In 1956, Jeśmanowicz conjectured that, for any positive integer $ n $, the Diophantine equation $ \left((f^{2}-g^{2})n\right)^{x}+\left((2fg)n\right)^{y} = \left((f^{2}+g^{2})n\right)^z $ has only the positive integral solution $ (x, y, z) = (2, 2, 2) $, where $ f $ and $ g $ are positive integers with $ f > g $, gcd$ (f, g) = 1 $, and $ f\not\equiv g\pmod {2} $. Let $ r = 6k+2 $, $ k \in \mathbb{N} $, $ k\geq25 $. In this paper, combining $ p $-adic form of Baker method with some detailed computation, we prove that if $ n $ satisfies $ n\equiv 0, 6, 9\pmod{12} $, $ f = g+1 $ and $ g = 2^{r}-1 $, then the conjecture is true.
Citation: Ziyu Dong, Zhengjun Zhao. An application of $ p $-adic Baker method to a special case of Jeśmanowicz' conjecture[J]. AIMS Mathematics, 2023, 8(5): 11617-11628. doi: 10.3934/math.2023588
In 1956, Jeśmanowicz conjectured that, for any positive integer $ n $, the Diophantine equation $ \left((f^{2}-g^{2})n\right)^{x}+\left((2fg)n\right)^{y} = \left((f^{2}+g^{2})n\right)^z $ has only the positive integral solution $ (x, y, z) = (2, 2, 2) $, where $ f $ and $ g $ are positive integers with $ f > g $, gcd$ (f, g) = 1 $, and $ f\not\equiv g\pmod {2} $. Let $ r = 6k+2 $, $ k \in \mathbb{N} $, $ k\geq25 $. In this paper, combining $ p $-adic form of Baker method with some detailed computation, we prove that if $ n $ satisfies $ n\equiv 0, 6, 9\pmod{12} $, $ f = g+1 $ and $ g = 2^{r}-1 $, then the conjecture is true.
[1] | M. A. Bennett, J. S. Ellenberg, N. C. Ng, The Diophantine equation $A^{4}+2^{\delta}B^{2} = C^{n}$, Int. J. Number Theory, 6 (2010), 311–338. https://dx.doi.org/10.1142/S1793042110002971 doi: 10.1142/S1793042110002971 |
[2] | Y. Bliu, V. Hanrot, P. M. Voutier, Existence of primitive divisors of Lucas and Lehmer numbers, J. Reine Angew. Math., 539 (2001), 75–122. https://dx.doi.org/10.1515/crll.2001.080 doi: 10.1515/crll.2001.080 |
[3] | Y. Bugeaud, Linear forms in $p$-adic logarithms and the Diophantine equation $(x^{n}-1)/(x-1) = y^{q}$, Math. Proc. Camb. Philos. Soc., 127 (1999), 373–381. https://dx.doi.org/10.1017/S0305004199003692 doi: 10.1017/S0305004199003692 |
[4] | V. A. Dem'janenko, On Jeśmanowicz' problem for Pythagorean numbers, Izv. Vyss. Ucebn. Zayed. Mat., 48 (1965), 52–56. |
[5] | M. J. Deng, A note on the Diophantine equation $(na)^{x}+(nb)^{y} = (nc)^{z}$, Bull. Aust. Math. Soc., 89 (2014), 316–321. https://dx.doi.org/10.1017/S000497271300066X doi: 10.1017/S000497271300066X |
[6] | Y. Fujita, M. H. Le, Dem'janenko's theorem on Jeśmanowicz' conjecture concerning Pythagorean triples revisited, Bull. Malays. Math. Sci. Soc., 44 (2021), 4059–4083. https://dx.doi.org/10.1007/S40840-021-01157-0 doi: 10.1007/S40840-021-01157-0 |
[7] | K. Györy, On the diophantine equation $n(n+1)\cdots (n+k-1) = bx^{l}$, Acta Arith., 83 (1998), 87–92. https://dx.doi.org/10.4064/aa-83-1-87-92 doi: 10.4064/aa-83-1-87-92 |
[8] | Y. Z. Hu, P. Z. Yuan, Jeśmanowicz' conjecture concerning Pythagorean numbers, Acta Math. Sin. Chin. Ser., 53 (2010), 297–300. https://dx.doi.org/10.12386/A2010sxxb0036 doi: 10.12386/A2010sxxb0036 |
[9] | L. Jeśmanowicz, Several remarks on Pythagorean numbers, Wiadom. Mat., 1 (1956), 196–202. |
[10] | M. Laurent, Linear forms in two logarithms and interpolation determinants Ⅱ, Acta Arith., 133 (2008), 325–348. https://dx.doi.org/10.4064/aa133-4-3 doi: 10.4064/aa133-4-3 |
[11] | T. Miyazaki, Generalizations of classical results on Jeśmanowicz' conjecture concerning Pythagorean triples, J. Number Theory, 133 (2013), 583–595. https://dx.doi.org/10.1016/j.jnt.2012.08.018 doi: 10.1016/j.jnt.2012.08.018 |
[12] | T. Miyazaki, A remark on Jeśmanowicz' conjecture for the non-coprimality case, Acta Math. Sin. Engl. Ser., 31 (2015), 1255–1260. https://dx.doi.org/10.1007/s10114-015-4491-2 doi: 10.1007/s10114-015-4491-2 |
[13] | T. Miyazaki, I. Pink, Number of solutions to a special type of unit equations in two variables, arXiv, 2020. https://dx.doi.org/10.48550/arXiv.2006.15952 |
[14] | T. Miyazaki, I. Pink, Number of solutions to a special type of unit equations in two variables Ⅱ, arXiv, 2022. https://dx.doi.org/10.48550/arXiv.2205.11217 |
[15] | N. Terai, On Jeśmanowicz' conjecture concerning primitive Pythagorean triples, J. Number Theory, 141 (2014), 316–323. https://doi.org/10.1016/j.jnt.2014.02.009 doi: 10.1016/j.jnt.2014.02.009 |
[16] | H. Yang, R. Q. Fu, Fermat primes and Jeśmanowicz' conjecture, Adv. Math. China, 46 (2017), 857–866. |
[17] | H. Yang, R. Q. Fu, A further note on Jeśmanowicz' conjecture concerning primitive pythagorean triples, Mediterr. J. Math., 19 (2022), 57–64. https://doi.org/10.1007/s00009-022-01990-y doi: 10.1007/s00009-022-01990-y |