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Abstract: In 1956, Jeśmanowicz conjectured that, for any positive integer n, the Diophantine equation(
( f 2 − g2)n

)x
+((2 f g)n)y =

(
( f 2 + g2)n

)z
has only the positive integral solution (x, y, z) = (2, 2, 2), where

f and g are positive integers with f > g, gcd( f , g) = 1, and f . g (mod 2). Let r = 6k + 2, k ∈ N,
k ≥ 25. In this paper, combining p-adic form of Baker method with some detailed computation, we
prove that if n satisfies n ≡ 0, 6, 9 (mod 12), f = g + 1 and g = 2r − 1, then the conjecture is true.
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1. Introduction

Let a, b, c be relatively prime positive integers such that a2 + b2 = c2. Such a triple (a, b, c) is called
a primitive Pythagorean triple. In 1956, Jeśmanowicz [9] conjectured that, for any positive integer n,
if (a, b, c) is a primitive Pythagorean triple, then the exponential Diophantine equation

(an)x + (bn)y = (cn)z (1.1)

has only the positive integral solution (x, y, z) = (2, 2, 2). It is well-known that any primitive
Pythagorean triple (a, b, c) can be parameterized by

a = f 2 − g2, b = 2 f g, c = f 2 + g2,

where f and g are positive integers with f > g, gcd( f , g) = 1 and f . g (mod 2). Then, (1.1) can be
rewritten as follows: (

( f 2 − g2)n
)x

+ ((2 f g)n)y =
(
( f 2 + g2)n

)z
. (1.2)

Jeśmanowicz’ conjecture has been proved to be true in many cases. In 2013, using some properties
of Pell equation, Miyazaki [11] proved that if n = 1 and a ≡ ±1 (mod b) or c ≡ 1 (mod b), then
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Jeśmanowicz’ conjecture is true. Similar to the above result, by using Baker method with various
elementary arguments through rational and quadratic numbers, Miyazaki and Pink [13,14] showed that
if n = 1, and a ≡ ±1 (mod c) or b ≡ ±1 (mod c), then Jeśmanowicz’ conjecture is true. Combining
a lower bound for linear forms in two logarithms due to Laurent [10] with some elementary methods,
Terai [15] showed that Jeśmanowicz’ conjecture is true for n = 1 and g = 2. By using some results of
Diophantine equations in [1, 7] and detailed calculations on 2-adic valuation, in 2015, Miyazaki [12]
proved that if n ≥ 1 and ( f , g) = (2r, 1), where r is a positive integer, then Jeśmanowicz’ conjecture is
true. Recently, together Baker method with an elementary computation, Yang and Fu [17] proved that
if n = 1, f g ≡ 2 (mod 4) and f > 17.8g, then Jeśmanowicz’ conjecture holds.

In this paper, we pay our attention to the special case f = g + 1. It is easy to see that (1.2) can be
rewritten as following in this case:

((2g + 1)n)x +
(
(2g2 + 2g)n

)y
=

(
(2g2 + 2g + 1)n

)z
. (1.3)

In 1965, Dem’janenko [4] proved that if n = 1, then exponential Diophantine equation (1.3) has only
the positive integral solution (x, y, z) = (2, 2, 2). In 2010, using a deep result in [2] on the existence
of primitive divisors of Lucas numbers and Lehmer numbers, Hu and Yuan [8] provided a proof of
Dem’janenko’s result. In 2021, using some properties on the representation of integers by binary
quadratic primitive forms, Fujita and Le [6] gave a new proof of Dem’janenko’s result, which is more
elementary than that in [8].

However, the result concerning with (1.3) in the case n > 1 is scarce. In 2017, Yang and Fu [16]
proved that if n > 1, g = 2r and 2r + 1 is an odd prime, then Eq (1.3) has no positive solution other
than (2, 2, 2). Recently, Fujita and Le [6] proved that if n > 1 and g = 2r, where r ≥ 80 and r + 1 is
an odd prime, then (1.3) has only the positive integral solution (2, 2, 2). In this paper , we focus our
attention on the case f = g + 1 and g = 2r − 1, where r = 6k + 2, k ∈ N. With the aid of p-adic form
of Baker method, we obtain some interesting results about Jeśmanowicz’ conjecture by some detailed
computation on 2-adic valuation.

2. Preliminary results

This section is devoted to providing some known results which will be used in the next section. The
following conclusion is clear in elementary number theory.

Lemma 2.1. Let r, l be two positive integers. Then 2r − 1 | 2l − 1 if and only if r | l.
Let p be a prime and vp the standard p-adic valuation normalized by vp(p) = 1. Suppose that l > 5

is a positive integer and k is a divisor of 2l + 1 with 1 < k < 2l + 1. Denote by ζ the integer (−1)(k−1)/2.
Fujita and Le showed in [6] that v2(k− ζ) ≤ l/3. Without restriction on l, we can obtain a similar result
by the method in [6].

Lemma 2.2. Let l be a positive integer, k a divisor of 2l − 1 with 1 < k < 2l − 1. Denote by ζ the
integer (−1)(k−1)/2. Then v2(k − ζ) ≤ l/2.

Proof. To ease the notation, denote by s the integer v2(k − ζ). We may assume that

k = 2sh + ζ, s, h ∈ N, s ≥ 2, 2 - h,
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and
2l − 1 = kk′, k′ ∈ N, 1 < k′ < 2l − 1,

where
k′ = 2s′h′ + ζ′, ζ′ = (−1)(k′−1)/2, s′, h′ ∈ N, s′ ≥ 2, 2 - h′.

According to the above assumptions, we get

2l − 1 = (2sh + ζ)(2s′h′ + ζ′) = 2s+s′hh′ + 2shζ′ + 2s′h′ζ + ζζ′. (2.1)

Since min{s, s′} ≥ 2, we see from (2.1) that ζζ′ = −1. It follows that ζ′ = −ζ and

2l = 2s+s′hh′ − 2shζ + 2s′h′ζ. (2.2)

Suppose that l < 2s. We shall deduce contradictions from the following arguments in two cases.

Case 1: h′ ≥ h. Since min{l, s + s′} >max{s, s′}, by (2.2), we get s = s′ and

2l−s = 2shh′ + (h′ − h)ζ. (2.3)

Since l < 2s, by (2.3), we have (h − h′) ≡ 0 (mod 2l−s), ζ = −1 and

h′ − h
2l−s + 1 = 22s−lhh′. (2.4)

Notice that hh′ > h′−h+1
2 . This implies in turn that (2.4) is false, and we get a contradiction.

Case 2: h′ < h. A contradiction can also be established by the above method. �

The following result plays an important role in the proof of Proposition 3.9 in Section 3.

Lemma 2.3. [6, Lemma 4.1] If b, c, m are positive integers such that b > 1, 2 - b and b = cm, then

v2

(
b − (−1)(b−1)/2

)
≥ v2

(
c − (−1)(c−1)/2

)
.

In order to obtain an upper bound for z in Section 3, a result due to Bugeaed [3] is essential. Now we
introduce some notation. Let α1, α2 be integers such that min{|α1| , |α2|} ≥ 2. We consider the upper
bound for p-adic valuation of the following number

Λ = α
β1
1 − α

β2
2 ,

where β1, β2 are positive integers. Let p be a prime with p - α1α2. Denote by h0 the smallest positive
integer such that

vp

(
αh0

1 − 1
)
> 0, vp

(
αh0

2 − 1
)
> 0.

Assume that there exists a real E such that

vp

(
αh0

1 − 1
)
≥ E >

1
p − 1

, vp

(
αh0

2 − 1
)
≥ E >

1
p − 1

,

and A1 > 1, A2 > 1 are real numbers with

log Ai ≥ max{log |αi| , E log p}, (i = 1, 2).
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With these notation in hand, we now present the result due to Bugeaed in [3].

Lemma 2.4. [3, Theorem 2] With the notation as above, if α1 and α2 are multiplicatively independent,
then we have

vp(Λ) 6
36.1h0

E3(log p)4

(
max{log B + log(E log p) + 0.4, 6E log p, 5}

)2 log A1 log A2,

where B =
β1

log A2
+

β2
log A1

.
Denote by P (n) the product of distinct prime factors of n. It has to be pointed out that the following

conclusion, which is needed in the proof of Proposition 3.1, plays an important role in the research on
Jeśmanowicz’ conjecture.

Lemma 2.5. [5, Corollary 2.4 ] Let (a, b, c) be a primitive Pythagorean triple such that the exponential
Diophantine equation ax + by = cz has the unique positive solution (x, y, z) = (2, 2, 2). If (x, y, z) ,
(2, 2, 2) is a solution of (1.1), then one of the following assertions holds:
(1) x > z > y, P(n) | b;
(2) y > z > x, P(n) | a.

It is easy to see from Lemma 2.5 that, the case n = 1 is essential to the case n > 1 on the study of
Jeśmanowicz’ conjecture. Hence, the following lemma is necessary.

Lemma 2.6. [8] If n = 1, then the exponential Diophantine equation (1.3) has only the positive integral
solution (x, y, z) = (2, 2, 2).

The following two lemmas will be used to determine the relationship of size between x, y, z, where
(x, y, z) is a positive integral solution of (1.3).

Lemma 2.7. [6, Theorem 1.3] If n > 1 and g > 48, then the exponential Diophantine equation (1.3)
has no solution (x, y, z) with y > z > x.

Lemma 2.8. [6, Proposition 4.5] If (x, y, z) , (2, 2, 2) is a positive solution of (1.3) such that x > z > y,
then z > x − z.

3. Main results

As we all known, for any odd integer b with b > 1, and any positive integer m, we have

v2(bm − 1) =

v2(b − 1), i f 2 - m,

v2

(
b − (−1)(b−1)/2

)
+ v2(m), i f 2 | m.

(3.1)

When g > 1, g ≡ 1 (mod 3) and P
(
2g2 + 2g

)
| n, Fujita and Le showed in [6] that (1.3) has no positive

solution other than (2, 2, 2). By similar arguments, it is not hard to get the following conclusion.

Proposition 3.1. Let g = 2r − 1, where r is even. If there exists a prime p such that vp

(
2g2 + 2g

)
= 1,

and the positive integers n, g satisfy P
(
2g2 + 2g

)
| n, then the Eq (1.3) has no positive solution other

than (2, 2, 2).

Proof. Let (x, y, z) be a positive solution of (1.3). Suppose that (x, y, z) , (2, 2, 2). Since P
(
2g2 + 2g

)
|

n and gcd
(
2g2 + 2g, 2g + 1

)
= 1, then P(n) - 2g + 1. By Lemma 2.5, we have x > z > y and
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P(n) | 2g2 + 2g. This means that P
(
2g2 + 2g

)
= P(n), and(

2g2 + 2g
)y

= nz−y
(
(2g2 + 2g + 1)z − (2g + 1)xnx−z

)
. (3.2)

Combining P
(
2g2 + 2g

)
= P(n), gcd

(
2g2 + 2g, 2g2 + 2g + 1

)
= 1 with g = 2r − 1, it follows from (3.2)

that (2g2 + 2g)y = nz−y, and

(2r+1 − 1)xnx−z + 1 = (22r+1 − 2r+1 + 1)z. (3.3)

Note here that 22r+1 − 2r+1 + 1 ≡ 1 (mod 4). We can get that

(x − z)v2(n) = v2

(
(22r+1 − 2r+1 + 1)z − 1

)
= v2(22r+1 − 2r+1 + 1 − 1) + v2(z)
= r + 1 + v2(z), (3.4)

by (3.1) and (3.3). Since
(
22r+1 − 2r+1

)y
= nz−y, we have

n =
(
22r+1 − 2r+1

) y
z−y
, v2(n) = (r + 1)

y
z − y

. (3.5)

It follows from vp

(
22r+1 − 2r+1

)
= 1 and (3.5) that y

z−y must be a positive integer. If y
z−y = 1, then z = 2y.

Hence, 2 | z. If y
z−y > 1, by (3.4), we get

(r + 1)(x − z) − (r + 1) < v2(z).

Hence, v2(z) > 0. Therefore, we always have 2 | z.
It is clear from 2 | z that 22r − 2r + 1 |

(
22r+1 − 2r+1 + 1

)z
− 1. Together this relation with (3.3), the

relation
22r − 2r + 1 | (2r+1 − 1)xnx−z (3.6)

can be easily established. By P
(
22r+1 − 2r+1

)
= P(n) and gcd

(
22r+1 − 2r+1, 22r − 2r + 1

)
= 1, we have

gcd
(
22r − 2r + 1, nx−z

)
= 1, and by (3.6),

22r − 2r + 1 |
(
2r+1 − 1

)x
.

Suppose that p0 is a common prime divisor of 22r − 2r + 1 and 2r+1 − 1. Since 2r − 1 ≡ −1/2
(mod p0), we have 22r − 2r + 1 ≡ 3/4 (mod p0). Hence, p0 = 3. On the other hand, since r is even,
22r − 2r + 1 ≡ 1 (mod 3), and this is absurd, and in turn completes our proof. �

By Proposition 3.1, the following result can be obtained easily.

Proposition 3.2. Let r = 6k+2, k ∈ N. If g = 2r−1 and the positive integers n, g satisfy P(2g2+2g) | n,
then the Eq (1.3) has no positive solution other than (2, 2, 2).

Proof. It is clear from Proposition 3.1 that we just have to show that there exists a prime p such that
vp

(
2g2 + 2g

)
= 1. In fact, we claim that 3 is the one we are looking for. Since r is even, 3 | 22r+1−2r+1.

Furthermore, notice that r ≡ 2 (mod 3), 9 - 22r+1 − 2r+1. �
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Combining p-adic form of Baker method with some elementary computation, Fujita and Le proved
in [6] that (1.3) has no positive solution other than (2, 2, 2) for g = 2r, where r ≥ 80 and r + 1 is a
prime. With the help of Proposition 3.2 and ideas in [6], the following conclusion, which is our main
result in this paper, can be obtained.

Theorem 3.3. Let r = 6k + 2, k ∈ N, k ≥ 25. If g = 2r −1 and the positive integer n satisfies n ≡ 0, 6, 9
(mod 12), then the Eq (1.3) has no positive solution other than (2, 2, 2).

In order to prove Theorem 3.3, in the rest of this section, we assume from now on that g = 2r − 1,
r = 6k + 2, k ∈ N, k ≥ 25, the positive integer n satisfies n ≡ 0, 6, 9 (mod 12), and (x, y, z) , (2, 2, 2) is
a solution of (1.3). It is easy to see from Lemmas 2.5–2.7 that x > z > y. The above arguments imply
that

(22r+1 − 2r+1)y = nz−y
(
(22r+1 − 2r+1 + 1)z − (2r+1 − 1)xnx−z

)
. (3.7)

Let
22r+1 − 2r+1 = b1b2, b1, b2 ∈ N, (3.8)

where
by

1 = nz−y. (3.9)

It is obvious that gcd(b1, b2) = 1 and (3.7) can be rewritten as

(2r+1 − 1)xnx−z + by
2 = (22r+1 − 2r+1 + 1)z. (3.10)

Now, in order to prove Theorem 3.3, we just have to prove that (3.10) is false.

Remark 3.4. It is worth pointing out that the conclusion of Proposition 3.2 shows that if b1 =

22r+1 − 2r+1, then (3.10) is false.
When b1 < 22r+1−2r+1, an upper bound for z can be obtained by using p-adic form of Baker method.

With the similar arguments as in [6], we can prove the following proposition.

Proposition 3.5. If b1 < 22r+1 − 2r+1, then

z < 360(log b2)
(
log(22r+1 − 2r+1 + 1)

) (
log log(22r+1 − 2r+1 + 1)

)2
.

Proof. Notice that r ≡ 2 (mod 3). Then

7 - 22r+1 − 2r+1 + 1, 7 - 22r+1 − 2r+1 = b1b2.

Put
α1 = 22r+1 − 2r+1 + 1, α2 = b2, β1 = z, β2 = y.

Such α1, α2 are positive integers satisfying min{α1, α2} ≥ 2 and 7 - α1α2. It is clear that α1 and α2 are
multiplicatively independent. Let Λ = α

β1
1 − α

β2
2 . Observe here that r + 1 = 6k + 3, k ∈ N. It follows

from (3.10) that Λ = (2r+1 − 1)xnx−z and
v7(Λ) ≥ x. (3.11)

When b1 ≡ 3, 5, 6 (mod 7), it is clear from (3.8) that b2 ≡ 1, 2, 4 (mod 7). Since gcd(b1, b2) = 1,
b1 < 22r+1 − 2r+1, and r ≥ 152, by (3.8), we have b2 > 7. Put h0 = 3, E = 1, A1 = α1, A2 = α2. Then,
combining Lemma 2.4 with (3.11), it follows that

x 6
36.1 × 3
(log 7)4

(
log(22r+1 − 2r+1 + 1)

)
(log b2)(max{6 log 7, 0.4 + log log 7 + log B})2, (3.12)
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where
B =

z
log b2

+
y

log(22r+1 − 2r+1 + 1)
. (3.13)

If 6 log 7 ≥ 0.4 + log log 7 + log B, then we get from (3.13)

z 6 76 log b2. (3.14)

Notice that r ≥ 152, it follows from (3.14) that

z 6 76 log b2 < 360(log b2)(log(22r+1 − 2r+1 + 1))
(
log log(22r+1 − 2r+1 + 1)

)2
.

If 6 log 7 < 0.4 + log log 7 + log B, then, by (3.12),

x 6 8.4(log(22r+1 − 2r+1 + 1))(log b2)(0.4 + log log 7 + log B)2. (3.15)

Since x > z > y and b2 = b/b1 < b by (3.8), we see from (3.13) that

B <
2z

log b2
. (3.16)

Combining (3.15) with (3.16), we get that

z
log b2

<
x

log b2
< 8.4

(
log(22r+1 − 2r+1 + 1)

) (
2 + log

(
z

log b2

))2

. (3.17)

Let F(t) = t − 8.4
(
log(22r+1 − 2r+1 + 1)

)
(2 + log t)2. The above inequalities mean that

F
(

z
log b2

)
< 0. (3.18)

Since r ≥ 152, F(t) > 0 for

t = 360
(
log(22r+1 − 2r+1 + 1)

) (
log log(22r+1 − 2r+1 + 1)

)2
.

Furthermore,
F′(t) = 1 − 16.8

(
log(22r+1 − 2r+1 + 1)

)
(2 + log t)/t,

and F′(t) > 0 for
t > 360

(
log(22r+1 − 2r+1 + 1)

) (
log log(22r+1 − 2r+1 + 1)

)2
,

where F′(t) is the derivative of F(t). Therefore, by (3.18), we get

z < 360(log b2)
(
log(22r+1 − 2r+1 + 1)

) (
log log(22r+1 − 2r+1 + 1)

)2
.

When b1 ≡ 1, 2, 4 (mod 7), it is clear from (3.8) that b2 ≡ 3, 5, 6 (mod 7). Since n ≡ 0 (mod 3),
and gcd(b1, b2) = 1, by (3.9), we have b2 ≥ 5. Put h0 = 6, E =

log 5
log 7 , A1 = α1, A2 = α2. Then,

combining Lemma 2.4 with (3.11) , it follows that

x 6
36.1 × 6

(log 5)3 × log 7

(
log(22r+1 − 2r+1 + 1)

)
(log b2)(max{6 log 5, 0.4 + log log 5 + log B})2,

where
B =

z
log b2

+
y

log(22r+1 − 2r+1 + 1)
.

The rest of the proof omitted here is similar to the situation in which b1 ≡ 3, 5, 6 (mod 7). Thus, the
proposition is proved. �
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Using the above result, it is not difficult to show the following conclusion.

Proposition 3.6. If b1 = 2r − 1, then (3.10) is false.

Proof. It is easily deduced from (3.8) that b2 = 2r+1 when b1 = 2r − 1. Hence, by (3.10), we get

(2r+1 − 1)xnx−z + 2(r+1)y = (22r+1 − 2r+1 + 1)z. (3.19)

Notice that x > 2, then

2(r+1)y =
(
(2r+1 − 1) + 1

)y
≡ 1 + (2r+1 − 1)y (mod (2r+1 − 1)2),

and

(22r+1 − 2r+1 + 1)z =

(
1
2

(
(2r+1 − 1)2 + 1

))z

≡
1
2z (mod (2r+1 − 1)2).

It follows from (3.19) and (3.20) respectively that

2z(2r+1 − 1)y ≡ 1 − 2z (mod (2r+1 − 1)2), (3.20)

and
2z − 1 ≡ 0 (mod 2r+1 − 1). (3.21)

Applying Lemma 2.1 to (3.21), we get r + 1 | z and

z = (r + 1)m1,m1 ∈ N. (3.22)

Combining (3.20) with (3.22), we have

− 2zy ≡
2z − 1

2r+1 − 1
=

2(r+1)m1 − 1
2r+1 − 1

=

m1−1∑
i=0

2(r+1)i ≡ m1 (mod 2r+1 − 1), (3.23)

and this implies in turn that m1 ≡ −y (mod 2r+1 − 1) and

z
r + 1

≡ −y (mod 2r+1 − 1). (3.24)

According to (3.24), we have (
r + 2
r + 1

)
z >

z
r + 1

+ y > 2r+1 − 1. (3.25)

On the other hand, combining the facts that r ≥ 150, r ≡ 2 (mod 3) and b1 = 2r − 1 < 22r+1 − 2r+1

with Proposition 3.5 and (3.25) , we get

2r+1 − 1 <
152
151

z <
152
151

360(log b2)
(
log(22r+1 − 2r+1 + 1)

) (
log log(22r+1 − 2r+1 + 1)

)2
,

which is impossible under the condition r ≥ 152. Thus, our proof is completed. �
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Let k1, k2 be positive integers such that

2r − 1 = k1k2, 1 < k1, k2 < 2r − 1, gcd(k1, k2) = 1. (3.26)

Before continuing our discussion, a remark is in order.

Remark 3.7. Combining (3.8), Remark 3.4 with Proposition 3.6 yield that if b1 = 2r+1(2r − 1) or
b1 = 2r − 1, then (3.10) is false. This implies that we just have to show that (3.10) is false in the case
(b1, b2) = (2r+1k1, k2) or (b1, b2) = (k1, 2r+1k2).

With the above preparations, we are now in a position to prove Theorem 3.3.

Proposition 3.8. If n ≡ 0, 6 (mod 12), then (3.10) is false.

Proof. When n ≡ 0, 6 (mod 12), it follows immediately from (3.9) that 6 | b1. Then, by Remark 3.7,
we assume that (b1, b2) = (2r+1k1, k2). Hence, (3.10) can be represented as

(2r+1 − 1)xnx−z + ky
2 = (22r+1 − 2r+1 + 1)z, (3.27)

where n satisfies
nz−y = (2r+1k1)y. (3.28)

In other words, n can be rewritten as
n = (2r+1k1)

y
z−y , (3.29)

and this means in turn that (3.27) can be rewritten as

(2r+1 − 1)x(2r+1k1)(x−z) y
z−y + ky

2 = (22r+1 − 2r+1 + 1)z. (3.30)

Since r + 1 = 6k + 3, k ∈ N, we have 32 - 2r − 1. Notice that 3 | n, it follows from (3.26) and (3.29) that
3 | k1 and 32 - k1, which implies that y

z−y is a positive integer. Taking (3.30) module 2r+1 yields that

ky
2 − 1 ≡ 0 (mod 2r+1). (3.31)

Let s = v2

(
k2 − (−1)(k2−1)/2

)
. Since k2 | 2r − 1, we see from (3.1) and (3.31) that

s + v2(y) ≥ r + 1. (3.32)

Combining Lemma 2.2 with (3.26) yield that s 6 r/2. Hence, by (3.32), we have v2(y) ≥ r/2 + 1, and
thus y ≥ 2r/2+1. Since z > y, we get

z > 2r/2+1. (3.33)

According to Proposition 3.5 and (3.33), we have

2r/2+1 < 360
(
log(22r+1 − 2r+1)

) (
log(22r+1 − 2r+1 + 1)

) (
log log(22r+1 − 2r+1 + 1)

)2
,

whence we get r < 152, which yields a contradiction. Thus, our proof is completed. �

Proposition 3.9. If n ≡ 9 (mod 12), then (3.10) is false.
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Proof. Since n ≡ 9 (mod 12), we have b1 is odd by (3.9). Similar to the above proposition, we assume
that (b1, b2) = (k1, 2r+1k2). Thus, equality (3.10) can be rewritten as

(2r+1 − 1)xnx−z + (2r+1k2)y = (22r+1 − 2r+1 + 1)z, (3.34)

where n satisfies
ky

1 = nz−y. (3.35)

Since n ≡ 9 (mod 12), taking (3.34) module 4, we get (−1)x ≡ 1 (mod 12), which implies that 2 | x.
Furthermore, taking (3.34) module 2r+1, it follows from (3.35) and 2 | x that

nx−z − 1 ≡ ky(x−z)/(z−y)
1 − 1 ≡ 0 (mod 2r+1). (3.36)

Notice that r + 1 = 6k + 3, k ∈ N, we get that 32 - 2r − 1. Since n ≡ 9 (mod 12), we assert by (3.26)
and (3.35) that y

z−y is a positive integer. Combining (3.1), (3.26) with (3.36) yield

v2

(
ky(x−z)/(z−y)

1 − 1
)

= v2

(
k1 − (−1)(k1−1)/2

)
+ v2

(
y(x − z)

z − y

)
≥ r + 1. (3.37)

Let s′ = v2

(
k1 − (−1)(k1−1)/2

)
. Applying (3.1), (3.26) and Lemma 2.3, we see by (3.37) that

v2

(
ky(x−z)

1 − 1
)

= s′ + v2 (y(x − z)) ≥ r + 1, (3.38)

which in turn means s′ 6 r/2. Hence, by (3.38), we have v2 (y(x − z)) 6 r/2 + 1, and thus

y(x − z) 6 2r/2+1. (3.39)

Lemma 2.8 tells us that z > x − z. Combining this fact with z > y and (3.39), we have

z2 > y(x − z) > 2r/2+1,

and thus

2r/4+1/2 < 360
(
log(22r+1 − 2r+1)

) (
log(22r+1 − 2r+1 + 1)

) (
log log(22r+1 − 2r+1 + 1)

)2
,

which implies that r < 152. So we get a contradiction, and complete the proof. �

We conclude the proof of Theorem 3.3 by bringing together the above two propositions.

4. Conclusions

In this paper, our attention is focused on a special case of Jeśmanowicz’ conjecture, in which f =

g + 1 and g = 2r − 1, where r = 6k + 2, k ∈ N. Using p-adic Baker method with some detailed
computation on 2-adic valuation, we show that if k ≥ 25 and the positive integer n satisfies n ≡ 0, 6, 9
(mod 12), then Jeśmanowicz’ conjecture is true. Notice that our result is based on a condition of the
value of n, we will try to promote our result for any positive integer n.
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