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1. Introduction 

Quantile-based reliability analysis is a novel approach in reliability theory that uses quantile 

functions as opposed to the traditional approach based on distribution functions. Quantile and 

distribution functions are mathematically equivalent methods for defining probability distributions. 

For a positive random variable 𝑇, the conditional past lifetime (also called inactivity time) at time 𝑡, 

𝑇𝑡 = 𝑡 − 𝑇|𝑇 < 𝑡, is a dual for the residual lifetime and is the cornerstone of many studies in survival 

analysis and reliability theory. The 𝛼-quantile past lifetime (𝛼-QPL) function is defined to be the 𝛼 
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quantile of the conditional past lifetime 𝑇𝑡 and can be simplified to 

𝑞𝛼(𝑡) = 𝑡 − 𝑄(𝛼̅𝐹(𝑡)),   𝑡 ≥ 0,        (1.1) 

where 𝛼̅ = 1 − 𝛼 and 𝑄(𝑦) = inf{𝑥: 𝐹(𝑥) ≥ 𝑦} is called the quantile function of 𝐹. Unnikrishnan 

and Vineshkumar [1] examined some properties of this measure and its relationship to the reversed 

hazard rate function. Shafaei and Izadkhah [2] defined the 𝛼-QPL concept for parallel systems and 

investigated its properties. Shafaei [3] showed that the distribution can be characterized by two 

appropriate quantiles past life functions. Mahdy [4] investigated some ordering characteristics of the 

𝛼-QPL function and discussed the problem of estimating this measure for uncensored data using an 

empirical distribution function. Balmert and Jeong [5] focused on the nonparametric estimation of the 

special case of 0.5-QPL, referred to as the median past life function. They also compared two or more 

groups of data based on the ratio of their median-quantile past life functions. In addition, Balmert et al. [6] 

investigated a log-linear quantile regression model for inactivity time when the data are right-censored. 

The applicability and usefulness of 𝛼-QPL, discussed in two later references, motivated us to 

discuss the problem of its estimation for right-censored data and to investigate the statistical properties 

of the estimator. Another point that motivates me is that the median of the past lifetime may be 

preferred to the mean past lifetime, especially when the data are heavily censored or skewed or the 

moments do not exist. However, there is a very little literature on the topic of estimating the 𝛼-QPL 

function. In my approach, the Kaplan-Meier (KM) survival estimator is used to define the estimator as 

a continuous process in time. The rest of this paper is organized as follows. Section 2 reviews some 

preliminary remarks, including notations, the KM survival estimator and related processes. Section 3 

defines the estimator of the 𝛼-QPL function. Its weak convergence to a Gaussian process, confidence 

intervals for the 𝛼-QPL function, and the strong convergence of the estimator are also topics that are 

investigated. Section 4 investigates the behavior of the estimator and the proposed confidence interval 

(CI) by simulating Gamma and Weibull models (see for example Teamah Abd-Elmonem et al. [7] and 

Elbatal et al. [8]). Section 5 presents applications to two datasets from the Mayo Clinic Primary Biliary 

Cirrhosis Study and North Central Cancer. Finally, in Section 6, I conclude the paper and suggest 

directions for future work. 

2. The KM survival estimator and related processes 

Let 𝑇𝑖 , 𝑖 = 1,2, . . . , 𝑛  be 𝑛  iid instances following the distribution function 𝐹  which are 

censored by random censorship variable 𝐶 with distribution function 𝐻. The random instance 𝑇𝑖 is 

uncensored when 𝑇𝑖 ≤ 𝐶𝑖 and otherwise it is censored. Then the observations are 𝑛 pairs (𝑋𝑖 , 𝛿𝑖) 

where 𝑋𝑖 = 𝑇𝑖 ∧ 𝐶𝑖 and 𝛿𝑖 = 𝐼(𝑇𝑖 ≤ 𝐶𝑖) is the censoring indicator. Let 𝐺 show the distribution of 

𝑋𝑖 . Through the paper, let 𝑏𝐹 = inf{𝑥: 𝐹(𝑥) = 1}  shows the upper bound of the support of the 

distribution 𝐹 . Similarly denote 𝑏𝐻  and 𝑏𝐺  for distributions 𝐻  and 𝐺,  respectively. Clearly, 

𝑏𝐺 = 𝑏𝐹 ∧ 𝑏𝐻 where ∧ stands for the minimum operator. The reliability functions corresponding to 

𝐹, 𝐻, and 𝐺, which are represented by 𝐹̅, 𝐻̅, and 𝐺̅, respectively, are related by 

𝐺̅(𝑡) = 𝐹̅(𝑡)𝐻̅(𝑡). 

A concept that proves quite useful in our investigation is the probability that an event occurs before 

or at t and is uncensored, i.e., 
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 𝐹̃(𝑡) = 𝑃(𝑋𝑖 ≤ 𝑡, 𝛿𝑖 = 1) = ∫
𝑡

0
𝐻̅(𝑥)𝑑𝐹(𝑥). (2.1) 

Let 𝑁𝑖(𝑡) = 𝐼(𝑋𝑖 ≤ 𝑡, 𝛿𝑖 = 1)  and 𝑌𝑖(𝑡) = 𝐼(𝑋𝑖 ≥ 𝑡) , then 𝑁̅(𝑡) = ∑𝑛
𝑖=1 𝑁𝑖(𝑡)  shows the 

number of items failed up to or at time 𝑡 and 𝑌̅(𝑡) = ∑𝑛
𝑖=1 𝑌𝑖(𝑡) represents the number of items at 

risk at time 𝑡. Also, let Δ𝑁̅(𝑡) = 𝑁(𝑡) − 𝑁̅(𝑡−). The KM estimator, also known as the product-limit 

(PL) estimator, of the survival function is given by 

 𝐹̅𝑛(𝑡) = ∏𝑋𝑖≤𝑡 (1 −
Δ𝑁̅(𝑋𝑖)

𝑌̅(𝑋𝑖)
) ,   0 ≤ 𝑡 ≤ 𝑋(𝑛), (2.2) 

where 𝑋(𝑛) = max{𝑋1, 𝑋2, . . . , 𝑋𝑛} . It is widely used for estimating the survival function of right-

censored data. The PL estimator of the distribution function is simply given by 𝐹𝑛(𝑡) = 1 − 𝐹̅𝑛(𝑡). A 

satisfactory property of this estimator is that it is asymptotically unbiased, more precisely, 

 𝐸(𝐹̅𝑛(𝑡) − 𝐹̅(𝑡)) ≤ 𝐹(𝑡)𝐺𝑛(𝑡). (2.3) 

This shows that the bias can be considerable for large values of t and/or heavily censored data. In 

the following, I discuss some necessary processes. More details can be found in Chung [9]. The PL 

process is defined by 

 𝛽𝑛(𝑡) = √𝑛(𝐹𝑛(𝑡) − 𝐹(𝑡)). (2.4) 

Burke et al. [10] showed that there is a sequence of Wiener processes {𝑊𝑛(𝑡), 𝑡 ≥ 0}, such that 

for any 𝑡∗ < 𝑏𝐺 

 sup
0<𝑡<𝑡∗

|𝛽𝑛(𝑡) − 𝐹̅(𝑡)𝑊𝑛(𝑑(𝑡))| = 𝑂 (𝑛−
1

2(log𝑛)2) , almost surely, (2.5) 

where 

 𝑑(𝑡) = ∫
𝑡

0
𝐺̅−2(𝑥)𝑑𝐹̃(𝑥), 

and 𝐹̃ is defined in (2.1). Moreover, (2.5) implies the following law of iterated logarithm for the 

PL-process, see Burke et al. [10] and Csorgo and Horvath [11]. 

 sup
0<𝑡<𝑡∗

|𝛽𝑛(𝑡)| = 𝑂 ((loglog𝑛)
1

2) ,   almost surely. (2.6) 

Also, Burke et al. [10] showed that 

 sup
0<𝑡<𝑡∗

|𝑑𝑛(𝑡) − 𝑑(𝑡)| = 𝑂 (𝑛−
1

2(log𝑛)
1

2) ,   almost surely, (2.7) 

in which 

 𝑑𝑛(𝑡) = ∫
𝑡

0
𝐺̅𝑛

−2(𝑥)𝑑𝐹̃𝑛(𝑥), 

and 𝐺̅𝑛 and 𝐹̃𝑛 are their impirical functions, i.e., 

 𝐺̅𝑛(𝑡) =
1

𝑛
∑𝑛

𝑖=1 𝐼(𝑋𝑖 > 𝑡), 



15349 

 

AIMS Mathematics  Volume 9, Issue 6, 15346–15360. 

and 

 𝐹̃𝑛(𝑡) =
1

𝑛
∑𝑛

𝑖=1 𝐼(𝑋𝑖 ≤ 𝑡, 𝛿𝑖 = 1). 

Applying the PL estimator of the distribution function, the PL quantile process is defined by 

 𝑄𝑛(𝑦) = inf{𝑥: 𝐹𝑛(𝑥) ≥ 𝑦},   0 ≤ 𝑦 ≤ 1. 

The PL-normed quantile process is defined by 

 𝜌𝑛(𝑡) = √𝑛𝑓(𝑄(𝑦))(𝑄(𝑦) − 𝑄𝑛(𝑦)),   0 < 𝑦 < 1, (2.8) 

where 𝑓 is the density function of 𝐹. Aly et al. [12] showed that for 𝑝∗ ∈ (0,1) with 𝑄(𝑝∗) < 𝑏𝐺, 

there is a sequence of Wiener processes {𝑊𝑛(𝑡), 𝑡 ≥ 0} such that 

 sup
0<𝑦<𝑝∗

|𝜌𝑛(𝑦) − (1 − 𝑦)𝑊𝑛 (𝑑(𝑄(𝑦)))| = 𝑂 (𝑛−
1

4(log𝑛)
1

2(loglog𝑛)
1

4). (2.9) 

The uniform PL-process is defined by 

 𝑒𝑛(𝑦) = √𝑛(𝐹𝑛
∗(𝑦) − 𝑦),   0 ≤ 𝑦 ≤ 1, (2.10) 

where 𝐹𝑛
∗(𝑦) = 𝐹𝑛(𝑄(𝑦))  could be computed by PL estimator of the (𝑊𝑖 , 𝛿𝑖)  and 𝑊𝑖 = 𝐹(𝑋𝑖) . 

Then, 

 𝑄𝑛
∗ (𝑝) = inf{𝑦: 𝐹𝑛

∗(𝑦) ≥ 𝑝},   0 < 𝑝 < 1, 

and the uniform PL-quantile process is defined to be 

 𝑢𝑛(𝑥) = √𝑛(𝑥 − 𝑄𝑛
∗ (𝑥)),   0 ≤ 𝑥 ≤ 1. (2.11) 

Let 𝑏𝐺
∗  be the upper bound of the distribution of 𝑊𝑖. Aly et al. [12] proved that for 𝑦0 < 𝑏𝐺

∗  

such that 𝑄(𝑦0) < 𝑏𝐺, there are sequences of Wiener processes {𝑊𝑛(𝑡), 𝑡 ≥ 0} such that 

 sup
0<𝑦<𝑦0

|𝑒𝑛(𝑦) − (1 − 𝑦)𝑊𝑛 (𝑑(𝑄(𝑦)))| = 𝑂 (𝑛−
1

2(log𝑛)
1

2) , almost surely, (2.12) 

and 

sup
0<𝑦<𝑦0

|𝑢𝑛(𝑦) − (1 − 𝑦)𝑊𝑛 (𝑑(𝑄(𝑦)))| = 𝑂 (𝑛−
1

4(log𝑛)
1

2(loglog𝑛)
1

4) , almost surely. (2.13) 

These equations imply the following law of iterated logarithm relations respectively. 

 sup
0<𝑦<𝑦0

|𝑒𝑛(𝑦)| = 𝑂 ((loglog𝑛)
1

2) ,   almost surely, (2.14) 

and 

 sup
0<𝑦<𝑦0

|𝑢𝑛(𝑦)| = 𝑂 ((loglog𝑛)
1

2) ,   almost surely. (2.15) 

For more details about these processes, refer to Chung [9]. 
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3. The 𝜶-QPL estimator 

The estimator of the 𝛼-QPL function is defined as in the following. 

 𝑞𝛼,𝑛(𝑡) = 𝑡 − 𝐹𝑛
−1(𝛼̅𝐹𝑛(𝑡)),   0 < 𝛼 < 1, 0 ≤ 𝑡 ≤ 𝑋(𝑛). (3.1) 

Similar to the process adopted for the 𝛼-QRL function by Csorgo and Csorgo [13] and Chung [9], the 

scaled 𝛼-QPL process 𝑟𝑛
𝛼(𝑡) can be defined by 

 𝑟𝑛
𝛼(𝑡) = √𝑛𝑓(𝑄(𝛼̅𝐹(𝑡)))(𝑞𝛼,𝑛(𝑡) − 𝑞𝛼(𝑡)),   0 < 𝑡 < 𝑋(𝑛). (3.2) 

The following result shows that this process converges weakly to a Gaussian process. 

Theorem 1. Assume that 0 < 𝛼 < 1   0 ≤ 𝑡 < 𝑏𝐺   𝑄(𝛼̅𝐹(𝑡)) < 𝑏𝐺  and the density-quantile 

function 𝑓(𝑄()) is continuous at point 𝛼̅𝐹(𝑡). Then  I have 

 𝑟𝑛
𝛼(𝑡) → 𝑁(0, 𝜎𝛼,𝑡

2 ),   𝑖𝑛 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛, (3.3) 

where 𝜎𝛼,𝑡
2 = (1 − 𝛼̅𝐹(𝑡))2𝑑(𝑄(𝛼̅𝐹(𝑡))) + 𝛼̅2𝐹̅2(𝑡)𝑑(𝑡) − 2𝛼̅(1 − 𝛼̅𝐹(𝑡))𝐹̅(𝑡)𝑑(𝑄(𝛼̅𝐹(𝑡))). 

Proof. It could be checked easily that 𝑄𝑛
∗ (𝑝) = 𝐹(𝑄𝑛(𝑝)) for all 0 < 𝑝 < 1. Then, by substituting 

𝐹(𝑄𝑛(𝛼̅𝐹𝑛(𝑡))) by 𝑄𝑛
∗ (𝛼̅𝐹(𝑡)), and applying Taylor expansion on the 𝑄 function, for 0 < 𝑡 < 𝑋(𝑛), 

I have 

 

𝑟𝑛
𝛼(𝑡) = √𝑛𝑓(𝑄(𝛼̅𝐹(𝑡)))(𝑞𝛼,𝑛(𝑡) − 𝑞𝛼(𝑡))

= √𝑛𝑓(𝑄(𝛼̅𝐹(𝑡)))(𝑄(𝛼̅𝐹(𝑡)) − 𝑄(𝐹(𝑄𝑛(𝛼̅𝐹𝑛(𝑡)))))

= √𝑛𝑓(𝑄(𝛼̅𝐹(𝑡)))(𝑄(𝛼̅𝐹(𝑡)) − 𝑄(𝑄𝑛
∗ (𝛼̅𝐹𝑛(𝑡))))

=
𝑓(𝑄(𝛼̅𝐹(𝑡)))

𝑓(𝑄(𝛿𝑛,𝑡,𝛼))
√𝑛(𝛼̅𝐹(𝑡) − 𝑄𝑛

∗ (𝛼̅𝐹𝑛(𝑡)))

=
𝑓(𝑄(𝛼̅𝐹(𝑡)))

𝑓(𝑄(𝛿𝑛,𝑡,𝛼))
𝑠𝑛

𝛼(𝑡),

 (3.4) 

where 𝛿𝑛,𝑡,𝛼  lies between 𝛼̅𝐹(𝑡)  and 𝑄𝑛
∗ (𝛼̅𝐹𝑛(𝑡))  and 𝑠𝑛

𝛼(𝑡) = √𝑛(𝛼̅𝐹(𝑡) − 𝑄𝑛
∗ (𝛼̅𝐹𝑛(𝑡))) . 

Clearly 𝛿𝑛,𝑡,𝛼 → 𝛼̅𝐹(𝑡) as 𝑛 → ∞ and by continuity of the density quantile function 

 
𝑓(𝑄(𝛼̅𝐹(𝑡)))

𝑓(𝑄(𝛿𝑛,𝑡,𝛼))
→ 1,   as 𝑛 → ∞. 

Then the well-known Slutsky’s theorem implies that the asymptotic distribution of the 𝑟𝑛
𝛼(𝑡)  and 

𝑠𝑛
𝛼(𝑡) is the same. Now, by adding and subtracting the expression 𝛼̅𝐹𝑛(𝑡), I have 

 
𝑠𝑛

𝛼(𝑡) = √𝑛(𝛼̅𝐹(𝑡) − 𝛼̅𝐹𝑛(𝑡) + 𝛼̅𝐹𝑛(𝑡) − 𝑄𝑛
∗ (𝛼̅𝐹𝑛(𝑡)))

= 𝑢𝑛(𝛼̅𝐹𝑛(𝑡)) − 𝛼̅𝑒𝑛(𝐹(𝑡)).
 (3.5) 

Then, applying (3.5), (2.12) and (2.13), I have 

 |𝑠𝑛
𝛼(𝑡) − ((1 − 𝛼̅𝐹(𝑡))𝑊𝑛 (𝑑 (𝑄(𝛼̅𝐹(𝑡)))) − 𝛼̅𝐹̅(𝑡)𝑊𝑛(𝑑(𝑡)))| → 0, almost surely, (3.6) 
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and in turn 

 𝑠𝑛
𝛼(𝑡) → (1 − 𝛼̅𝐹(𝑡))𝑊(𝑑(𝑄(𝛼̅𝐹(𝑡)))) − 𝛼̅𝐹̅(𝑡)𝑊(𝑑(𝑡)). (3.7) 

Note that 𝑄(𝛼̅𝐹(𝑡)) ≤ 𝑡 , so 𝑑(𝑄(𝛼̅𝐹(𝑡))) ≤ 𝑑(𝑡) , and by properties of the Wiener processes, it 

results that 

 𝑠𝑛
𝛼(𝑡) → 𝑁(0, 𝜎𝛼,𝑡

2 ),   in distribution, (3.8) 

where 𝜎𝛼,𝑡
2  is defined previously. 

Let 𝑧𝑝/2 be the upper 
𝑝

2
-quantile of the standard normal distribution, i.e., for the standard normal 

random variable 𝑍 , 𝑃 (𝑍 > 𝑧𝑝

2
) = 𝑝/2 . Using Theorem 1, I can construct a CI for the 𝛼 -QPL 

function, which is described in the following theorem. 

Theorem 2. Let 0 < 𝛼 < 1 0 ≤ 𝑡 < 𝑏𝐺  𝑄(𝛼̅𝐹(𝑡)) < 𝑏𝐺 and the density-quantile function 𝑓(𝑄()) 

is continuous at point 𝛼̅𝐹(𝑡). In addition  I assume that 𝑓𝑛 is a consistent estimator of the density 

function 𝑓 in the neighborhood of 𝑄(𝛼̅𝐹(𝑡)). Then  an asymptotic (1 − 𝑝) percent CI for 𝑞𝛼(𝑡) is 

 (𝑞𝛼,𝑛(𝑡) − 𝑐𝑛(𝑡, 𝑝), 𝑞𝛼,𝑛(𝑡) + 𝑐𝑛(𝑡, 𝑝)), (3.9) 

where 

𝑐𝑛(𝑡, 𝑝) =
𝑧𝑝/2√𝜎𝛼,𝑡,𝑛

2

√𝑛𝑓𝑛(𝑄𝑛(𝛼̅𝐹𝑛(𝑡)))
 

and 

𝜎𝛼,𝑡,𝑛
2 = (1 − 𝛼̅𝐹𝑛(𝑡))2𝑑𝑛(𝑄𝑛(𝛼̅𝐹𝑛(𝑡))) + 𝛼̅2𝐹̅𝑛

2(𝑡)𝑑𝑛(𝑡) 

−2𝛼̅(1 − 𝛼̅𝐹𝑛(𝑡))𝐹̅𝑛(𝑡)𝑑𝑛(𝑄𝑛(𝛼̅𝐹𝑛(𝑡))). 

A consistent estimator of the density function f should be used to calculate the CI. A fundamental 

problem in statistics is the estimation of the density function, which many have already addressed. 

Specifically, for censored data, I can refer to Blum and Susarla [14], Burke and Horvath [15], 

Mielniczuk [16], Marron and Padgett [17], Lo et al. [18], and many other studies. The following 

theorem provides a different approach to constructing a CI for the 𝛼 -QPL function that does not 

depend on the density function. This idea is similar to that of Csorgo and Csorgo [13] and Chung [9] 

for the α-quantile residual life function. 

Theorem 3. Let 0 < 𝛼 < 1  𝑡 satisfy the conditions of Theorem 2 and the density-quantile function 

𝑓(𝑄()) is continuous at point 𝛼̅𝐹(𝑡). Then  an asymptotic (1 − 𝑝) percent CI for 𝑞𝛼(𝑡) is 

(𝑡 − 𝑄𝑛 (𝛼̅𝐹𝑛(𝑡) + 𝑛−
1

2𝑧𝑝

2
√𝜎𝛼,𝑡,𝑛

2 ) , . 𝑡 − 𝑄𝑛 (𝛼̅𝐹𝑛(𝑡) − 𝑛−
1

2𝑧𝑝

2
√𝜎𝛼,𝑡,𝑛

2 )),   (3.10) 

where 𝜎𝛼,𝑡,𝑛
2  is defined in Theorem 2. 
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Proof. For simplicity, take un = α̅Fn(t) − n−
1

2zp/2√σα,t,n
2   and vn = α̅Fn(t) + n−

1

2zp/2√σα,t,n
2  . I 

should have 

 lim
n→∞

P(t − Qn(vn) ≤ qα(t) ≤ t − Qn(un)) = 1 − p. (3.11) 

This probability can be written as in the following. 

 
𝑃(𝑄𝑛(𝑢𝑛) ≤ 𝑄(𝛼̅𝐹(𝑡)) ≤ 𝑄𝑛(𝑣𝑛))

= 𝑃(𝑈𝑛 ∩ 𝑉𝑛),
 (3.12) 

where 

 

𝑈𝑛 = {𝑄𝑛(𝑢𝑛) ≤ 𝑄(𝛼̅𝐹(𝑡))}

= {𝑄𝑛(𝑢𝑛) − 𝑄(𝑢𝑛) + 𝑄(𝑢𝑛) − 𝑄(𝛼̅𝐹(𝑡)) ≤ 0}

= {−𝜌𝑛(𝑢𝑛) + √𝑛𝑓(𝑄(𝑢𝑛))(𝑄(𝑢𝑛) − 𝑄(𝛼̅𝐹(𝑡))) ≤ 0}

= {−𝜌𝑛(𝑢𝑛) + √𝑛
𝑓(𝑄(𝑢𝑛))

𝑓(𝑄(𝛿𝑛))
(𝑢𝑛 − 𝛼̅𝐹(𝑡)) ≤ 0} .

 (3.13) 

In the last equality, I used Taylor expansion for 𝑄 and 𝛿𝑛 lies between 𝑢𝑛 and 𝛼̅𝐹(𝑡). Similarly 

 

𝑉𝑛 = {𝑄𝑛(𝑣𝑛) ≥ 𝑄(𝛼̅𝐹(𝑡))}

= {𝑄𝑛(𝑣𝑛) − 𝑄(𝑣𝑛) + 𝑄(𝑣𝑛) − 𝑄(𝛼̅𝐹(𝑡)) ≥ 0}

= {−𝜌𝑛(𝑣𝑛) + √𝑛𝑓(𝑄(𝑣𝑛))(𝑄(𝑣𝑛) − 𝑄(𝛼̅𝐹(𝑡))) ≥ 0}

= {−𝜌𝑛(𝑣𝑛) + √𝑛
𝑓(𝑄(𝑣𝑛))

𝑓(𝑄(𝛿′𝑛))
(𝑣𝑛 − 𝛼̅𝐹(𝑡)) ≥ 0} ,

 (3.14) 

where 𝛿′𝑛 lies between 𝑣𝑛 and 𝛼̅𝐹(𝑡). Note that 𝑢𝑛, 𝑣𝑛, 𝛿𝑛 and 𝛿′𝑛 all converge to 𝛼̅𝐹(𝑡) as 

𝑛 → ∞. Now, combining (3.13) and (3.14), I have 

lim
𝑛→∞

𝑃(𝑈𝑛 ∩ 𝑉𝑛) = lim
𝑛→∞

𝑃 ({−𝜌𝑛(𝑢𝑛) + √𝑛
𝑓(𝑄(𝑢𝑛))

𝑓(𝑄(𝛿𝑛))
(𝑢𝑛 − 𝛼̅𝐹(𝑡)) ≤ 0} ∩      

{−𝜌𝑛(𝑣𝑛) + √𝑛
𝑓(𝑄(𝑣𝑛))

𝑓(𝑄(𝛿′
𝑛))

(𝑣𝑛 − 𝛼̅𝐹(𝑡)) ≥ 0})    

= lim
𝑛→∞

𝑃 ({−𝜌𝑛(𝑢𝑛) + √𝑛(𝛼̅𝐹𝑛(𝑡) − 𝑛−
1

2𝑧𝑝/2√𝜎𝛼,𝑡,𝑛
2 − 𝛼̅𝐹(𝑡)) ≤ 0} ∩   

{−𝜌𝑛(𝑣𝑛) + √𝑛(𝛼̅𝐹𝑛(𝑡) + 𝑛−
1

2𝑧𝑝/2√𝜎𝛼,𝑡,𝑛
2 − 𝛼̅𝐹(𝑡)) ≥ 0})     

= lim
𝑛→∞

𝑃 (−𝑧𝑝

2
√𝜎𝛼,𝑡

2 ≤ −𝜌𝑛(𝛼̅𝐹(𝑡)) + 𝛼̅𝑒𝑛(𝐹(𝑡)) ≤ 𝑧𝑝

2
√𝜎𝛼,𝑡

2 ).   (3.15) 

The second equality is due to the fact that 
𝑓(𝑄(𝑣𝑛))

𝑓(𝑄(𝛿′𝑛))
→ 1  and 

𝑓(𝑄(𝑢𝑛))

𝑓(𝑄(𝛿𝑛))
→ 1  as 𝑛 → ∞ . The third 

equality follows by the fact that 𝑢𝑛  and 𝑣𝑛  converge to 𝛼̅𝐹(𝑡)  and 𝜎𝛼,𝑡,𝑛
2   converges to 𝜎𝛼,𝑡

2   as 

𝑛 → ∞. On the other hand, the asymptotic distribution of −𝜌𝑛(𝛼̅𝐹(𝑡)) + 𝛼̅𝑒𝑛(𝐹(𝑡)) is same as the 
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 (1 − 𝛼̅𝐹(𝑡))𝑊𝑛 (𝑑 (𝑄(𝛼̅𝐹(𝑡)))) + 𝛼̅𝐹̅(𝑡)𝑊𝑛(𝑑(𝑡)), (3.16) 

which by (3.6), is same with distribution of 𝑠𝑛
𝛼(𝑡) as 𝑛 → ∞. Thus, by Theorem 1, I have 

 lim
𝑛→∞

𝑃(𝑈𝑛 ∩ 𝑉𝑛) = 1 − 𝛼, (3.17) 

and this completes the proof. 

3.2 Strong convergence 

Here, I show that the defined process in (3.1) converges almost surely to 𝑞𝛼(𝑡) under some mild 

conditions. The following result proves that the scaled process 𝑟𝑛
𝛼(𝑡)  can be approximated by a 

Gaussian process with zero mean. 

Let 𝐺𝑛
𝛼(𝑡) be defined by 

 𝐺𝑛
𝛼(𝑡) = (1 − 𝛼̅𝐹(𝑡))𝑊𝑛(𝑑(𝑄(𝛼̅𝐹(𝑡)))) − 𝛼̅𝐹̅(𝑡)𝑊𝑛(𝑑(𝑡)). (3.18) 

where {𝑊𝑛(𝑡), 𝑡 ≥ 0} is a sequence of Wiener processes converging to Wiener process 𝑊(𝑡). Also, 

let 𝐺𝛼(𝑡) be defined by 

 𝐺𝛼(𝑡) = (1 − 𝛼̅𝐹(𝑡))𝑊(𝑑(𝑄(𝛼̅𝐹(𝑡)))) − 𝛼̅𝐹̅(𝑡)𝑊(𝑑(𝑡)). (3.19) 

Then, for each 𝑛 = 1,2, . .., {𝐺𝑛
𝛼(𝑡), 𝑡 ≥ 0} has the same distribution as {𝐺𝛼(𝑡), 𝑡 ≥ 0}. 

Theorem 4. Let 0 < 𝛼 < 1  be fixed  𝑏 ∈ (0, 𝑏𝐺)  such that 𝑄(𝛼̅𝐹(𝑏)) < 𝑏𝐺   𝐹  be twice 

differentiable on (0, 𝑏𝐹) and 𝑓 be positive on the interval (0, 𝑄(𝛼̅)). Then  as 𝑛 → ∞  I have 

 𝑠𝑢𝑝
0<𝑡<𝑏

|𝑟𝑛
𝛼(𝑡) − 𝐺𝑛

𝛼(𝑡)| = 𝑂 (𝑛−
1

4(𝑙𝑜𝑔𝑛)
1

2(𝑙𝑜𝑔𝑙𝑜𝑔𝑛)
1

4). 

Proof. By (3.4), I have 

 𝑟𝑛
𝛼(𝑡) =

𝑓(𝑄(𝛼̅𝐹(𝑡)))

𝑓(𝑄(𝛿𝑛,𝑡,𝛼))
𝑠𝑛

𝛼(𝑡) = (
𝑓(𝑄(𝛼̅𝐹(𝑡)))

𝑓(𝑄(𝛿𝑛,𝑡,𝛼))
− 1) 𝑠𝑛

𝛼(𝑡) + 𝑠𝑛
𝛼(𝑡), (3.20) 

where 𝛿𝑛,𝑡,𝛼  lies between 𝛼̅𝐹(𝑡)  and 𝑄𝑛
∗ (𝛼̅𝐹𝑛(𝑡))  and 𝑠𝑛

𝛼(𝑡) = 𝛼̅𝐹(𝑡) − 𝑄𝑛
∗ (𝛼̅𝐹𝑛(𝑡)) . As 

demonstrated in proof of Theorem 1, 

 𝑠𝑛
𝛼(𝑡) = 𝑢𝑛(𝛼̅𝐹𝑛(𝑡)) − 𝛼̅𝑒𝑛(𝐹(𝑡)). (3.21) 

Now, applying (2.12) and (2.13), I find that 

 sup
0≤𝑡≤𝑏

|𝑠𝑛
𝛼(𝑡) − 𝐺𝑛

𝛼(𝑡)| = 𝑂 (𝑛−
1

4(log𝑛)
1

2(loglog𝑛)
1

4). (3.22) 

Recall the relations (2.6) and (2.15) that state, respectively, 

 sup
0≤𝑡≤𝑏

√𝑛|𝐹𝑛(𝑡) − 𝐹(𝑡)| = 𝑂 ((loglog𝑛)
1

2), (3.23) 

and since 𝑄(𝛼̅𝐹(𝑏)) < 𝑏𝐺, 



15354 

 

AIMS Mathematics  Volume 9, Issue 6, 15346–15360. 

 sup
0≤𝑦≤𝛼̅𝐹(𝑏)

√𝑛|𝑦 − 𝑄𝑛
∗ (𝑦)| = 𝑂 ((loglog𝑛)

1

2). (3.24) 

I have 

sup
0≤𝑡≤𝑏

|𝛿𝑛,𝑡,𝛼 − 𝛼̅𝐹(𝑡)| ≤ sup𝑛−
1

2|𝑠𝑛
𝛼(𝑡)|  

 
≤ sup

0≤𝑡≤𝑏
|𝛼̅𝐹𝑛(𝑡) − 𝑄𝑛

∗ (𝛼̅𝐹𝑛(𝑡))| + 𝛼̅ sup
0≤𝑡≤𝑏

|𝐹𝑛(𝑡) − 𝐹(𝑡)|

= 𝑂(𝑛−
1

2(loglog𝑛)
1

2).

 (3.25) 

The last equality follows from (3.23) and (3.24). 

Since the density function 𝑓 is differentiable and positive on (0, 𝑄(𝛼̅)), applying (3.25) I have 

 sup
0≤𝑡≤𝑏

|𝑠𝑛
𝛼(𝑡)| = 𝑂 (𝑛−

1

2(loglog𝑛)
1

2) , (3.26) 

and 

 sup
0≤𝑡≤𝑏

|
𝑓(𝑄(𝛼̅𝐹(𝑡)))

𝑓(𝑄(𝛿𝑛,𝑡,𝛼))
− 1| = 𝑂 (𝑛−

1

2(loglog𝑛)
1

2) . (3.27) 

Subsequently, the proof follows from (3 .20 ), (3.22), (3.26), and (3.27). 

The following corollary follows from (2.14), (2.15), (3.2), (3.4) and (3.21). 

Corollary 1. Under the conditions of Theorem 4, I have 

 sup
0<𝑡<𝑏

|𝑞𝛼,𝑛(𝑡) − 𝑞𝛼(𝑡)| = 𝑂 (𝑛−
1

2(loglog𝑛)
1

2). 

It implies that 𝑞𝛼,𝑛(𝑡) converges almost surely to 𝑞𝛼(𝑡). 

4. Simulation 

The properties of the 𝛼-QPL function estimator and CI, defined by Theorem 3, were investigated 

through simulation studies. For this purpose, two important distributions, Weibull and Gamma, are 

considered, with the following distribution functions: 

 𝐹(𝑡) = 1 − exp {− (
𝑡

𝛼
)

𝛽
} ,   𝑡 ≥ 0, (4.1) 

and 

 𝐹(𝑡) =
𝛾(𝛼,𝛽𝑡)

Γ(𝛼)
,   𝑡 ≥ 0, (4.2) 

where 𝛾(𝛼, 𝑥) = ∫
𝑥

0
𝑦𝛼−1𝑒−𝑦𝑑𝑦 is the lower incomplete gamma function. 

It is assumed that the censoring random variable 𝐶 follows a uniform model in interval (0, 𝑀). 

Based on the censorship percentage, 𝑝 , I compute 𝑀  by 𝑀 = 𝐸(𝑇)/𝑝  where 𝑇  is a determined 
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Weibull or gamma random variable. Some parameter values are selected and 𝑟 = 5000 replicates of 

samples with sizes 𝑛 = 25 or 50 are simulated. For each sample, the median past lifetime function 

is computed at four decile points 𝑞0.1, 𝑞0.2, 𝑞0.4, and 𝑞0.6. Table 1 shows the results for the Weibull 

model which includes the bias (B) and the mean squared error (MSE). Table 2 presents the simulation 

results for the gamma model. 

From these tables I observe the following: 

• When 𝑛 increases, the MSE decreases significantly, which indicates that the 𝛼-QPL estimator 

is consistent. 

• As expected by (2.3), for large deciles, the MSE is affected by the censoring percentage.  

In a further simulation study, which is summarized in Table 3, the coverage probability (CP) of 

the CI defined by Theorem 3 is investigated. Weibull and Gamma distributions, each with a set of 

parameters, were assumed as the underlying models. Three censoring rates of 0.05, 0.20, and 0.30 and 

three points 𝑞0.1, 𝑞0.2, and 𝑞0.4. In each run, 𝑟 = 5000 repetitions of samples of size n=50 or 100 

were simulated and the CI of the 0.5-QPL at the points considered were calculated. The CP, which 

shows the ratio of CIs containing the true 0.5-QPL to the mean length (ML) of the CIs, was reproduced. 

The true values of the 0.5-QPL are also shown in the table for comparison. 

The results show that the CI coverage is high and acceptable, but ML coverage increases 

significantly with time. Moreover, the ML coverage increases slightly with the censoring percentage. 

Table 1. Simulation results for the Weibull distribution. 

 𝑝 (censorship) 

 0.05 0.25 

Parameters 𝑞 𝐵 𝑀𝑆𝐸 𝐵 𝑀𝑆𝐸 

𝛼 = 10, 𝛽 = 1.2, 𝑛 = 25 

0.1 0.0411 0.1692 0.0308 0.1577 

0.2 0.0105 0.3414 -0.0426 0.3402 

0.4 -0.1100 0.6936 -0.0536 0.7035 

0.6 -0.1152 1.1710 -0.0389 1.2517 

𝛼 = 10, 𝛽 = 0.8, 𝑛 = 25 

0.1 -0.0033 0.0295 -0.0072 0.0292 

0.2 -0.0159 0.1036 -0.0442 0.1134 

0.4 -0.1429 0.4540 -0.1129 0.4640 

0.6 -0.1700 1.1377 -0.1241 1.1837 

𝛼 = 10, 𝛽 = 1.2, 𝑛 = 50 

0.1 0.0465 0.0975 -0.0117 0.0951 

0.2 0.0282 0.1781 -0.0348 0.1722 

0.4 -0.0078 0.3480 -0.0148 0.3584 

0.6 -0.0195 0.5768 -0.0229 0.6639 

𝛼 = 10, 𝛽 = 0.8, 𝑛 = 50 

0.1 0.0130 0.0162 0.0001 0.0169 

0.2 0.0094 0.0571 -0.0291 0.0614 

0.4 -0.0055 0.2217 -0.0346 0.2365 

0.6 -0.0432 0.5645 -0.0433 0.6000 
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Table 2. Simulation results for the gamma distribution. 

 
𝑝 (censorship) 

0.05 0.25 

Parameters 𝑞 𝐵 𝑀𝑆𝐸 𝐵 𝑀𝑆𝐸 

𝛼 = 1.5, 𝛽 = 2, 𝑛 = 25 

0.1 0.00487 0.0133 0.00270 0.00130 

0.2 0.00268 0.00231 -0.00231 0.00223 

0.4 -0.00628 0.00412 -0.00367 0.00436 

0.6 -0.00765 0.00647 -0.00340 0.00735 

𝛼 = 0.9, 𝛽 = 2, 𝑛 = 25 

0.1 0.00026 0.00012 0.000051 0.000113 

0.2 -0.00017 0.00034 -0.00172 0.000363 

0.4 -0.000601 0.00112 -0.00371 0.001102 

0.6 -0.00700 0.00240 -0.00406 0.002585 

𝛼 = 1.5, 𝛽 = 2, 𝑛 = 50 

0.1 0.00473 0.000782 -0.000771 0.000744 

0.2 0.00283 0.001191 -0.002069 0.00119 

0.4 -0.00070 0.002114 -0.000270 0.00227 

0.6 -0.00056 0.003517 -0.000260 0.00377 

𝛼 = 0.9, 𝛽 = 2, 𝑛 = 50 

0.1 0.00114 0.000064 0.000055 0.000066 

0.2 0.00093 0.000184 -0.001362 0.000192 

0.4 -0.00086 0.000567 -0.001156 0.00058 

0.6 -0.00101 0.00119 -0.002002 0.00129 

Table 3. Coverage probabilities and the mean lengths of the CIs. 

 
𝑝 (censorship) 

0.05 0.20 0.30 

Model 0.5-QPL 𝑛 𝑞 𝐶𝑃 𝑀𝐿 𝐶𝑃 𝑀𝐿 𝐶𝑃 𝑀𝐿 

Weibull:  

𝛼 = 10, 𝛽 = 1.2 

0.6916 

50 

0.1 0.9360 1.1936 0.9678 1.2595 0.9742 1.2855 

1.3321 0.2 0.9960 2.2770 0.9982 2.3648 0.9990 2.3928 

2.8482 0.4 0.9804 2.8177 0.9824 2.9058 0.9796 2.9457 

0.6916 

100 

0.1 0.9948 1.2768 0.9976 1.3126 0.9998 1.3272 

1.3321 0.2 0.9964 1.7928 0.9984 1.8027 0.9978 1.8104 

2.8482 0.4 0.9820 1.9813 0.9804 2.0212 0.9760 2.0642 

Gamma:  

𝛼 = 0.9, 𝛽 = 0.1 

0.4223 

50 

0.1 0.9324 0.6470 0.9510 0.6585 0.9538 0.6651 

0.9819 0.2 0.9946 1.4623 0.9972 1.4934 0.9986 1.5016 

2.5465 0.4 0.9802 2.2176 0.9822 2.2400 0.9792 2.2784 

0.4223 

100 

0.1 0.9954 0.6751 0.9982 0.6813 0.9972 0.6861 

0.9819 0.2 0.9980 1.1499 0.9982 1.1579 0.9982 1.1637 

2.5465 0.4 0.9808 1.5640 0.9776 1.5899 0.9802 1.6183 

5. Applications 

5.1 Mayo Clinic study on primary biliary cirrhosis data 
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The dataset of the Mayo Clinic study on primary biliary cirrhosis (PBC) presented by Fleming 

and Harrington [19] was used. The dataset is also available in the ‘survival’ library of the famous 

statistical programming language R and has been analyzed by many authors. I focused on time, i.e. the 

number of days between registration and the earlier date of death, liver transplantation or analysis of 

the study in July 1986. More than 60% of the items were censored, resulting in a minimum KM survival 

function of approximately 0.3534. The KM survival function is plotted in Figure 1 (left). Each censored 

item was marked with a positive sign in the survival curve. 

 

Figure 1. Left: The KM survival function of the PBC dataset. Right: The 0.25-QPL function of 

this dataset along with its 95% CIs. 

Three functions 0.25-QPL, 0.5-QPL, and 0.75-QPL, namely the first, second, and third quartiles 

of the past lifetime, were estimated within the range of the data. The 0.5-QPL function is also referred 

to the median past lifetime function. 

Figures 1 (right) and 2 plot these functions and show that they have increasing form. For the 

median past lifetime and specially, at two selected times 1077 and 4079, I have 𝑞0.5(1077) = 480 

and 𝑞0.5(4079) = 2068 . This means that I expect half of the patients that experienced the event 

before 1077 days, experienced it after (before) 1077-480=597 days. Similarly, I expect that half of the 

patients experienced the event before 4079 days, experienced it after (before) 2011 days. In addition, 

the 95% CIs defined in Theorem 3 are calculated and presented in graphs. 

 

Figure 2. The 0.5-QPL and 0.75-QPL functions of the PBC dataset along with their 95% CIs. 
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5.2 North central cancer treatment group lung cancer data 

This data set contains the survival times of 288 advanced lung cancer patients from the North 

Central Cancer Treatment Group (NCCTG) and is available in the ‘survival’ library of the statistical 

programming language R. The column ‘time’ of this dataset gives the time to death or censor of the 

patients and ‘status’ shows the censoring indicator. About 27% of the death times are censored. Figure 3 

shows the KM survival function. Also, the first to third quartile functions 0.25-QPL, 0.5-QPL, and 0.75-

QPL are plotted in Figure 3 (right) and Figure 4 and exhibit increasing form. 

 

Figure 3. The KM survival function for NCCTG lung cancer data and the 0.25 -QPL 

function of this data along with its 95% CIs. 

 

Figure 4. The estimated 0.50-QPL and 0.75-QPL functions for NCCTG lung cancer data 

along with their 95% CIs. 

6 Conclusions 

The 𝛼-QPL function is a useful rival of the mean inactivity time function in reliability theory and 

survival analysis. There are situations where the 𝛼-QPL function is preferable to the mean inactivity 

time function, e.g., when the data are heavily censored or the underlying distribution is skewed or have 

heavy right tail. The Kaplan-Meier product limit estimator of the survival function was applied to 

define an estimator for the 𝛼-QPL function. The proposed estimator converges weakly to a Gaussian 
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process, and this result is used to construct a confidence interval that depends on the density estimator. 

Another confidence interval is proposed that does not depend on the density estimator. Simulation 

results show that the proposed estimator of the 𝛼-QPL function is consistent. The coverage probability 

and mean length of the confidence intervals were also investigated. The applicability of the estimator 

and the proposed confidence interval is demonstrated using a real dataset. Further properties and 

applications of the 𝛼-QPL function can be considered in the future of this research. In particular, 

extending the concepts of the α-QPL function and its estimation problem in a multivariate context are 

interesting and remain as open problems. 
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