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1. Introduction 

Great progress has been made in the field of statistics and probability theory for interdisciplinary 

research. New techniques and methods have been developed to meet the challenges of data analysis. 

Statistical methods are becoming increasingly important in various areas of science. The increasing 

complexity of scientific problems requires the development of new and suitable statistical methods for 

interdisciplinary research. Current challenges include, ecology: Quantifying biodiversity; the 

epidemiology of infectious diseases: Disease outbreak detection; financial mathematics: stock option 
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valuation; industrial engineering: Stochastic optimization; and genomics: Personalized medicine, to 

name a few. 

For a random lifetime 𝑇, the conditional inactivity time is defined as 𝑇𝑡 = 𝑡 − 𝑇|𝑇 ≤ 𝑡, and 

 𝑡 > 0. An important measure developed based on the conditional inactivity time is the 𝛼-quantile 

inactivity time (𝛼-QIT), which is the 𝛼-quantile of 𝑇𝑡. Assuming that the distribution function of 𝑇 

is denoted by 𝐹, the 𝛼-QIT can be expressed by the following relationship: 

 𝑞𝛼(𝑡) = 𝑡 − 𝐹−1(𝛼̅𝐹(𝑡)),   𝑡 > 0,  

where 𝛼̅ = 1 − 𝛼 and 𝐹−1(𝑝) = inf{𝑥: 𝐹(𝑥) = 𝑝} is the inverse function of 𝐹. Let 𝑇 be the event 

time referring to the instances of a species. Among all instances experienced the event at a time before 

𝑡, we expect 100𝛼% of these instances to have experienced the event after time 𝑡 − 𝑞𝛼(𝑡). In this 

sense, a smaller 𝑞𝛼(𝑡) means larger 𝑇. The 𝛼-QIT is a competitor for the mean inactivity time (MIT) 

function. The MIT has been intensively studied by researchers in the field of reliability theory and 

survival analysis, e.g., refer to Finkelstein [1] and Kayid and Izadkhah [2]. However, when the 

moments of the underlying model are infinite or heavily skewed to right, 𝛼-QIT is preferred over 

MIT (see Schmittlein and Morrison [3] for a detailed justification of quantile-based than moment-

based measures). The 𝛼 -QIT concept was formally defined and studied by Unnikrishnan and 

Vineshkumar [4]. Shafaei [5] showd that how the underlying model can be characterized by 𝛼-QIT 

function. Shafaei and Izadkhah [6] stated some properties of a parallel system in terms of the 𝛼-QIT 

measure. For a sample 𝑇1, 𝑇2, ..., 𝑇𝑛 of iid lifetimes, the 𝛼-QIT can be estimated by 

 𝑞𝛼,𝑛(𝑡) = 𝑡 − 𝐹𝑛
−1(𝛼̅𝐹𝑛(𝑡)),   𝑡 ≥ 𝑇(1),  

where 𝐹𝑛(𝑡) is the empirical distribution function, i.e., 

 𝐹𝑛(𝑡) =
1

𝑛
∑𝑛𝑖=1 𝐼(𝑇𝑖 ≤ 𝑡), 

and 

 𝐹𝑛
−1(𝑝) = inf{𝑥: 𝐹𝑛(𝑥) ≥ 𝑝} =

{
 
 
 

 
 
 
0     𝑝 = 0,

𝑇(1)     0 < 𝑝 ≤
1

𝑛
,

𝑇(2)     
1

𝑛
< 𝑝 ≤

2

𝑛
,

…

𝑇(𝑛)     1 −
1

𝑛
< 𝑝 ≤ 1.

 

Then, 𝑞𝛼,𝑛 can be written as in the following. 

 𝑞𝛼,𝑛(𝑡) =

{
 
 
 

 
 
 
𝑡     0 ≤ 𝑡 < 𝑡1,
𝑡 − 𝑇(1)     𝑡1 ≤ 𝑡 < 𝑡2,

𝑡 − 𝑇(2)     𝑡2 ≤ 𝑡 < 𝑡3,

…
𝑡 − 𝑇(𝑛−1)     𝑡𝑘−1 ≤ 𝑡 < 𝑡𝑘,

𝑡 − 𝑇(𝑛)     𝑡 ≥ 𝑡𝑘,

      (1) 
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where 

𝑡𝑖 = inf{𝑦: 𝛼̅𝐹𝑛(𝑦) >
𝑖 − 1

𝑛
} = inf{𝑦: 𝐹𝑛

−1(𝛼̅𝐹𝑛(𝑦)) = 𝑇(𝑖)}. 

Note that 𝐹𝑛
−1(𝛼̅𝐹𝑛(𝑡𝑖)) = 𝑇(𝑖) , for every 𝑖 = 1,2, … , 𝑘  for some 𝑘 ≤ 𝑛  𝑡1 = 𝑇(1)  and 𝑡𝑖 ≥ 𝑇(𝑖) 

for 𝑖 = 2… . . . , 𝑘. The expression (1) shows that 𝑞𝛼,𝑛(𝑡) consists of line segments with slope 1 on 

intervals (𝑡𝑖, 𝑡𝑖+1) , 𝑖 … ,2, . . . , 𝑘 − 1  and falls at each point 𝑡𝑖  by 𝑇(𝑖) − 𝑇(𝑖−1) , 𝑖 = 1,2, . . . , 𝑘 

where 𝑇(0) = 0. Figure 1 shows a schematic plot of 𝑞𝛼,𝑛(𝑡). 

 

Figure 1. A schematic plot of the univariate 0.5-QIT function and its increasing version. 

The figure shows 𝑡𝑖 points which are useful in computing and plotting both usual and 

increasing function. 

For the univariate case, Mahdy [7] proposed the estimator (2) for the α-QIT function and 

investigated its asymptotic properties. Balmert and Jeong [8] created a nonparametric inference of the 

median inactivity time function for right-censored data. Balmert et al. [9] applied a log-linear quantile 

regression model to the inactivity time for right-censored data. Kayid [10] applied the Kaplan-Meiere 

survival estimator to the 𝛼-QIT function for estimation and inference. 

We can have two or more dependent events. For example, if successive events of the same 

person/instance are tracked, the event times depend on each other. Another example is that researchers 

are interested in determining the effect of a treatment on specific event times related to the eyes, ears, 

hands or legs. One organ was randomly selected for treatment and the other was a control organ. The 

events associated with these organs depend on their progression. In such cases, we need to extend the 

measures in question to bivariate or multivariate settings. In the following section, I refer to the authors 

who have implemented this idea. Basu [11] and Johnson and Kotz [12] examined the multivariate hazard 

rate function as a gradient vector. The mean residual lifetime was extended by Nair and Nair [13] to 

obtain a vector of dependent lifetimes. Shaked and Shanthikumar [14] introduced the dynamic 

multivariate MRL concept. Kayid [15] developed the multivariate MIT concept. Navarro [16] 
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characterized the basic model by the bivariate hazard rate function. The concept of the 𝛼 -quantile 

residual lifetime (𝛼-QRL) was extended to the multivariate context by Shafaei and Kayid [17]. Shafaei 

et al. [18] discussed the multivariate 𝛼-QRL concept in a dynamic way. Buono et al. [19] applied 

multivariate RHR for discussing reliability attributes of systems. Kayid [20] extended the 𝛼 -QIT 

concept to bivariate context and discussed its estimation. 

Let 𝐹 be the distribution function of a random pair 𝑻 = (𝑇1, 𝑇2). Then, the 𝛼-QIT vector at 

point 𝒕 = (𝑡1, 𝑡2) is defined to be (𝑞𝛼,1(𝒕), 𝑞𝛼,2(𝒕)). The first element of this vector is 

 

𝑞𝛼,1(𝒕) = sup{𝑥: 𝑃(𝑡1 − 𝑇1 > 𝑥|𝑻 ≤ 𝒕) = 𝛼̅}

= sup{𝑥: 𝐹(𝑡1 − 𝑥, 𝑡2) = 𝛼̅𝐹(𝒕)}

= inf{𝑡1 − 𝑧: 𝐹(𝑧, 𝑡2) = 𝛼̅𝐹(𝒕)}

= 𝑡1 − 𝐹1
−1(𝛼̅𝐹(𝒕); 𝑡2),

  

where 𝛼̅ = 1 − 𝛼 and 

 𝐹1
−1(𝑝; 𝑡2) = inf{𝑧: 𝐹(𝑧, 𝑡2) = 𝑝}, 

is the partial inverse of 𝐹 in terms of the 𝑇1. The second element of the 𝛼-QIT vector is defined 

similarly. 

 𝑞𝛼,2(𝒕) = 𝑡2 − 𝐹2
−1(𝛼̅𝐹(𝒕); 𝑡1),  

where 𝐹2
−1(p; 𝑡1) = inf{𝑧: 𝐹(𝑡1, z) = 𝑝} is the partial inverse of 𝐹 in terms of the second element. 

The reversed hazard rate vector of 𝑻 is (𝑟1(𝒕), 𝑟2(𝒕)) and 

 𝑟𝑖(𝒕) =
𝜕

𝜕𝑡𝑖
log𝐹(𝒕),   𝑖 = 1,2.  

The RHR satisfies the following relation. 

 

{
 

 
𝜕

𝜕𝑡1
𝐹(𝑡1, 𝑡2) = 𝑟1(𝑡1, 𝑡2)𝐹(𝑡1, 𝑡2),

𝜕

𝜕𝑡2
𝐹(𝑡1, 𝑡2) = 𝑟2(𝑡1, 𝑡2)𝐹(𝑡1, 𝑡2).

  

Kayid [20] showed that if 𝑟𝑖(𝒕) is decreasing (increasing) in 𝑡𝑖, then 𝑞𝛼,𝑖(𝒕) is increasing (decreasing) 

in 𝑡𝑖. It is a surprising fact that for most of the standard bivariate models, 𝑟𝑖(𝒕) is decreasing in 

𝑡𝑖  (Finkelstein [1]). For example, bivariate Gumbel, Pareto, normal, and gamma models have 

decreasing reversed hazard rate functions. This implies that 𝑞𝛼,𝑖(𝒕)  is increasing in 𝑡𝑖 . For some 

examples of such models, refer to Kayid [20]. This motivates me to introduce a new estimator of 

𝑞𝛼,1(𝒕)  and 𝑞𝛼,2(𝒕)  under the assumption that they are increasing with respect to 𝑡1  and 𝑡2, 

respectively. It is expected that applying this knowledge, I have a more accurate estimator than the 

usual estimator defined by Kayid [20]. Such monotone estimators are defined and studied by Kochar 

et al. [21], Franco Pereira and Una-Alvarez [22], and Shafaei and Franco Pereira [23]. 

The rest of this paper is structured as follows. In Section 2, the promised increasing estimator of 

the bivariate 𝛼 -QIT function is proposed and its asymptotic properties are discussed. Then, the 

performance of the new estimator is compared with that of the usual estimator in a simulation study. 

In Section 4, the proposed estimator is applied to investigate the effect of laser treatment on the time 

to blindness. In Section 5, I summarize the results. 
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2. Estimation of increasing bivariate 𝜶-QIT 

Let … , . . . , 𝑻𝑛 be an iid random sample from bivariate distribution 𝐹. The empirical distribution 

function is defined by 

 𝐹𝑛(𝑡1, 𝑡2) = 𝑛
−1∑𝑛𝑖=1 𝐼(𝑇1𝑖 ≤ 𝑡1, 𝑇2𝑖 ≤ 𝑡2), 

and the partial inverse of 𝐹𝑛, with respect to the first and second elements, are as in the following 

respectively: 

 𝐹1,𝑛
−1(𝑝; 𝑡2) = inf{𝑥: 𝐹𝑛(𝑥, 𝑡2) ≥ 𝑝}, 

and 

 𝐹2,𝑛
−1(𝑝; 𝑡1) = inf{𝑥: 𝐹𝑛(𝑡1, 𝑥) ≥ 𝑝}. 

Kayid [20] proposed the following estimator of the bivariate 𝛼-QIT vector. 

 𝑞𝛼,𝑛(𝒕) = (𝑞𝛼,1,𝑛(𝒕), 𝑞𝛼,2,𝑛(𝒕)),  

where 

 {

𝑞𝛼,1,𝑛(𝒕) = 𝑡1 − 𝐹1,𝑛
−1(𝛼̅𝐹𝑛(𝒕); 𝑡2),

𝑞𝛼,2,𝑛(𝒕) = 𝑡2 − 𝐹2,𝑛
−1(𝛼̅𝐹𝑛(𝒕); 𝑡1),

  

with the knowledge of increasing bivariate 𝛼-IQT, we define the natural estimator 

 𝑖𝑞𝛼,𝑛(𝒕) = (𝑖𝑞𝛼,1,𝑛(𝒕), 𝑖𝑞𝛼,2,𝑛(𝒕)),  

where 

 

{
 

 
𝑖𝑞𝛼,1,𝑛(𝒕) = sup

𝑦≤𝑡1

𝑞𝛼,1,𝑛(𝑦, 𝑡2),

𝑖𝑞𝛼,2,𝑛(𝒕) = sup
𝑦≤𝑡2

𝑞𝛼,2,𝑛(𝑡1, 𝑦),
  

Let 𝑡2 > 0 be fixed and define 𝑇1[𝑡2] = 𝑇1|𝑇2 ≤ 𝑡2, then the distribution function of 𝑇1[𝑡2] is 

 𝐹1
∗(𝑥; 𝑡2) = 𝑃(𝑇1[𝑡2] ≤ 𝑥) =

𝐹(𝑥,𝑡2)

𝐹2(𝑡2)
, 

where 𝐹2(𝑡2) = 𝑃(𝑇2 ≤ 𝑡2). Denote 𝛼-QIT of 𝑇1[𝑡2] by 𝑞𝛼,1
∗ (𝑡1; 𝑡2), then it can be shown that 

 𝑞𝛼,1
∗ (𝑡1; 𝑡2) = 𝑞𝛼,1(𝑡1, 𝑡2).        (2) 

Similarly, for every fixed 𝑡1 > 0 , we define 𝑇2[𝑡1] = 𝑇2|𝑇1 ≤ 𝑡1  following distribution 𝐹2
∗(. ; 𝑡1) . 

Let 𝑞𝛼,2
∗ (𝑡2; 𝑡1) be the 𝛼-QIT of 𝑇2[𝑡1], then we can investigate that 

 𝑞𝛼,2
∗ (𝑡2; 𝑡1) = 𝑞𝛼,2(𝑡1, 𝑡2).        (3) 

Given a bivariate iid random sample (𝑇1𝑖, 𝑇2𝑖) , 𝑖 = 1,2, … , 𝑛  from distribution 𝐹 , and for every 

fixed 𝑡2, consider the following univariate random sample which follows from 𝐹1
∗(. ; 𝑡2). 
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 𝜒(1, 𝑡2) = {𝑇1𝑖𝑗: when𝑇2𝑖𝑗 ≤ 𝑡2, 𝑗 = 1… . . . , 𝑘1(𝑡2)}.  

I can apply this sample to estimate 𝑞𝛼,1
∗ (𝑡1; 𝑡2), as in the following. 

 𝑞𝛼,1,𝑛
∗ (𝑡1; 𝑡2) = 𝑡1 − 𝐹1,𝑛

∗−1(𝛼̅𝐹1,𝑛
∗ (𝑡1; 𝑡2)),  

where 

 𝐹1,𝑛
∗ (𝑡1; 𝑡2) =

#(𝑇1𝑖𝑗≤𝑡1)

𝑘1(𝑡2)
,  

and 

 𝐹1,𝑛
∗−1(𝑝) = inf{𝑥: 𝐹1,𝑛

∗ (𝑥; 𝑡2) ≥ 𝑝}.  

Applying the knowledge of increasing 𝑞𝛼,1
∗ (𝑡1; 𝑡2) in terms of 𝑡1, it is natural to use the following 

estimator. 

 𝑖𝑞𝛼,1,𝑛
∗ (𝑡1; 𝑡2) = sup

𝑦≤𝑡1

𝑞𝛼,1,𝑛
∗ (𝑦; 𝑡2).  

Again, for a bivariate iid random sample (𝑇1𝑖, 𝑇2𝑖), 𝑖 … ,2, . . . , 𝑛 from distribution 𝐹, and for every 

fixed 𝑡1, consider the following sample. 

 𝜒(2, 𝑡1) = {𝑇2𝑖𝑗: when𝑇1𝑖𝑗 ≤ 𝑡1… = 1,2, . . . , 𝑘2(𝑡1)},  

which follows from 𝐹2
∗(. ; 𝑡1). Then, the estimator of 𝑞𝛼,2

∗ (𝑡2; 𝑡1) is defined by 

 𝑞𝛼,2,𝑛
∗ (𝑡2; 𝑡1) = 𝑡2 − 𝐹2,𝑛

∗−1(𝛼̅𝐹2,𝑛
∗ (𝑡2; 𝑡1)),  

where 

 𝐹2,𝑛
∗ (𝑡2; 𝑡1) =

#(𝑇2𝑖𝑗≤𝑡2)

𝑘2(𝑡1)
,  

and 

 𝐹2,𝑛
∗−1(𝑝) = inf{𝑥: 𝐹2,𝑛

∗ (𝑥; 𝑡1) ≥ 𝑝}.  

In an increasing context, 

 𝑖𝑞𝛼,2,𝑛
∗ (𝑡2; 𝑡1) = sup

𝑦≤𝑡2

𝑞𝛼,2,𝑛
∗ (𝑦; 𝑡1).  

It is clear that 

 {

𝑖𝑞𝛼,1,𝑛(𝒕) = 𝑖𝑞𝛼,1,𝑛
∗ (𝑡1; 𝑡2),

𝑖𝑞𝛼,2,𝑛(𝒕) = 𝑖𝑞𝛼,2,𝑛
∗ (𝑡2; 𝑡1).

       (4) 

Theorem 1. Let us assume that the following two conditions are fulfilled. 

(C1). 𝐹(𝑡1, 𝑡2) be twice differentiable with respect each element. 
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(C2). 
𝜕

𝜕𝑡1
𝐹(𝒕)  and 

𝜕

𝜕𝑡2
𝐹(𝒕)  are bounded from zero on the intervals (0, 𝐹1

−1(𝛼̅; 𝑡2))  and 

(0, 𝐹2
−1(𝛼̅; 𝑡1)), respectively, for every 𝑡1 > 0 and 𝑡2 > 0. 

Then, (𝑖𝑞𝛼,1,𝑛(𝒕), 𝑖𝑞𝛼,2,𝑛(𝑡)) is consistent for (𝑖𝑞𝛼,1(𝒕), 𝑖𝑞𝛼,2(𝒕)). 

Proof. By Theorem 7 from Kayid [24], we have 

 |𝑖𝑞𝛼,1,𝑛
∗ (𝑡1; 𝑡2) − 𝑖𝑞𝛼,1

∗ (𝑡1; 𝑡2)| → 0,   almost every where,  

and 

 |𝑖𝑞𝛼,2,𝑛
∗ (𝑡2; 𝑡1) − 𝑖𝑞𝛼,2

∗ (𝑡2; 𝑡1)| → 0,   almost every where.  

Thus, the result follows from (2)–(4). 

To state the next theorem, I need two following conditions. 

(C3) 
𝜕

𝜕𝑡1
𝑞𝛼,1(𝒕) and 

𝜕

𝜕𝑡2
𝑞𝛼,2(𝒕) exist and there are 𝑐1 > 0 and 𝑐2 > 0 such that 

𝜕

𝜕𝑡1
𝑞𝛼,1(𝒕) > 𝑐1 

and 
𝜕

𝜕𝑡2
𝑞𝛼,2(𝒕) > 𝑐2 for all 0 < 𝑡1 < 𝑏1 and 0 < 𝑡2 < 𝑏2 for some positive 𝑏1 and 𝑏2.  

(C4) 
𝜕2

𝜕𝑡1𝜕𝑡1
𝑞𝛼,1(𝒕) and 

𝜕2

𝜕𝑡2𝜕𝑡2
𝑞𝛼,2(𝒕) exist and 

 sup
0<𝑡1<𝑏1

|
𝜕2

𝜕𝑡1𝜕𝑡1
𝑞𝛼,1(𝒕)| ≤ 𝑐3 < ∞and sup

0<𝑡2<𝑏2

|
𝜕2

𝜕𝑡2𝜕𝑡2
𝑞𝛼,2(𝒕)| ≤ 𝑐4 < ∞. 

Theorem 2. Assume that C1–C4 are satisfied. Then, we have 

 √𝑛 |(𝑖𝑞𝛼,1,𝑛(𝒕), 𝑖𝑞𝛼,2,𝑛(𝒕)) − (𝑞𝛼,1,𝑛(𝒕), 𝑞𝛼,2,𝑛(𝒕))| → 0,   in probability.  

Proof. By Theorem 5 from Kayid [21], we have 

 sup
0<𝑡<𝑏1

|𝑖𝑞𝛼,1,𝑛
∗ (𝑡1; 𝑡2) − 𝑞𝛼,1,𝑛

∗ (𝑡1; 𝑡2)| → 0,   inprobability,  

and 

 sup
0<𝑡<𝑏2

|𝑖𝑞𝛼,2,𝑛
∗ (𝑡2; 𝑡1) − 𝑞𝛼,2,𝑛

∗ (𝑡2; 𝑡1)| → 0,   inprobability.  

Thus, the result follows from relations (2)–(4) and the concept of convergence in probability in 

bivariate setting.   

The following lemma, which is the result of the well-known Slutsky theorem, is used in the proof 

of the next theorem (see Van der Vaart [25] for Slutsky’s theorem and related results). 

Lemma 1. If √𝑛(𝑋𝑛 − 𝑌𝑛) → 0  in probability and √𝑛𝑋𝑛  converges, in distribution, to a random 

variable 𝑋 with distribution 𝐹, then √𝑛𝑌𝑛 converges, in distribution, to a random variable 𝑌 with 

the same distribution 𝐹. 

Theorem 3. Under the conditions C1–C4, we have 

 √𝑛 |(𝑖𝑞𝛼,1,𝑛(𝒕), 𝑖𝑞𝛼,2,𝑛(𝒕)) − (𝑞𝛼,1(𝒕), 𝑞𝛼,2(𝒕))| → 𝑁(0, 𝐶Σ𝐶),   in distribution,  
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where 

 𝐶 = − [

𝜕

𝜕𝑝
𝐹1
−1(𝑝; 𝑡2)|𝑝=𝛼̅𝐹(𝑡)                  0

              0
𝜕

𝜕𝑝
𝐹2
−1(𝑝; 𝑡1)|𝑝=𝛼̅𝐹(𝑡)

], 

and elements of Σ are 

 𝜎11 = 𝜎22 = 𝛼𝛼̅𝐹(𝒕),  

and 

 𝜎12 = 𝜎21 = 𝐹(𝐹1
−1(𝛼̅𝐹(𝒕); 𝑡2), 𝐹2

−1(𝛼̅𝐹(𝒕); 𝑡1)) − 𝛼̅
2𝐹(𝒕).  

Proof. Theorem 7 of Kayid [20] states that under some mild conditions: 

 √𝑛 |(𝑞𝛼,1,𝑛(𝒕), 𝑞𝛼,2,𝑛(𝒕)) − (𝑞𝛼,1(𝒕), 𝑞𝛼,2(𝒕))| → 𝑁(0, 𝐶Σ𝐶),   in distribution,  

where 𝐶 and Σ are defined in this theorem. Thus, applying Lemma 1, the result follows immediately. 

In the real world, lifetime random pairs 𝑻1, 𝑻2, . . . , 𝑻𝑛 may be censored by a random censorship 

𝐶𝑖, in the sense that the observations are 𝑇̃1𝑖 = 𝑇1𝑖 ∧ 𝐶𝑖, 𝑇̃2𝑖 = 𝑇2𝑖 ∧ 𝐶𝑖, 𝛿1𝑖 = 𝐼(𝑇1𝑖 > 𝐶𝑖) and 𝛿2𝑖 =

𝐼(𝑇2𝑖 > 𝐶𝑖). Note that 𝑎 ∧ 𝑏 = min{𝑎, 𝑏}. Let censorship random variable 𝐶𝑖 be independent from 

desired lifetimes and follows from distribution 𝐺  and the reliability function 𝐺̅ = 1 − 𝐺 , i.e., 

𝐺̅(𝑡) = 𝑃(𝐶𝑖 > 𝑡). Also, let 𝑅̃(𝑡1, 𝑡2) = 𝑃(𝑇̃1𝑖 > 𝑡1, 𝑇̃2𝑖 > 𝑡2) and 𝑅(𝑡1, 𝑡2) = 𝑃(𝑇1𝑖 > 𝑡1, 𝑇2𝑖 > 𝑡2). 

Then, we have 

 𝑅(𝑡1, 𝑡2) =
𝑅̃(𝑡1,𝑡2)

𝐺̅(𝑡1∨𝑡2)
, 

where 𝑡1 ∨ 𝑡2 = max{𝑡1, 𝑡2}. So, we can estimate the reliability function 𝑅 by 

 𝑅𝑛(𝑡1, 𝑡2) =
1

𝑛

∑𝑛𝑖=1 𝐼(𝑇̃1𝑖>𝑡1,𝑇̃2𝑖>𝑡2)

𝐺̅𝑛(𝑡1∨𝑡2)
. 

Under this censoring scheme, Lin and Ying [26] showed that 𝑅𝑛(𝑡1, 𝑡2) is strongly consistent and 

weakly converges to a Gaussian process. Thus, when we have such censored data, the empirical 

distribution function could be replaced by the following estimate: 

 𝐹𝑛(𝑡1, 𝑡2) = 1 − 𝑅𝑛(𝑡1, 0) − 𝑅𝑛(0, 𝑡2) + 𝑅𝑛(𝑡1, 𝑡2).  

3. Simulations 

To investigate the performance of the proposed (increasing) estimator and comparing it with the 

usual estimator, a simulation study is conducted. The bivariate Gumbel and Pareto distributions with 

respectively the following reliability functions are selected for the baseline models: 

 𝐹̅(𝑡1, 𝑡2) = exp{−𝑡1 − 𝑡2 − 𝛽𝑡1𝑡2},   𝛽 > 0, 𝑡1 ≥ 0, 𝑡2 ≥ 0,  

and 
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 𝐹̅(𝑡1, 𝑡2) = (𝑡1 + 𝑡2 − 1)
−𝑐,   𝑐 > 0, 𝑡1 ≥ 1, 𝑡2 ≥ 1.  

Both models are important from practical and theoretical points of view. The Gumbel distribution was 

introduced by Gumbel [27], and the Pareto model was used by Jupp and Mardia [28] to analyze income 

data for consecutive years. Some proper values for 𝛽 and 𝑐 were selected. In each simulation run, 

𝑟 = 1000 replicates of bivariate samples of size 𝑛 were generated, where 𝑛 was set to 25, 50 or 

100 . For each sample, 𝑞0.5,1,𝑛()  and its increasing version, 𝑖𝑞0.5,1,𝑛() , are calculated at four 

appropriate time points 𝑡1, 𝑡2, 𝑡3 and 𝑡4 according to the following rules: Let 𝐹1 be the marginal 

distribution of the first element and 𝒕𝑖 = (𝑡1𝑖, 𝑡2𝑖). The equations 𝐹1(𝑡11) = 0.25, 𝐹1(𝑡12) = 0.40, 

𝐹1(𝑡13) = 0.50  and 𝐹1(𝑡14) = 0.75  are solved to find 𝑡11  to 𝑡14  and given them, the equations 

𝐹(𝑡11, 𝑡21) = 0.2, 𝐹(𝑡12, 𝑡22) = 0.3, 𝐹(𝑡13, 𝑡23) = 0.4, and 𝐹(𝑡14, 𝑡24) = 0.6 are solved for 𝑡21 to 

𝑡24. After calculating the objective functions for 𝑟 replicates, the bias (B) and mean squared error (MSE) 

were calculated and are shown in Tables 1 and 2 for the Gumbel and Pareto models, respectively. All 

simulations and calculations were performed in R (statistical programming language). The results 

show small values for B and MSE for both the conventional estimator and the proposed increasing 

estimator. As expected, the MSE increases with 𝐹(t)  (see Theorem 3). The MSE values for the 

increasing estimator are smaller in all cases, indicating that the increasing estimator performs better 

than the conventional estimator. See Figures 2 and 3 for a graphicall representaion of the ratio of MSE 

values related to the ususal to the increasing estimator. 

 

Figure 2. The MSE ratio of the usual estimator to the increasing version for Gumbel 

distribution reported in Table 1. All points lies above horizontal line 1 indicating a better 

performance for increasing estimator rather than the usual one. 
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Fgure 3. The MSE ratio of the usual estimator to the increasing one for Pareto model. All points 

lies above horizontal line and shows that the increasing estimator provides a smaller MSE. 

Table 1. Simulation results for the bivariate Gumbel distribution. 

 𝛽 

0.8 1 1.4 

Estimator 𝑛 point B MSE B MSE B MSE 

Usual 

25 

𝑡1 0.0133 0.0036 0.0120 0.0037 0.0115 0.0035 

𝑡2 0.0146 0.0075 0.0096 0.0075 0.0144 0.0074 

𝑡3 0.0113 0.0105 0.0086 0.0099 0.0157 0.0100 

𝑡4 0.0118 0.0242 0.0150 0.0212 0.0203 0.0232 

50 

𝑡1 0.0071 0.0019 0.0068 0.0019 0.0062 0.0018 

𝑡2 0.0093 0.0040 0.0074 0.0039 0.0071 0.0039 

𝑡3 0.0055 0.0053 0.0069 0.0055 0.0050 0.0054 

𝑡4 0.0070 0.0110 0.0050 0.0115 0.0059 0.0118 

100 

𝑡1 0.0057 0.0010 0.0049 0.0009 0.0043 0.0010 

𝑡2 0.0033 0.0021 0.0035 0.0022 0.0035 0.0020 

𝑡3 0.0017 0.0028 0.0058 0.0027 0.0022 0.0028 

𝑡4 -0.0010 0.0064 0.0027 0.0059 0.0009 0.0058 

Increasing 

25 

𝑡1 0.0395 0.0032 0.0388 0.0031 0.0386 0.0030 

𝑡2 0.0480 0.0064 0.0466 0.0065 0.0503 0.0065 

𝑡3 0.0440 0.0082 0.0435 0.0079 0.0473 0.0086 

𝑡4 0.0370 0.0204 0.0392 0.0182 0.0455 0.0196 

50 

𝑡1 0.0224 0.0016 0.0232 0.0016 0.0238 0.0017 

𝑡2 0.0286 0.0035 0.0282 0.0034 0.0268 0.0033 

𝑡3 0.0244 0.0043 0.0252 0.0047 0.0238 0.0045 

𝑡4 0.0192 0.0105 0.0175 0.0108 0.0163 0.0110 

100 

𝑡1 0.0145 0.0009 0.0141 0.0008 0.0139 0.0009 

𝑡2 0.0140 0.0019 0.0141 0.0019 0.0148 0.0019 

𝑡3 0.0103 0.0026 0.0137 0.0026 0.0115 0.0025 

𝑡4 0.0063 0.0060 0.0058 0.0057 0.0082 0.0055 
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Table 2. Simulation results for the bivariate Pareto distribution. 

 𝑐 

0.5 0.7 1.1 

Estimator 𝑛 point B MSE B MSE B MSE 

Usual 

25 

𝒕1 -0.0040 0.1866 0.0149 0.0686 0.0018 0.0242 

𝒕2 0.0030 0.2704 -0.0067 0.1025 -0.0042 0.0346 

𝒕3 -0.0412 0.4076 -0.0285 0.1508 -0.0082 0.0469 

𝒕4 -0.0591 0.5858 -0.0349 0.2085 -0.0156 0.0620 

50 

𝒕1 0.0017 0.0903 -0.0100 0.0407 0.0040 0.0113 

𝒕2 -0.0152 0.1273 -0.0178 0.0554 0.0005 0.0159 

𝒕3 -0.0312 0.1913 -0.0296 0.0816 -0.0025 0.0221 

𝒕4 -0.0534 0.3003 -0.0345 0.1103 -0.0004 0.0273 

100 

𝒕1 -0.0086 0.0461 -0.0017 0.0172 0.0008 0.0057 

𝒕2 -0.0089 0.0577 -0.0030 0.0253 -0.0010 0.0080 

𝒕3 -0.0137 0.0823 -0.0057 0.0343 -0.0037 0.0107 

𝒕4 -0.0222 0.1243 -0.0086 0.0495 -0.0035 0.0141 

Increasing 

25 

𝒕1 0.0004 0.1832 0.0271 0.0603 0.1125 0.0197 

𝒕2 0.0032 0.2702 -0.0018 0.1008 0.0049 0.0304 

𝒕3 -0.0411 0.4076 -0.0285 0.1508 -0.0043 0.0438 

𝒕4 -0.0591 0.5858 -0.0349 0.2085 -0.0155 0.0620 

50 

𝒕1 0.0057 0.0897 0.0009 0.0373 0.0830 0.0087 

𝒕2 -0.0135 0.1261 -0.0142 0.0539 0.0048 0.0151 

𝒕3 -0.0307 0.1906 -0.0286 0.0802 -0.0012 0.0218 

𝒕4 -0.0534 0.3002 -0.0343 0.1103 -0.0004 0.0273 

100 

𝒕1 -0.0046 0.0447 0.0014 0.0166 0.0631 0.0046 

𝒕2 -0.0072 0.0570 -0.0017 0.0252 0.0008 0.0077 

𝒕3 -0.0137 0.0823 -0.0042 0.0339 -0.0029 0.0105 

𝒕4 -0.0222 0.1243 -0.0085 0.0495 -0.0033 0.0140 

4. Effect of laser treatment on blindness 

In a study that began in 1971, researchers were interested in the effect of laser photocoagulation on 

delaying blindness in patients with DR. Patients with visual acuity ≥ 20/100 in both eyes were selected 

for the study. One eye of each patient was randomly selected for laser photocoagulation (treatment) and 

the other eye was observed without treatment (control). The time from the start of treatment to 

blindness is given in months. Blindness means that visual acuity fell below 5/200 on two consecutive 

visits. The data for this study is available in the “diabetic” dataset in the “survival” package in 

R. Table 3 shows part of the dataset relating to adolescents (under 20 years of age). For patient 𝑖, 𝑇1𝑖 

and 𝑇2𝑖  indicate the observed time to blindness in the control and treated eyes, respectively. 

 

 

 



28483 

AIMS Mathematics  Volume 9, Issue 10, 28472–28486. 

Table 3. Survival times to blindness in months for juveniles. 

Patient (i) 1 2 3 4 5 6 7 8 9 

𝑇1𝑖 6.9 1.63 13.83 35.53 14.8 6.2 22 1.7 43.03 

𝑇2𝑖 20.17 10.27 5.67 5.90 33.9 1.73 30.2 1.7 1.77 

Patient (i) 10 11 12 13 14 15 16 17 18 

𝑇1𝑖 6.53 42.17 48.43 9.6 7.6 1.8 9.9 13.77 0.83 

𝑇2𝑖 18.7 42.17 14.3 13.33 14.27 34.57 21.57 13.77 10.33 

Patient (i) 19 20 21 22 23 24  

𝑇1𝑖 1.97 11.3 30.4 19 5.43 46.63  

𝑇2𝑖 11.07 2.1 13.97 13.80 13.57 42.43  

Figures 4 and 5 draw the bivariate median inactivity time functions and their increasing versions, 

𝑖𝑞𝑛,0.5,1(𝒕) and 𝑖𝑞𝑛,0.5,2(𝒕), respectively. 

 

Figure 4. The bivariate median inactivity time functions 𝑞𝑛,0.5,1(𝒕) (left) and 𝑞𝑛,0.5,2(𝒕) (right). 

 

Figure 5. The bivariate increasing median inactivity time functions 𝑖𝑞𝑛,0.5,1(𝒕) (left) and 

𝑖𝑞𝑛,0.5,2(𝒕) (right). 
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The comparison of the proposed increasing median inactivity time functions 𝑖𝑞𝑛,0.5,1(𝒕)  and 

𝑖𝑞𝑛,0.5,2(𝒕) at different points is informative in investigating the treatment effect. To provide a simple 

and powerful statistics, we can consider the points on the identity line and use the following statistics 

 𝑑𝑛(𝑡) = 𝑖𝑞𝑛,0.5,1(𝑡, 𝑡) − 𝑖𝑞𝑛,0.5,2(𝑡, 𝑡),   𝑡 ≥ 0.      (5) 

If I assume that the treatment dose not effect the time length to blindness, 𝑑𝑛(𝑡) should be positive 

or negitive values near zero, reflecting some random errors. However, if the treatment causes longer 

time to blindness, I expect relatively larger values for 𝑖𝑞𝑛,0.5,1(𝑡, 𝑡) than 𝑖𝑞𝑛,0.5,2(𝑡, 𝑡), i.e., positive 

values for 𝑑𝑛(𝑡) . Figure 6 plots 𝑑𝑛(𝑡)  in all points of the observed 𝑇1  or 𝑇2 . The plot shows 

positive values that increase with 𝑡 and indicates that the treatment causes longer time to blindness. 

The effect of treatment also increases with time. The bivariate median inactivity functions are on the 

right side of Figure 6 to provide a better comparison of these functions. 

 

Figure 6. The left side plot shows the differences of bivariate increasing median inactivity 

times defined in (5). The plot indicates that the laser treatment causes a longer time to 

blindness. The right side plot draws identical bivariate median inactivity time functions for 

some identical values. 

5. Conclusions 

Assuming an increasing 𝛼-QIT function, I define a new estimator for this function. It is proven 

that the proposed estimator is consistent. It is asymptotically close to the usual estimator in the sense 

that the difference to the usual estimator converges to zero with high probability. It is also shown that 

the proposed estimator converges weakly to a Gaussian process when normalized. Interestingly, none 

of the asymptotic results assume that the true 𝛼 -QIT function increases, which increases the 

applicability of the estimator in general. The simulation results show that the MSE for the proposed 

increasing estimator is smaller than that of the conventional estimator. When using the proposed 

estimator, it was found that the laser treatment causes a delay in glare. 
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