Research article Special Issues

Bifurcation, chaotic behavior and soliton solutions to the KP-BBM equation through new Kudryashov and generalized Arnous methods

  • Received: 26 November 2023 Revised: 08 January 2024 Accepted: 24 January 2024 Published: 29 February 2024
  • MSC : 35A09, 35A24, 35C08

  • This research paper investigates the Kadomtsev-Petviashvii-Benjamin-Bona-Mahony equation. The new Kudryashov and generalized Arnous methods are employed to obtain the generalized solitary wave solution. The phase plane theory examines the bifurcation analysis and illustrates phase portraits. Finally, the external perturbation terms are considered to reveal its chaotic behavior. These findings contribute to a deeper understanding of the dynamics of the Kadomtsev-Petviashvii-Benjamin-Bona-Mahony wave equation and its applications in real-world phenomena.

    Citation: Chander Bhan, Ravi Karwasra, Sandeep Malik, Sachin Kumar, Ahmed H. Arnous, Nehad Ali Shah, Jae Dong Chung. Bifurcation, chaotic behavior and soliton solutions to the KP-BBM equation through new Kudryashov and generalized Arnous methods[J]. AIMS Mathematics, 2024, 9(4): 8749-8767. doi: 10.3934/math.2024424

    Related Papers:

  • This research paper investigates the Kadomtsev-Petviashvii-Benjamin-Bona-Mahony equation. The new Kudryashov and generalized Arnous methods are employed to obtain the generalized solitary wave solution. The phase plane theory examines the bifurcation analysis and illustrates phase portraits. Finally, the external perturbation terms are considered to reveal its chaotic behavior. These findings contribute to a deeper understanding of the dynamics of the Kadomtsev-Petviashvii-Benjamin-Bona-Mahony wave equation and its applications in real-world phenomena.



    加载中


    [1] J. D. Logan, An introduction to nonlinear partial differential equations, John Wiley & Sons, 2008. https://doi.org/10.1002/9780470287095
    [2] S. Fucik, A. Kufner, Nonlinear differential equations, Elsevier, 1980.
    [3] S. Larsson, V. Thomée, Partial differential equations with numerical methods, Berlin, Heidelberg: Springer, 2003. https://doi.org/10.1007/978-3-540-88706-5
    [4] E. L. Ince, Ordinary differential equations, New York: Dover Publications, 2012.
    [5] Z. Ji, Y. F. Nie, L. F. Li, Y. Y. Xie, M. C. Wang, Rational solutions of an extended (2+1)-dimensional Camassa-Holm-Kadomtsev-Petviashvili equation in liquid drop, AIMS Math., 8 (2023), 3163–3184. https://doi.org/10.3934/math.2023162 doi: 10.3934/math.2023162
    [6] M. B. Almatrafi, Construction of closed form soliton solutions to the space-time fractional symmetric regularized long wave equation using two reliable methods, Fractals, 31 (2023), 2340160. https://doi.org/10.1142/S0218348X23401606 doi: 10.1142/S0218348X23401606
    [7] A. R. Alharbi, M. B. Almatrafi, Exact solitary wave and numerical solutions for geophysical KdV equation, J. King Saud Univ. Sci., 34 (2022), 102087. https://doi.org/10.1016/j.jksus.2022.102087 doi: 10.1016/j.jksus.2022.102087
    [8] M. B. Almatrafi, A. Alharbi, New soliton wave solutions to a nonlinear equation arising in plasma physics, Comput. Model. Eng. Sci., 137 (2023), 827–841. https://doi.org/10.32604/cmes.2023.027344 doi: 10.32604/cmes.2023.027344
    [9] M. A. E. Abdelrahman, M. B. Almatrafi, A. Alharbi, Fundamental solutions for the coupled KdV system and its stability, Symmetry, 12 (2020), 1–13. https://doi.org/10.3390/sym12030429 doi: 10.3390/sym12030429
    [10] A. R. Alharbi, Traveling-wave and numerical solutions to a Novikov-Veselov system via the modified mathematical methods, AIMS Math., 8 (2023), 1230–1250. https://doi.org/10.3934/math.2023062 doi: 10.3934/math.2023062
    [11] A. R. Alharbi, Numerical solutions to two-dimensional fourth order parabolic thin film equations using the Parabolic Monge-Ampere method, AIMS Math., 8 (2023), 16463–16478. https://doi.org/10.3934/math.2023841 doi: 10.3934/math.2023841
    [12] N. A. Shah, Y. S. Hamed, K. M. Abualnaja, J. D. Chung, R. Shah, A. Khan, A comparative analysis of fractional-order Kaup-Kupershmidt equation within different operators, Symmetry, 14 (2022), 1–23. https://doi.org/10.3390/sym14050986 doi: 10.3390/sym14050986
    [13] A. H. Arnous, M. S. Hashemi, K. S. Nisar, M. Shakeel, J. Ahmad, I. Ahmad, et al., Investigating solitary wave solutions with enhanced algebraic method for new extended Sakovich equations in fluid dynamics, Results Phys., 57 (2024), 107369. https://doi.org/10.1016/j.rinp.2024.107369 doi: 10.1016/j.rinp.2024.107369
    [14] A. H. Arnous, A. Biswas, Y. Yildirim, L. Moraru, M. Aphane, S. Moshokoa, et al., Quiescent optical solitons with Kudryashov's generalized quintuple-power and nonlocal nonlinearity having nonlinear chromatic dispersion: generalized temporal evolution, Ukr. J. Phys. Optics, 24 (2023), 105–113. https://doi.org/10.3116/16091833/24/2/105/2023 doi: 10.3116/16091833/24/2/105/2023
    [15] J. Vega-Guzman, M. F. Mahmood, Q. Zhou, H. Triki, A. H. Arnous, A. Biswas, et al., Solitons in nonlinear directional couplers with optical metamaterials, Nonlinear Dyn., 87 (2017), 427–458. https://doi.org/10.1007/s11071-016-3052-2 doi: 10.1007/s11071-016-3052-2
    [16] A. R. Seadawy, A. H. Arnous, A. Biswas, M. R. Belic, Optical solitons with Sasa-Satsuma equation by F-expansion scheme, Optoelectron. Adv. Mat., 13 (2019), 31–36.
    [17] N. Mahak, G. Akram, Exact solitary wave solutions by extended rational sine-cosine and extended rational sinh-cosh techniques, Phys. Scr., 94 (2019), 115212. https://doi.org/10.1088/1402-4896/ab20f3 doi: 10.1088/1402-4896/ab20f3
    [18] M. L. Wang, X. Z. Li, Extended F-expansion method and periodic wave solutions for the generalized Zakharov equations, Phys. Lett. A, 343 (2005), 48–54. https://doi.org/10.1016/j.physleta.2005.05.085 doi: 10.1016/j.physleta.2005.05.085
    [19] A. M. Wazwaz, The tanh method: exact solutions of the sine-Gordon and the sinh-Gordon equations, Appl. Math. Comput., 167 (2005), 1196–1210. https://doi.org/10.1016/j.amc.2004.08.005 doi: 10.1016/j.amc.2004.08.005
    [20] A. M. Wazwaz, The tanh-coth and the sech methods for exact solutions of the Jaulent-Miodek equation, Phys. Lett. A, 366 (2007), 85–90. https://doi.org/10.1016/j.physleta.2007.02.011 doi: 10.1016/j.physleta.2007.02.011
    [21] A. S. A. Rady, E. S. Osman, M. Khalfallah, The homogeneous balance method and its application to the Benjamin-Bona-Mahoney (BBM) equation, Appl. Math. Comput., 217 (2010), 1385–1390. https://doi.org/10.1016/j.amc.2009.05.027 doi: 10.1016/j.amc.2009.05.027
    [22] W. X. Ma, T. W. Huang, Y. Zhang, A multiple exp-function method for nonlinear differential equations and its application, Phys. Scr., 82 (2010), 065003. https://doi.org/10.1088/0031-8949/82/06/065003 doi: 10.1088/0031-8949/82/06/065003
    [23] M. J. Ablowitz, P. A. Clarkson, Solitons, nonlinear evolution equations and inverse scattering, Cambridge University Press, 1991. https://doi.org/10.1017/CBO9780511623998
    [24] N. J. Zabusky, M. D. Kruskal, Interaction of "solitons" in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett., 15 (1965), 240. https://doi.org/10.1103/PhysRevLett.15.240 doi: 10.1103/PhysRevLett.15.240
    [25] W. X. Ma, Lump solutions to the Kadomtsev-Petviashvili equation, Phys. Lett. A, 379 (2015), 1975–1978. https://doi.org/10.1016/j.physleta.2015.06.061 doi: 10.1016/j.physleta.2015.06.061
    [26] T. B. Benjamin, J. L. Bona, J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci., 272 (1972), 47–78. https://doi.org/10.1098/rsta.1972.0032 doi: 10.1098/rsta.1972.0032
    [27] A. M. Wazwaz, Exact solutions of compact and noncompact structures for the KP-BBM equation, Appl. Math. Comput., 169 (2005), 700–712. https://doi.org/10.1016/j.amc.2004.09.061 doi: 10.1016/j.amc.2004.09.061
    [28] D. V. Tanwar, A. M. Wazwaz, Lie symmetries, optimal system and dynamics of exact solutions of (2+1)-dimensional KP-BBM equation, Phys. Scr., 95 (2020), 065220. https://doi.org/10.1088/1402-4896/ab8651 doi: 10.1088/1402-4896/ab8651
    [29] D. V. Tanwar, A. K. Ray, A. Chauhan, Lie symmetries and dynamical behavior of soliton solutions of KP-BBM equation, Qual. Theory Dyn. Syst., 21 (2022), 24. https://doi.org/10.1007/s12346-021-00557-8 doi: 10.1007/s12346-021-00557-8
    [30] Y. D. Yu, H. C. Ma, Explicit solutions of (2+1)-dimensional nonlinear KP-BBM equation by using exp-function method, Appl. Math. Comput., 217 (2010), 1391–1397. https://doi.org/10.1016/j.amc.2009.05.035 doi: 10.1016/j.amc.2009.05.035
    [31] J. J. Li, J. Manafian, N. T. Hang, D. T. N. Huy, A. Davidyants, Interaction among a lump, periodic waves, and kink solutions to the KP-BBM equation, Int. J. Nonlinear Sci. Numer. Simul., 24 (2023), 227–243. https://doi.org/10.1515/ijnsns-2020-0156 doi: 10.1515/ijnsns-2020-0156
    [32] M. A. Abdou, Exact periodic wave solutions to some nonlinear evolution equations, Int. J. Nonlinear Sci., 6 (2008), 145–153.
    [33] Y. Y. Xie, L. F. Li, Multiple-order breathers for a generalized (3+1)-dimensional Kadomtsev-Petviashvili Benjamin-Bona-Mahony equation near the offshore structure, Math. Comput. Simul., 193 (2022), 19–31. https://doi.org/10.1016/j.matcom.2021.08.021 doi: 10.1016/j.matcom.2021.08.021
    [34] B. L. Feng, J. Manafian, O. A. Ilhan, A. M. Rao, A. H. Agadi, Cross-kink wave, solitary, dark, and periodic wave solutions by bilinear and He's variational direct methods for the KP-BBM equation, Int. J. Mod. Phys. B, 35 (2021), 2150275. https://doi.org/10.1142/S0217979221502751 doi: 10.1142/S0217979221502751
    [35] S. Malik, M. S. Hashemi, S. Kumar, H. Rezazadeh, W. Mahmoud, M. S. Osman, Application of new Kudryashov method to various nonlinear partial differential equations, Opt. Quantum Electronics, 55 (2023), 8. https://doi.org/10.1007/s11082-022-04261-y doi: 10.1007/s11082-022-04261-y
    [36] A. H. Arnous, M. Mirzazadeh, M. S. Hashemi, N. A. Shah, J. D. Chung, Three different integration schemes for finding soliton solutions in the (1+1)-dimensional Van der Waals gas system, Results Phys., 55 (2023), 107178. https://doi.org/10.1016/j.rinp.2023.107178 doi: 10.1016/j.rinp.2023.107178
    [37] E. M. E. Zayed, A. H. Arnous, A. Secer, M. Ozisik, M. Bayram, N. A. Shah, et al., Highly dispersive optical solitons in fiber Bragg gratings for stochastic Lakshmanan-Porsezian-Daniel equation with spatio-temporal dispersion and multiplicative white noise, Results Phys., 55 (2023), 107177. https://doi.org/10.1016/j.rinp.2023.107177 doi: 10.1016/j.rinp.2023.107177
    [38] S. Malik, S. Kumar, Pure-cubic optical soliton perturbation with full nonlinearity by a new generalized approach, Optik, 258 (2022), 168865. https://doi.org/10.1016/j.ijleo.2022.168865 doi: 10.1016/j.ijleo.2022.168865
    [39] A. H. Arnous, Optical solitons to the cubic quartic Bragg gratings with anti-cubic nonlinearity using new approach, Optik, 251 (2022), 168356. https://doi.org/10.1016/j.ijleo.2021.168356 doi: 10.1016/j.ijleo.2021.168356
    [40] M. Kumar, R. K. Gupta, A new generalized approach for soliton solutions and generalized symmetries of time-fractional partial differential equation, Int. J. Appl. Comput. Math., 8 (2022), 200. https://doi.org/10.1007/s40819-022-01420-3 doi: 10.1007/s40819-022-01420-3
    [41] S. Malik, S. Kumar, A. Biswas, Y. Yıldırım, L. Moraru, S. Moldovanu, et al., Cubic-quartic optical solitons in fiber Bragg gratings with dispersive reflectivity having parabolic law of nonlinear refractive index by Lie symmetry, Symmetry, 14 (2022), 1–17. https://doi.org/10.3390/sym14112370 doi: 10.3390/sym14112370
    [42] Y. Kai, L. K. Huang, Dynamic properties, Gaussian soliton and chaotic behaviors of general Degasperis-Procesi model, Nonlinear Dyn., 111 (2023), 8687–8700. https://doi.org/10.1007/s11071-023-08290-4 doi: 10.1007/s11071-023-08290-4
    [43] S. Malik, S. Kumar, A. Das, A (2+1) dimensional combined KdV-mKdV equation: integrability, stability analysis and soliton solutions, Nonlinear Dyn., 107 (2022), 2689–2701. https://doi.org/10.1007/s11071-021-07075-x doi: 10.1007/s11071-021-07075-x
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(979) PDF downloads(94) Cited by(7)

Article outline

Figures and Tables

Figures(9)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog