasoning is founded on the Banach contraction principle and Krasnoselskii's fixed point theorem. In addition, an example is provided to demonstrate the effectiveness of the main results.
[1] | S. Abbas, M. Benchohra, J. R. Graef, J. Henderson, Implicit fractional differential and integral equations: Existence and stability, Walter de Gruyter, London, 2018. https://doi.org/10.1515/9783110553819 |
[2] | S. Abbas, M. Benchohra, G. M. N'Guérékata, Topics in fractional differential equations, New York: Springer-Verlag, 2012. |
[3] | S. Abbas, M. Benchohra, G. M. N'Guérékata, Advanced fractional differential and integral equations, New York: Nova Science Publishers, 2014. |
[4] | R. P. Agarwal, D. Baleanu, J. J. Nieto, D. F. M. Torres, Y. Zhou, A survey on fuzzy fractional differential and optimal control nonlocal evolution equations, J. Comput. Appl. Math., 339 (2018), 3–29. https://doi.org/10.1016/j.cam.2017.09.039 doi: 10.1016/j.cam.2017.09.039 |
[5] | B. Ahmad, S. Sivasundaram, Existence of solutions for impulsive integral boundary value problems of fractional order, Nonlinear Anal.: Hybrid Syst., 4 (2010), 134–141. https://doi.org/10.1016/j.nahs.2009.09.002 doi: 10.1016/j.nahs.2009.09.002 |
[6] | Y. Adjabi, F. Jarad, T. Abdeljawad, On generalized fractional operators and a Gronwall type inequality with applications, Filomat, 31 (2017), 5457–5473. |
[7] | R. Almeida, A. B. Malinowska, T. Odzijewicz, Fractional differential equations with dependence on the Caputo-Katugampola derivative, J. Comput. Nonlinear Dyn., 11 (2016), 061017. |
[8] | R. Almeida, N. R. O. Bastos, M. T. T. Monteiro, A fractional Malthusian growth model with variable order using an optimization approach, Stat. Optim. Inf. Comput., 6 (2018), 4–11. https://doi.org/10.19139/soic.v6i1.465 doi: 10.19139/soic.v6i1.465 |
[9] | M. Benchohra, S. Bouriah, Existence and stability rusults for nonlinear implicit fractional differential equations with impulses, Mem. Differ. Equ. Math. Phys., 69 (2016), 15–31. |
[10] | M. Benchohra, S. Bouriah, J. J. Nieto, Existence and stability results for nonlocal initial value problems for differential equations with Hilfer fractional derivative, Stud. Univ. Babes-Bolyai Math., 63 (2018), 447–464. https://doi.org/10.24193/subbmath.2018.4.03 doi: 10.24193/subbmath.2018.4.03 |
[11] | M. Benchohra, J. Henderson, S. L. Ntouyas, Impulsive differential equations and inclusions, Vol. 2, New York: Hindawi Publishing Corporation, 2006. |
[12] | E. C. de Oliveira, J. V. da C. Sousa, Ulam-Hyers-Rassias stability for a class of fractional integro-differential equations, Results Math., 73 (2018), 111. https://doi.org/10.1007/s00025-018-0872-z doi: 10.1007/s00025-018-0872-z |
[13] | E. F. Doungmo Goufo, J. J. Nieto, Attractors for fractional differential problems of transition to turbulent flows, J. Comput. Appl. Math., 339 (2018), 329–342. https://doi.org/10.1016/j.cam.2017.08.026 doi: 10.1016/j.cam.2017.08.026 |
[14] | Y. Y. Gambo, F. Jarad, D. Baleanu, T. Abdeljawad, On Caputo modification of the Hadamard fractional derivatives, Adv. Differ. Equ., 2014 (2014), 1–12. https://doi.org/10.1186/1687-1847-2014-10 doi: 10.1186/1687-1847-2014-10 |
[15] | A. Granas, J. Dugundji, Fixed point theory, New York: Springer-Verlag, 2003. |
[16] | R. Hilfer, Applications of fractional calculus in physics, World Scientific, Singapore, 2000. |
[17] | R. Hilfer, Threefold introduction to fractional derivatives, In: Anomalous transport: Foundations and applications, Wiley Online Library, 2008. |
[18] | U. N. Katugampola, A new approach to a generalized fractional integral, Appl. Math. Comput., 218 (2011), 860–865. https://doi.org/10.1016/j.amc.2011.03.062 doi: 10.1016/j.amc.2011.03.062 |
[19] | M. D. Kassim, N. E. Tatar, Well-posedness and stability for a differential problem with Hilfer-Hadamard fractional derivative, Abst. Appl. Anal., 2013 (2013), 1–7. https://doi.org/10.1155/2013/605029 doi: 10.1155/2013/605029 |
[20] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Amsterdam: Elsevier, 2006. |
[21] | K. S. Miller, B. Ross, An introduction to the fractional calculus and differential equations, New York: John Wiley, 1993. |
[22] | D. S. Oliveira, E. C. de Oliveira, Hilfer-Katugampola fractional derivative, Comput. Appl. Math., 37 (2018), 3672–3690. https://doi.org/10.1007/s40314-017-0536-8 doi: 10.1007/s40314-017-0536-8 |
[23] | I. Podlubny, Fractional differential equations, San Diego: Academic Press, 1999. |
[24] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications, Gordon and Breach, Yverdon, 1993. |
[25] | A. M. Samoilenko, N. A. Perestyuk, Impulsive differential equations, Singapore: World Scientific, 1995. |
[26] | J. V. da C. Sousa, L. D. Kucche, E. C. de Oliveira, Stability of $\psi$-Hilfer impulsive fractional differential equations, Appl. Math. Lett., 88 (2019), 73–80. https://doi.org/10.1016/j.aml.2018.08.013 doi: 10.1016/j.aml.2018.08.013 |
[27] | J. V. da C. Sousa, M. N. N. dos Santos, L. A. Magna, E. C. de Oliveira, Validation of a fractional model for erythrocyte sedimentation rate, Comput. Appl. Math., 37 (2018), 6903–6919. https://doi.org/10.1007/s40314-018-0717-0 doi: 10.1007/s40314-018-0717-0 |
[28] | S. Verma, P. Viswanathan, A note on Katugampola fractional calculus and fractal dimensions, Appl. Math. Comput., 339 (2018), 220–230. https://doi.org/10.1016/j.amc.2018.07.035 doi: 10.1016/j.amc.2018.07.035 |
[29] | J. R. Wang, M. Feckan, Y. Zhou, Fractional order differential switched systems with coupled nonlocal initial and impulsive conditions, Bull. Sci. Math., 141 (2017), 727–746. https://doi.org/10.1016/j.bulsci.2017.07.007 doi: 10.1016/j.bulsci.2017.07.007 |
[30] | W. Wei, X. Xiang, Y. Peng, Nonlinear impulsive integro-differential equations of mixed type and optimal controls, Optimization, 55 (2006), 141–156. https://doi.org/10.1080/02331930500530401 doi: 10.1080/02331930500530401 |
[31] | Y. Zhou, Infinite interval problems for fractional evolution equations, Mathematics, 10 (2022), 900. https://doi.org/10.3390/math10060900 doi: 10.3390/math10060900 |
[32] | Y. Zhou, B. Ahmad, A. Alsaedi, Existence of nonoscillatory solutions for fractional neutral differential equations, Appl. Math. Lett., 72 (2017), 70–74. https://doi.org/10.1016/j.aml.2017.04.016 doi: 10.1016/j.aml.2017.04.016 |
[33] | Y. Zhou, J. W. He, New results on controllability of fractional evolution systems with order ${\alpha}\in (1, 2)$, Evol. Equ. Control Theory, 10 (2021), 491–509. https://doi.org/10.3934/eect.2020077 doi: 10.3934/eect.2020077 |
[34] | Y. Zhou, J. W. He, B. Ahmad, N. H. Tuan, Existence and regularity results of a backward problem for fractional diffusion equations, Math. Meth. Appl. Sci., 42 (2019), 6775–6790. https://doi.org/10.1002/mma.5781 doi: 10.1002/mma.5781 |
[35] | Y. Zhou, J. N. Wang, The nonlinear Rayleigh-Stokes problem with Riemann-Liouville fractional derivative, Math. Meth. Appl. Sci., 44 (2021), 2431–2438. https://doi.org/10.1002/mma.5926 doi: 10.1002/mma.5926 |