Research article

Weighted proportional mean inactivity time model

  • Received: 08 August 2021 Accepted: 02 December 2021 Published: 14 December 2021
  • MSC : 60E05, 62N05, 60E15

  • In this paper, a mean inactivity time frailty model is considered. Examples are given to calculate the mean inactivity time for several reputable survival models. The dependence structure between the population variable and the frailty variable is characterized. The classical weighted proportional mean inactivity time model is considered as a special case. We prove that several well-known stochastic orderings between two frailties are preserved for the response variables under the weighted proportional mean inactivity time model. We apply this model on a real data set and also perform a simulation study to examine the accuracy of the model.

    Citation: Mohamed Kayid, Adel Alrasheedi. Weighted proportional mean inactivity time model[J]. AIMS Mathematics, 2022, 7(3): 4038-4060. doi: 10.3934/math.2022223

    Related Papers:

  • In this paper, a mean inactivity time frailty model is considered. Examples are given to calculate the mean inactivity time for several reputable survival models. The dependence structure between the population variable and the frailty variable is characterized. The classical weighted proportional mean inactivity time model is considered as a special case. We prove that several well-known stochastic orderings between two frailties are preserved for the response variables under the weighted proportional mean inactivity time model. We apply this model on a real data set and also perform a simulation study to examine the accuracy of the model.



    加载中


    [1] I. A. Ahmad, M. Kayid, F. Pellerey, Further results involving the MIT order and the IMIT class, Probab. Eng. Inf. Sci., 19 (2005), 377–395. doi: 10.1017/S0269964805050229. doi: 10.1017/S0269964805050229
    [2] R. Andersen, P. Ostri, J. E. Jansen, K. Kristensen, A retrospective evaluation of 691 ureteroscopies: Indications, procedures, success rate and complications, Urol. Int., 51 (1993), 191–197. doi: 10.1159/000282543. doi: 10.1159/000282543
    [3] M. Asadi, A. Berred, Properties and estimation of the mean past lifetime, Statistics, 46 (2012), 405–417. doi: 10.1080/02331888.2010.540666. doi: 10.1080/02331888.2010.540666
    [4] F. G. Badía, M. D. Berrade, On the reversed hazard rate and mean inactivity time of mixtures, Amsterdam, The Netherlands: Delft Univ. Press, 2008,
    [5] F. G. Badía, J. H. Cha, On bending (down and up) property of reliability measures in mixtures, Metrika, 80 (2017), 455–482. doi: 10.1007/s00184-017-0613-4. doi: 10.1007/s00184-017-0613-4
    [6] R. E. Barlow, F. Proschan, Statistical theory of reliability and life testing, 1975. doi: 10.2307/1402970.
    [7] S. Bennett, Log-logistic regression models for survival data, J. Royal Stat. Soc., 32 (1983), 165–171. doi: 10.2307/2347295. doi: 10.2307/2347295
    [8] A. Di Crescenzo, Some results on the proportional reversed hazards model, Stat. Probab. Lett., 50 (2000), 313–321. doi: 10.1016/S0167-7152(00)00127-9. doi: 10.1016/S0167-7152(00)00127-9
    [9] L. Eeckhoudt, C. Gollier, The impact of prudence on optimal prevention, Econ. Theory, 26 (2005), 989–994. doi: 10.1007/s00199-004-0548-7.
    [10] M. Finkelstein, On relative ordering of mean residual lifetime functions, Stat. Probab. Lett., 76 (2006), 939–944. doi: 10.1016/j.spl.2005.10.027. doi: 10.1016/j.spl.2005.10.027
    [11] R. Foschi, F. Spizzichino, Reversing conditional orderings, In: H. Li, X. Li, Stochastic orders in reliability and risk, Springer, 208 (2013), 59–80. doi: 10.1007/978-1-4614-6892-9_3.
    [12] R. C. Gupta, S. N. U. A. Kirmani, On the proportional mean residual life model and its implications, Stat.: J. Theor. Appl. Stat., 32 (1998), 175–187. doi: 10.1080/02331889808802660. doi: 10.1080/02331889808802660
    [13] R. C. Gupta, P. L. Gupta, R. D. Gupta, Modeling failure time data by Lehman alternatives, Commun. Stat.-Theory Methods, 27 (1998), 887–904. doi: 10.1080/03610929808832134. doi: 10.1080/03610929808832134
    [14] R. C. Gupta, S. N. U. A. Kirmani, Stochastic comparisons in frailty models, J. Stat. Plan. Infer., 136 (2005), 3647–3658. doi: 10.1016/j.jspi.2005.02.020. doi: 10.1016/j.jspi.2005.02.020
    [15] R. C. Gupta, R. D. Gupta, Proportional reversed hazard rate model and its applications, J. Stat. Plan. Infer., 137 (2007), 3525–3536. doi: 10.1016/j.jspi.2007.03.029. doi: 10.1016/j.jspi.2007.03.029
    [16] F. Hooti, J. Ahmadi, N. Balakrishnan, Stochastic comparisons of general proportional mean past lifetime frailty model, Sankhya A, (2020), 1–23. doi: 10.1007/s13171-020-00222-3. doi: 10.1007/s13171-020-00222-3
    [17] S. Izadkhah, M. Kayid, Reliability analysis of the harmonic mean inactivity time order, IEEE T. Reliab., 62 (2013), 329–337. doi: 10.1109/TR.2013.2255793. doi: 10.1109/TR.2013.2255793
    [18] J. Jarrahiferiz, M. Kayid, S. Izadkhah, Stochastic properties of a weighted frailty model, Stat. Papers, 60 (2019), 53–72. doi: 10.1007/s00362-016-0826-z. doi: 10.1007/s00362-016-0826-z
    [19] S. Karlin, Total positivity, Stanford University Press, 1968.
    [20] M. Kayid, I. A. Ahmad, On the mean inactivity time ordering with reliability applications, Probab. Eng. Inf. Sci., 18 (2004), 395–409. doi: 10.1017/S0269964804183071. doi: 10.1017/S0269964804183071
    [21] M. Kayid, S. Izadkhah, D. ALmufarrej, Random effect additive mean residual life model, IEEE T. Reliab., 65 (2015), 860–866. doi: 10.1109/TR.2015.2491600. doi: 10.1109/TR.2015.2491600
    [22] M. Kayid, S. Izadkhah, S. Alshami, Development on the mean inactivity time order with applications, Oper. Res. Lett., 45 (2017), 525–529. doi: 10.1016/j.orl.2017.08.007. doi: 10.1016/j.orl.2017.08.007
    [23] M. Kayid, S. Izadkhah, Testing behavior of the mean inactivity time, J. Test. Eval., 46 (2018), 2649–2653.
    [24] M. Kayid, S. Izadkhah, A. M. Abouammoh, Proportional reversed hazard rates weighted frailty model, Phys. A: Stat. Mech. Appl., 528 (2019), 121308. doi: 10.1016/j.physa.2019.121308. doi: 10.1016/j.physa.2019.121308
    [25] R. A. Khan, D. Bhattacharyya, M. Mitra, On classes of life distributions based on the mean time to failure function, J. Appl. Probab., 58 (2021), 289–313. doi: 10.1017/jpr.2020.91. doi: 10.1017/jpr.2020.91
    [26] R. A. Khan, D. Bhattacharyya, M. Mitra, On some properties of the mean inactivity time function, Stat. Probab. Lett., 170 (2021), 108993. doi: 10.1016/j.spl.2020.108993. doi: 10.1016/j.spl.2020.108993
    [27] M. Kijima, M. Ohnishi, Stochastic orders and their applications in financial optimization, Math. Methods Oper. Res., 50 (1999), 351–372. doi: 10.1007/s001860050102. doi: 10.1007/s001860050102
    [28] X. Li, Z. Li, A mixture model of proportional reversed hazard rate, Commun. Stat.-Theory Methods, 37 (2008), 2953–2963. doi: 10.1080/03610920802050935. doi: 10.1080/03610920802050935
    [29] X. Li, P. Zhao, On the mixture of proportional odds models, Commun. Stat.-Theory Methods, 40 (2010), 333–344. doi: 10.1080/03610920903392665. doi: 10.1080/03610920903392665
    [30] X. Li, G. Da, P. Zhao, On reversed hazard rate in general mixture models, Stat. Probab. Lett., 80 (2010), 654–661. doi: 10.1016/j.spl.2009.12.023. doi: 10.1016/j.spl.2009.12.023
    [31] C. Ma, Convex orders for linear combinations of random variables, J. Stat. Plan. Infer., 84 (2000), 11–25. doi: 10.1016/S0378-3758(99)00143-3. doi: 10.1016/S0378-3758(99)00143-3
    [32] Z. Mansourvar, M. Asadi, Semiparametric inference for proportional mean past life model, Int. J. Biostat., 15 (2019), 1–11. doi: 10.1515/ijb-2018-0020. doi: 10.1515/ijb-2018-0020
    [33] A. W. Marshall, I. Olkin, A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families, Biometrika, 84 (1997), 641–652. doi: 10.1093/biomet/84.3.641. doi: 10.1093/biomet/84.3.641
    [34] N. Misra, J. Francis, Relative ageing in frailty and resilience models, Metrika, 83 (2020), 171–196. doi: 10.1007/s00184-019-00726-5. doi: 10.1007/s00184-019-00726-5
    [35] A. Müller, D. Stoyan, Comparison methods for stochastic models and risks, New York: Wiley, 2002.
    [36] A. K. Nanda, S. Bhattacharjee, S. S. Alam, On upshifted reversed mean residual life order, Commun. Stat.-Theory Methods, 35 (2006), 1513–1523. doi: 10.1080/03610920600637271. doi: 10.1080/03610920600637271
    [37] A. K. Nanda, S. Bhattacharjee, S. S. Alam, Properties of proportional mean residual life model, Stat. Probab. Lett., 76 (2006), 880–890. doi: 10.1016/j.spl.2005.10.019. doi: 10.1016/j.spl.2005.10.019
    [38] R. B. Nelsen, Dependence, In: An introduction to copulas, Springer, 2006,157–225. doi: 10.1007/0-387-28678-0_5
    [39] M. Rezaei, On proportional mean past lifetimes model, Commun. Stat.-Theory Methods, 45 (2016), 4035–4047. doi: 10.1080/03610926.2014.915039. doi: 10.1080/03610926.2014.915039
    [40] M. Shaked, J. G. Shanthikumar, Stochastic orders, New York: Springer, 2007. doi: 10.1007/978-0-387-34675-5.
    [41] A. Toomaj, A. Di Crescenzo, Generalized entropies, variance and applications, Entropy, 22 (2020), 709. doi: 10.3390/e22060709. doi: 10.3390/e22060709
    [42] M. Xu, X. Li, Negative dependence in frailty models, J. Stat. Plan. Infer., 138 (2008), 1433–1441. doi: 10.1016/j.jspi.2007.04.029. doi: 10.1016/j.jspi.2007.04.029
    [43] H. Zahedi, Proportional mean remaining life model, J. Stat. Plan. Infer., 29 (1991), 221–228. doi: 10.1016/0378-3758(92)90135-F. doi: 10.1016/0378-3758(92)90135-F
    [44] M. M. Siddiqui, E. A. Gehan, Statistical methodology for survival time studies, Personal communication of national cancer institute monograph, 1966.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1655) PDF downloads(62) Cited by(1)

Article outline

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog