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1. Introduction

Let a, b, c be relatively prime positive integers such that a® + b*> = ¢?. Such a triple (a, b, c) is called
a primitive Pythagorean triple. In 1956, JeSmanowicz [9] conjectured that, for any positive integer n,
if (a, b, c) 1s a primitive Pythagorean triple, then the exponential Diophantine equation

(an)* + (bn)’ = (cn)* (1.1)

has only the positive integral solution (x,y,z) = (2,2,2). It is well-known that any primitive
Pythagorean triple (a, b, ¢) can be parameterized by

a:fz—gz,bzzfg’c:f2+g2’

where f and g are positive integers with f > g, gcd(f,g) = 1 and f # g (mod 2). Then, (1.1) can be
rewritten as follows:

((f? = gm)" + (@fomy = ((f2 + &) . (1.2)

JeSmanowicz’ conjecture has been proved to be true in many cases. In 2013, using some properties
of Pell equation, Miyazaki [11] proved that if » = 1 and @ = +1 (mod b) or ¢ = 1 (mod b), then
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JeSmanowicz’ conjecture is true. Similar to the above result, by using Baker method with various
elementary arguments through rational and quadratic numbers, Miyazaki and Pink [13,14] showed that
ifn=1,anda = +1 (mod c¢) or b = =1 (mod c¢), then JeSmanowicz’ conjecture is true. Combining
a lower bound for linear forms in two logarithms due to Laurent [10] with some elementary methods,
Terai [15] showed that JeSmanowicz’ conjecture is true for n = 1 and g = 2. By using some results of
Diophantine equations in [1, 7] and detailed calculations on 2-adic valuation, in 2015, Miyazaki [12]
proved thatif n > 1 and (f, g) = (27, 1), where r is a positive integer, then JeSmanowicz’ conjecture is
true. Recently, together Baker method with an elementary computation, Yang and Fu [17] proved that
ifn=1, fg=2 (mod 4) and f > 17.8g, then JeSmanowicz’ conjecture holds.

In this paper, we pay our attention to the special case f = g + 1. It is easy to see that (1.2) can be
rewritten as following in this case:

(28 + Dny* +((2¢* + 2g)n)y = (28" +2g + l)n)z . (1.3)

In 1965, Dem’janenko [4] proved that if n = 1, then exponential Diophantine equation (1.3) has only
the positive integral solution (x,y,z) = (2,2,2). In 2010, using a deep result in [2] on the existence
of primitive divisors of Lucas numbers and Lehmer numbers, Hu and Yuan [8] provided a proof of
Dem’janenko’s result. In 2021, using some properties on the representation of integers by binary
quadratic primitive forms, Fujita and Le [6] gave a new proof of Dem’janenko’s result, which is more
elementary than that in [8].

However, the result concerning with (1.3) in the case n > 1 is scarce. In 2017, Yang and Fu [16]
proved thatif n > 1, g = 2" and 2" + 1 is an odd prime, then Eq (1.3) has no positive solution other
than (2, 2,2). Recently, Fujita and Le [6] proved thatif n > 1 and g = 2", where r > 80 and r + 1 is
an odd prime, then (1.3) has only the positive integral solution (2,2, 2). In this paper , we focus our
attention on the case f = g+ 1 and g = 2" — 1, where r = 6k + 2, k € N. With the aid of p-adic form
of Baker method, we obtain some interesting results about JeSmanowicz’ conjecture by some detailed
computation on 2-adic valuation.

2. Preliminary results

This section is devoted to providing some known results which will be used in the next section. The
following conclusion is clear in elementary number theory.

Lemma 2.1. Let r, [ be two positive integers. Then 2" — 1| 2! — 1 if and only if r | L.

Let p be a prime and v, the standard p-adic valuation normalized by v,(p) = 1. Suppose that [ > 5
is a positive integer and k is a divisor of 2/ + 1 with 1 < k < 2/ + 1. Denote by ¢ the integer (—1)*=1/2,
Fujita and Le showed in [6] that v,(k — {) < /3. Without restriction on /, we can obtain a similar result
by the method in [6].

Lemma 2.2. Let [ be a positive integer;, k a divisor of 2! — 1 with 1 < k < 2! — 1. Denote by { the
integer (=1)*V'2 Then vy(k — ) < 1/2.

Proof. To ease the notation, denote by s the integer v,(k — ). We may assume that
k=2h+{,s,heN,s>2,21h,
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and
21 =kk, K eN,1 <k <2'—1,

where
K=2n+0,0 =D D2 ¢ neNs >22¢H.

According to the above assumptions, we get
21 =Qh+ QK + ) =2 hi +2°h¢ + 25 + L. 2.1)
Since min{s, s’} > 2, we see from (2.1) that /¢’ = —1. It follows that {’ = —{ and
20 =2l - 2he + 2 L. (2.2)
Suppose that [ < 2s. We shall deduce contradictions from the following arguments in two cases.
Case 1: 1/ > h. Since min{/, s + s’} >max{s, s}, by (2.2), we get s = s’ and
275 = 2Shi + (W — h)C. (2.3)
Since [ < 2s, by (2.3), we have (h — 1’) = 0 (mod 2/-%), = —1 and

h —h
21—s

+1 =2y, (2.4)

Notice that hh" > % This implies in turn that (2.4) is false, and we get a contradiction.

Case 2: I/ < h. A contradiction can also be established by the above method. O

The following result plays an important role in the proof of Proposition 3.9 in Section 3.

Lemma 2.3. [6, Lemma 4.1] If b, ¢, m are positive integers such thatb > 1, 2 ¥ b and b = ¢", then
va (b= (=1)®V2) 2 vy (c = (=D)DP).

In order to obtain an upper bound for z in Section 3, a result due to Bugeaed [3] is essential. Now we
introduce some notation. Let ay, @, be integers such that min{|a,], |a,|} > 2. We consider the upper
bound for p-adic valuation of the following number

A:a,lfl_a/gz’

where 3, 8, are positive integers. Let p be a prime with p 1 a;a,. Denote by hj the smallest positive
integer such that
Vp (0/1’0 - 1) >0,v, (cxlzm - 1) > 0.

Assume that there exists a real £ such that

vp(a}ll"—l)ZE>

b

1 ho
, -1)>E >
e (e = 1) p—1
and A; > 1, A, > 1 are real numbers with

log A; > max{log|a;|, E log p}, (i = 1,2).
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With these notation in hand, we now present the result due to Bugeaed in [3].

Lemma 2.4. [3, Theorem 2] With the notation as above, if a, and a, are multiplicatively independent,
then we have

36.1h,
vp(A) < m (max{log B + log(E log p) + 0.4, 6Elog p, 5})*log A, log A,,
where B = 1051/42 1052141'

Denote by P (n) the product of distinct prime factors of n. It has to be pointed out that the following
conclusion, which is needed in the proof of Proposition 3.1, plays an important role in the research on
JeSmanowicz’ conjecture.

Lemma 2.5. [5, Corollary 2.4 | Let (a, b, ¢) be a primitive Pythagorean triple such that the exponential
Diophantine equation a* + b* = c¢* has the unique positive solution (x,y,z) = (2,2,2). If (x,y,2) #
(2,2,2) is a solution of (1.1), then one of the following assertions holds:

(1) x>z>y, P(n)|b;

(2)y>z>x P(n)|a.

It is easy to see from Lemma 2.5 that, the case n = 1 is essential to the case n > 1 on the study of
JeSmanowicz’ conjecture. Hence, the following lemma is necessary.

Lemma 2.6. [8] If n = 1, then the exponential Diophantine equation (1.3) has only the positive integral
solution (x,y,2) = (2,2,2).

The following two lemmas will be used to determine the relationship of size between x, y, z, where

(x,y,7) is a positive integral solution of (1.3).

Lemma 2.7. [6, Theorem 1.3] If n > 1 and g > 48, then the exponential Diophantine equation (1.3)
has no solution (x,y,z) withy > 7 > Xx.

Lemma 2.8. [6, Proposition 4.5] If (x,y,z) # (2,2,2) is a positive solution of (1.3) such that x > 7 >y,
then z > x — z.

3. Main results

As we all known, for any odd integer b with b > 1, and any positive integer m, we have

vo(b - 1), if24m,

1
va (b= (=D"2) £ vy(m), if2 | m. G-

va(b" - 1) = {

Wheng > 1,g=1 (mod 3) and P (2g2 + 2g) | n, Fujita and Le showed in [6] that (1.3) has no positive
solution other than (2,2, 2). By similar arguments, it is not hard to get the following conclusion.

Proposition 3.1. Let g = 2" — 1, where r is even. If there exists a prime p such that v, (Zg2 + 2g) =1,

and the positive integers n, g satisfy P (2g2 + Zg) | n, then the Eq (1.3) has no positive solution other
than (2,2,2).

Proof. Let (x,y, z) be a positive solution of (1.3). Suppose that (x,y, z) # (2,2, 2). Since P (2g2 + Zg) |
n and gcd(2g2 +2g,2g + 1) = 1, then P(n) ¥ 2g + 1. By Lemma 2.5, we have x > z > y and
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P(n) | 2g* + 2g. This means that P (2g> + 2¢) = P(n), and
(267 +2g) = n*™ (g% +2g + 1) — 2g + I)'n*™). (3.2)

Combining P (2¢? + 2g) = P(n), ged(2¢> + 2g,2¢> + 2g + 1) = 1 with g = 2" — 1, it follows from (3.2)
that (2g% + 2g)’ = n“”, and

(2r+1 _ 1)xnx—z +1= (22r+1 _ 2r+1 + 1)2 (33)
Note here that 2%*+! —2"*! + 1 =1 (mod 4). We can get that

(x = 2va(m) = v (@ =271 + 1 - 1)
=27 2" L 1 — D+ wa(2)
=r+1+ (2, 3.4)

by (3.1) and (3.3). Since (27*! - 2"*!)’ = ", we have
n= (22 2T ) =+ D= (3.5)
z-y

It follows from v,, (22“rl - 2””) = 1 and (3.5) that Z%} must be a positive integer. If % =1, then z = 2y.
Hence, 2 | z. If % > 1, by (3.4), we get

(r+D(x—2) =+ 1) < ().

Hence, v,(z) > 0. Therefore, we always have 2 | z.
Z
It is clear from 2 | z that 2 — 2" + 1 | (22”‘ -2y 1) — 1. Together this relation with (3.3), the
relation
27 =2+ 1|2 = 1)y (3.6)
can be easily established. By P (22“rl - 2’“) = P(n) and gcd(22“rl —2rl 2 _or 4 1) = 1, we have
ged(2 = 2" + 1,n) = 1, and by (3.6),

22’—2r+1|(2’+1—1)’“.

Suppose that py is a common prime divisor of 2% — 2" + 1 and 2"*' — 1. Since 2" -1 = —1/2
(mod py), we have 22" — 2" + 1 = 3/4 (mod py). Hence, py = 3. On the other hand, since r is even,
22 —2"+1=1 (mod 3), and this is absurd, and in turn completes our proof. O

By Proposition 3.1, the following result can be obtained easily.

Proposition 3.2. Letr = 6k+2, k € N. If g = 2" —1 and the positive integers n, g satisfy P(2g*>+2g) | n,
then the Eq (1.3) has no positive solution other than (2,2, 2).

Proof. 1t is clear from Proposition 3.1 that we just have to show that there exists a prime p such that
V) (2g2 + Zg) = 1. In fact, we claim that 3 is the one we are looking for. Since r is even, 3 | 22"+ — 21,

Furthermore, notice that » = 2 (mod 3), 9 4 2> +! — 2+, O
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Combining p-adic form of Baker method with some elementary computation, Fujita and Le proved
in [6] that (1.3) has no positive solution other than (2,2,2) for g = 2", where r > 80 and r + 1 is a
prime. With the help of Proposition 3.2 and ideas in [6], the following conclusion, which is our main
result in this paper, can be obtained.

Theorem 3.3. Letr = 6k+2,k e N, k > 25. If g = 2" — 1 and the positive integer n satisfiesn = 0,6,9
(mod 12), then the Eq (1.3) has no positive solution other than (2,2,2).

In order to prove Theorem 3.3, in the rest of this section, we assume from now on that g = 2" — 1,
r==06k+2,keN,k>?25, the positive integer n satisfies n = 0,6,9 (mod 12), and (x,y,z) # (2,2,2) is
a solution of (1.3). It is easy to see from Lemmas 2.5-2.7 that x > z > y. The above arguments imply
that

@ =2y = e (@2 =2 4 1 - @ - ). 3.7)
Let
92+l _ o+l _ biby, by, by €N, (3.8)
where
b =nt. 3.9)

It is obvious that gcd(by, b,) = 1 and (3.7) can be rewritten as
(2r+1 _ l)xnx—z + b; — (22r+1 _ 2r+1 + l)z. (310)
Now, in order to prove Theorem 3.3, we just have to prove that (3.10) is false.

Remark 3.4. It is worth pointing out that the conclusion of Proposition 3.2 shows that if by =
22+ 21 then (3.10) is false.

When b; < 221 -2*1 "an upper bound for z can be obtained by using p-adic form of Baker method.
With the similar arguments as in [6], we can prove the following proposition.

Proposition 3.5. If b; < 2%+! — 2! then
2 < 360(log by) (log(2 - 2% + 1)) (log log(2*! =27+ + 1)),
Proof. Notice that »r =2 (mod 3). Then
7§22 ot 7 22 ot Z b

Put
a; =2 2" v 1, ay=by, B1 =2 Bo=.
Such a, a, are positive integers satisfying min{a;, @} > 2 and 7 1 @ a,. It is clear that a; and a, are
multiplicatively independent. Let A = aff b — agz. Observe here that r + 1 = 6k + 3, k € N. It follows
from (3.10) that A = (2"*! — 1)*»* % and

v7(A) = x. (3.11)

When b, = 3,5,6 (mod 7), it is clear from (3.8) that b, = 1,2,4 (mod 7). Since gcd(by,b,) = 1,

by < 221 — 21 ‘and r > 152, by (3.8), we have b, > 7. Put hy = 3, E = 1, A; = a;, A, = . Then,
combining Lemma 2.4 with (3.11), it follows that

36.1 x3

x < ToET (log(2**! = 27! + 1)) (log by)(max{6 log 7,0.4 + loglog 7 + log B})*, (3.12)
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where
z y

B = .
log by log(2 1 — 271 1 1)
If 6log7 > 0.4 + loglog7 + log B, then we get from (3.13)

7z < 7%logb,. (3.14)
Notice that r > 152, it follows from (3.14) that

(3.13)

2 < Tlog by < 360(log b,)(log(2*' = 2 + 1)) (log log(2*' = 2 + 1)) .

If 6log7 < 0.4 +loglog7 + log B, then, by (3.12),

x < 8.4(1og(2**! = 2! + 1))(log b,)(0.4 + loglog 7 + log B)*. (3.15)
Since x > z > y and b, = b/b; < b by (3.8), we see from (3.13) that
27
B < . 3.16
log b, ( )

Combining (3.15) with (3.16), we get that

Z
<
logh, logb,

2
2r+1 r+l z
< 8.4 (log2>*! — 27 + 1)) (2+10g(10gb2)) . (3.17)

Let F(1) =t — 8.4 (log(2%*! — 2"*! + 1)) (2 + log 1)*. The above inequalities mean that

Z
F 0. 3.18
(10gbz) ) G-18)

Since r > 152, F(r) > O for
t =360 (log(2*" = 27! + 1)) (loglog(2*! — 2+ + 1))2 .
Furthermore,
F'() = 1-16.8 (log(2*' = 2"*' + 1)) (2 + log 1)/1,
and F’(t) > 0 for
2
t > 360 (log(2" = 27! + 1)) (log log(2**! = 27! + 1)),
where F’(¢) is the derivative of F(¢). Therefore, by (3.18), we get

2 < 360(log by) (log(2*! = 2% + 1)) (log log(@*' = 2 + 1)) .

When b, = 1,2,4 (mod 7), it is clear from (3.8) that b, = 3,5,6 (mod 7). Since n = 0 (mod 3),
and ged(by,by) = 1, by (3.9), we have b, > 5. Puthy = 6, E = {23, A = ), A; = . Then,
combining Lemma 2.4 with (3.11) , it follows that

36.1x6
X <
(log5)3 x log7

where

(log(2>*! = 27" + 1)) (log by)(max{6 log 5,04 + loglog 5 + log B})*,

Z y
B = + .
logh, log(2¥+! —2m+1 + 1)
The rest of the proof omitted here is similar to the situation in which b; = 3,5,6 (mod 7). Thus, the
proposition is proved. O
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Using the above result, it is not difficult to show the following conclusion.

Proposition 3.6. Ifb; =2" — 1, then (3.10) is false.
Proof. Tt is easily deduced from (3.8) that b, = 2"*! when b; = 2" — 1. Hence, by (3.10), we get
27+ = 1)o7 4 20Dy = (2 _prHl Yz,
Notice that x > 2, then
2 = (2 =D+ 1) =1+ Q% =1y (mod 2 - 1)),

and

1 C
2r+1 r+l _ r+1 2 _ r+l 2
7 =2 +1)Z—(§((2 -1 +1))=§ (mod (2" —1)7).
It follows from (3.19) and (3.20) respectively that
222 —Dy=1-2" (mod 2" - 1)%),

and
22-1=0 (mod 2™ —1).

Applying Lemma 2.1 to (3.21), we get r + 1 | z and
z=(r+ 1)m;,m €N.
Combining (3.20) with (3.22), we have

27 _ y(r+lm _ ] ,
= = > 20"V =m; (mod 2" - 1)
r+l _ r+l _ >
2+t —1] 2+t —1] ;

_2ZyE

and this implies in turn that m; = —y (mod 2"*! — 1) and

4

=— d2t — 1.
r+1 y (mo )

According to (3.24), we have

r+2 Z
> +y>2* -1,
(r+1)Z rr1

On the other hand, combining the facts that » > 150, r = 2 (mod 3) and b; = 2" — 1 < 2%*!
with Proposition 3.5 and (3.25) , we get
152 152

27— 1 < =z < —=360(log by) (log(2**! = 27! + 1)) (loglog(2*! = 2! + 1))

2
151 151 ’

which is impossible under the condition r > 152. Thus, our proof is completed.

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

_ 2r+l

O
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Let k4, k, be positive integers such that
2" -1 :k1k2,1 <k1,k2<2r—1,ng(k1,k2): 1. (326)

Before continuing our discussion, a remark is in order.

Remark 3.7. Combining (3.8), Remark 3.4 with Proposition 3.6 yield that if by = 2"'(2" — 1) or
by = 2" — 1, then (3.10) is false. This implies that we just have to show that (3.10) is false in the case
(b1,by) = (2" ki, ko) or (by, by) = (k1,27 k).

With the above preparations, we are now in a position to prove Theorem 3.3.

Proposition 3.8. Ifn = 0,6 (mod 12), then (3.10) is false.

Proof. When n = 0,6 (mod 12), it follows immediately from (3.9) that 6 | ;. Then, by Remark 3.7,
we assume that (by, b,) = (2"'k;, k,). Hence, (3.10) can be represented as

(2r+1 _ 1)an—Z + kg — (22”'1 _ 2r+1 + l)z’ (327)

where n satisfies
= (2 k). (3.28)

In other words, n can be rewritten as
n=Q"" k)5, (3.29)

and this means in turn that (3.27) can be rewritten as
(2r+l _ 1))6(27‘+lkl)()C—Z)Z%y + k; — (22r+l _ 2r+1 + 1)1 (330)

Since r+ 1 = 6k + 3, k € N, we have 3 1 2" — 1. Notice that 3 | n, it follows from (3.26) and (3.29) that
3| k; and 32 { k;, which implies that % is a positive integer. Taking (3.30) module 2"*! yields that

kK,—1=0 (mod 2. (3.31)
Lets = v, (kz - (—1)(k2‘1)/2). Since k, | 2" — 1, we see from (3.1) and (3.31) that
s+wy)=r+1. (3.32)

Combining Lemma 2.2 with (3.26) yield that s < /2. Hence, by (3.32), we have v,(y) > r/2 + 1, and
thus y > 27/2*!_ Since z > y, we get
7> 21 (3.33)

According to Proposition 3.5 and (3.33), we have
r/2+1 2r+1 r+1 2r+1 r+l1 2r+1 r+1 2
277771 < 360 (log(2>*" = 21)) (log(2>*" = 27" + 1)) (loglog(2*! = 27! + 1)),
whence we get r < 152, which yields a contradiction. Thus, our proof is completed. O

Proposition 3.9. Ifn =9 (mod 12), then (3.10) is false.
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Proof. Sincen =9 (mod 12), we have b, is odd by (3.9). Similar to the above proposition, we assume
that (b1, by) = (k;,2"*'k,). Thus, equality (3.10) can be rewritten as

(2r+1 _ 1)xnx—z + (2r+1k2)y — (22r+1 _ 2r+1 + l)z, (334)

where n satisfies
ki =n"™. (3.35)
Since n = 9 (mod 12), taking (3.34) module 4, we get (—1)* = 1 (mod 12), which implies that 2 | x.
Furthermore, taking (3.34) module 2"*!, it follows from (3.35) and 2 | x that
1= 120 (mod 27, (3.36)

Notice that r + 1 = 6k + 3, k € N, we get that 32 1 2" — 1. Since n = 9 (mod 12), we assert by (3.26)
and (3.35) that Z%} is a positive integer. Combining (3.1), (3.26) with (3.36) yield

™ (kT(X_Z)/(Z_y) _ 1) =, (kl _ (_1)(k1—1)/2) + v, (y(x - Z)) >r+l. (3.37)
=y

Lets' =v, (k1 - (—1)("“1)/2). Applying (3.1), (3.26) and Lemma 2.3, we see by (3.37) that
(P —1) =5 +nOE-)2r+1, (3.38)
which in turn means s’ < r/2. Hence, by (3.38), we have v, (y(x — z)) < r/2 + 1, and thus
yx—z) <27 (3.39)
Lemma 2.8 tells us that z > x — z. Combining this fact with z > y and (3.39), we have
2> y(x—z) > 27
and thus
A2 < 360 (log(22r+1 _ 2r+1)) (10g(22r+1 _orel 1)) (log log(22 — 2+ 4 1))2 ’
which implies that r < 152. So we get a contradiction, and complete the proof. O
We conclude the proof of Theorem 3.3 by bringing together the above two propositions.

4. Conclusions

In this paper, our attention is focused on a special case of JeSmanowicz’ conjecture, in which f =
g+land g = 2" -1, where r = 6k + 2, k € N. Using p-adic Baker method with some detailed
computation on 2-adic valuation, we show that if k > 25 and the positive integer n satisfies n = 0,6,9
(mod 12), then JeSmanowicz’ conjecture is true. Notice that our result is based on a condition of the
value of n, we will try to promote our result for any positive integer n.
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