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1. Introduction

The inactivity time of a lifetime unit, also known as the reversed residual life or past lifetime,
has involved many studies in different contexts with an increasing interest in the literature (see, e.g.,
Finkelstein [10], Kayid and Ahmad [20], Ahmad et al. [1], Kayid and Izadkhah [23], Khan et al. [26]
and Khan et al. [25]). The inactivity time has been mainly used in reliability and furthermore it has
also been useful to describe the behavior of lifetime random variables in survival retrospective studies
when dealing with past events or situations showing the improvement/deteriorate of the lifetime of a
system over a period of time (Andersen et al. [2]); and some applications have been discovered in risk
theory, and econometrics (Eeckhoudt and Gollier [9], Kijima and Ohnishi [27], and Ma [31]).

Based on the concept of inactivity time, various types of stochastic orders, inequalities and
associated properties have been developed rapidly over the years, resulting in a large body of literature
(cf. Nanda et al. [36], Kayid and Ahmad [20], Izadkhah and Kayid [17] and Kayid et al. [22]).

In the context of survival analysis numerous models have been introduced in the literature to model
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lifetime data. The Coxs proportional hazards (PHR) model is one of the reputable models among
other models. Bennett [7] introduced the proportional odds model and following this model Li and
Zhao [29] then developed the mixture model. Zahedi [43] presented the proportional mean residual
life model on the basis of the proportionality of two mean residual life functions and then Gupta and
Kirmani [12] and Nanda et al. [37] studied some reliability properties in this model. Gupta et al. [13]
proposed the proportional reversed hazards (PRH) model in contrast to the PHR model as a competitive
for lehmann alternatives. They studied the monotonicity of the failure rate function in the case of their
model. Di Crescenzo [8] presented several implications involving various stochastic orders and aging
properties in reliability theory for the PRH model. Later, Gupta and Gupta [15] further concentrated on
the structure of the PRH model and discussed some possible applications of the model. For example,
some aging properties of the model were investigated. Li and Li [28] introduced a mixture PRH model
and focused on some stochastic comparisons and aging properties regarding this model. Badı́a and
Berrade [4] developed some properties of mean inactivity time (MIT) function and reversed hazard
rate (rhr) function for mixtures. Asadi and Berred [3] proposed a new reliability model based on the
proportionality of two mean inactivity time functions called proportional mean inactivity time model
(PMIT). The monotonicity property of the variance of the inactivity time in the PMIT model has been
obtained by Toomaj and Di Crescenzo [41]. In the context of this model a useful characterization
related to the parallel systems was obtained. They proved that if the PMIT model and the PRH model
coincide with each other then a family of distributions is characterized. By some examples, they have
indicated the usefulness of the PMIT model. Recently, Rezaei [39] focused on the PMIT model to
study some reliability properties and some implications of stochastic orders and aging notions between
random variables that follow the model. Extended mixture model arising from the PMIT model is
introduced in Badı́a and Cha [5]. Preservation properties of some stochastic orders and aging classes of
lifetime distributions under this mixture model has been obtained by Rezaei [39]. Negative dependence
properties between two variables constipating the PMIT model have also been acquired in Rezaei [39].
Recently, relative ageing properties of distributions in frailty and resilience models based on the MIT
function as well as other related reliability measures have been developed by Misra and Francis [34].

In a dynamic mean inactivity time model, more information about common closure properties with
respect to stochastic changes may be sought. Dependencies among random variables constituting
the model and preservation properties of stochastic orders under the framework of the model can be
developed. This paper addresses this issue and clarify further aspects of the mean inactivity time frailty
models in general and a weighted proportional mean inactivity time in particular for future studies in
this direction. We present the mixture distribution which is arisen from the frailty models. In mixture
models, we focus on the dependence structure between the variable that gives amounts in overall
population and the mixing random variable. We finally apply the model on a real data set and also
carry out a simulation study.

Before closing this section for ease of reference we give some preliminary notions that will be used
throughout the paper. Let Xi be a non-negative random variable (rv) with probability density function
(pdf) φi, cumulative distribution function (cdf) Φi, and survival function (sf) Φ̄i ≡ 1 − Φi, for i = 1, 2.
The rhr function of Xi is given by ri(t) = (Φi(t))−1φi(t) for i = 1, 2. The MIT function, for the random
variable Xi which has finite mean, is mi(t) = (Φi(t))−1

∫ t

0
Φi(x)dx, t > 0 for i = 1, 2.

Definition 1.1. The random variable X1 is said to be smaller than X2 in the:
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(i) Likelihood ratio order (denoted by X1 ≤lr X2), if φ2(t)/φ1(t) is non-decreasing in t > 0.
(ii) Reversed hazard order (denoted by X1 ≤rhr X2) if r1(t) ≤ r2(t), for all t ≥ 0; or equivalently if

Φ2(t)/Φ1(t) is non-decreasing in t on (0,∞).
(iii) Mean inactivity time order (denoted by X1 ≤mit X2) if m1(t) ≥ m2(t), for all t > 0; or equivalently if∫ t

0
Φ2(x)dx∫ t

0
Φ1(x)dx

is non-decreasing in t > 0.

(iv) Usual stochastic order (denoted by X1 ≤st X2) if Φ̄1(t) ≤ Φ̄2(t) for all t ≥ 0.
(v) Strong mean inactivity time order (denoted by X1 ≤smit X2),∫ t

0
xΦ2(x)dx∫ t

0
xΦ1(x)dx

is non-decreasing in t > 0.

(vi) Increasing concave order (denoted by X1 ≤icv X2), if
∫ t

0
Φ2(x)dx ≤

∫ t

0
Φ1(x)dx for all t ≥ 0.

The following chain of implications explains the relations of stochastic orders in Definition 1.1.

X1 ≤lr X2 → X1 ≤rhr X2 → X1 ≤st X2

↓ ↘

X1 ≤smit X2 → X1 ≤mit X2 → X1 ≤icv X2.

The hazard rate (hr) function of Xi is given by hi(t) = (Φ̄i(t))−1φi(t) for i = 1, 2. The mean residual
lifetime (MRL) function for Xi with finite mean, is given by Mi(t) = (Φ̄i(t))−1

∫ ∞
t

Φi(x)dx, t > 0 for
i = 1, 2. The following definition presents stochastic orders that are related to the residual lifetime
Xit = (Xi − t|Xi > t) in place of the inactivity time Xi(t) = (t − Xi|Xi ≤ t) for i = 1, 2.

Definition 1.2. The random variable X1 is said to be smaller than X2 in the:

(i) Hazard rate order (written as X1 ≤hr X2) if h1(t) ≥ h2(t), for all t ≥ 0; or equivalently if
Φ̄2(t)/Φ̄1(t) is non-decreasing in t on (0,∞).

(ii) Mean residual lifetime order (written as X1 ≤mrl X2) if M1(t) ≤ M2(t), for all t > 0; or
equivalently if ∫ ∞

t
Φ̄2(x)dx∫ ∞

t
Φ̄1(x)dx

is non-decreasing in t > 0.

(iii) Increasing convex order (written as X1 ≤icx X2), if
∫ ∞

t
Φ̄2(x)dx ≤

∫ ∞
t

Φ̄1(x)dx for all t ≥ 0.

For more details and descriptions, one may refer to Shaked and Shanthikumar [40], Müller and
Stoyan [35], and Kayid and Ahmad [20]. The following chain of implications explains the relations of
stochastic orders in Definitions 1.1 and 1.2.

X1 ≤lr X2 → X1 ≤hr X2 → X1 ≤st X2

↓ ↓

X1 ≤mrl X2 → X1 ≤icx X2.

Two notions of total positivity and reverse regularity are defined below according to Karlin [19].
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Definition 1.3. δ(x, y) ≥ 0 is said to be totally positive of order 2 (abbreviated by TP2) in (x, y) ∈ χ×γ,
whenever ∣∣∣∣∣∣ δ(x1, y1) δ(x1, y2)

δ(x2, y1) δ(x2, y2)

∣∣∣∣∣∣ ≥ 0, (1.1)

for all x1 ≤ x2 ∈ χ and y1 ≤ y2 ∈ γ, in which χ and γ are two real subsets of R.

Remark 1.4. If the direction of the inequality given in (1.1) is reversed, then δ(x, y) is said to be
reverse regular of order 2 (abbreviated by RR2). By convention, a/0 = +∞, for any a > 0 and a/0 = 0
when a = 0. It is thus not hard to conclude that, β(x, y) is TP2 (RR2) if δ(x2, y)/δ(x1, y) is increasing
(decreasing) in y ∈ γ, for all x1 ≤ x2 ∈ χ, or equivalently if, δ(x, y2)/δ(x, y1) is increasing (decreasing)
in x ∈ χ, for each y1 ≤ y2 ∈ γ.

Throughout this paper, the phrase “increasing” means “monotone non-decreasing” and the term
“decreasing” stands for “monotone non-increasing”. The random variables under consideration are
assumed to have absolutely continuous distribution functions and we suppose further that the random
variables are non-negative in the sense that the left limit, at the point 0, of their cumulative distribution
functions is 0.

2. The dynamic mean inactivity time

To fix the idea, consider a random MIT m(t,V) at a time t, where V is a random factor of an
individual which is randomly taken from the population. The conditional cumulative distribution
function (cdf) of the lifetime T given V = v is

F(t|v) = P(T ≤ t|V = v) (2.1)

and the conditional of T given V = v is f (t|v). Therefore, the conditional MIT of T given V = v is

m(t, v) =

∫ t

0
F(x|v)dx

F(t|v)
, t ≥ 0, (2.2)

for all v for which F(t|v) > 0, where F(t|v) is the conditional cdf of T given that V = v as defined
earlier in (2.1). For the sake of completeness, a closely related measure known as the reversed failure
rate (rfr) function of T given V = v is given by

r(t|v) =
f (t|v)
F(t|v)

, t ≥ 0, (2.3)

which is connected to the MIT function as

r(t|v) =
1 − ∂

∂t m(t, v)
m(t, v)

, t ≥ 0. (2.4)

By inversion formula, when r(t|v) is known, the conditional cdf F(·|v) can be obtained via

F(t|v) = exp{−
∫ +∞

t
r(x|v)dx}, t ≥ 0. (2.5)
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Hence, in the sprit of (2.4) and (2.5) the conditional cdf F(·|v) is characterized as

F(t|v) = exp{−
∫ ∞

t

1 − ∂
∂xm(x, v)

m(x, v)

 dx}, t ≥ 0. (2.6)

The relation (2.6) between the cdf and the MIT function of a random variable could also be achieved
as in Finkelstein (2002) by considering the MIT function m(t, v) in place of the MIT of the original
distribution.

It is quite well-known that (see, e.g., Kayid and Izadkhah (2018)) m(t, v) is valid as the MIT of a
lifetime random variable for a given v > 0 and, therefore, (2.6) is a valid distribution function whenever

(i) m(t, v) > 0 for all t > 0 and for all v, and m(0, v) = 0.

(ii) ∂
∂t m(t, v) < 1, for all t ≥ 0.

(iii)
∫ +∞

t

(
1− ∂

∂τm(τ,v)
m(τ,v)

)
dτ < ∞, for all t > 0.

(iv)
∫ +∞

0

(
1− ∂

∂τm(τ,v)
m(τ,v)

)
dτ = ∞.

The association of t and v in m(t, v) in different possible ways may trigger the construction of
dynamic MIT-based models. For example, in the PMIT model one has m(t, v) = vm0(t) where m0(t)
is the baseline MIT function (see, e.g., Asadi and Berred [3], Rezaei [39], Mansourvar and Asadi [32]
and Hooti et al. [16]). In this context, a general semiparametric model is m(t, v) = ψ(m0(t), v) in
which ψ is an appropriate selected bivariate function under which m(t, v) is valid as an MIT function.
For instance, in contrast to the additive mean residual life model which is a quite valid model (see,
e.g., Kayid et al. [21]) the additive mean inactivity time model m(t, v) = m0(t) + v is not valid since
m(0, v) > 0 which contradicts latter part in the condition (i) above.

In the framework of some well-known applied semiparametric models in survival analysis each of
which is a source of association of t and v in m(t, v), the following examples illustrate the formation
and the exhibition of the MIT function. The baseline distribution F is chosen to be the (no-aging)
exponential distribution in each case.

Example 2.1. Consider the proportional odds model F̄(x|v) = vF̄(x)/(1 − v̄F̄(x)) with v̄ = 1 − v, v > 0
where the baseline is exponential distribution with mean µ. Thus, the implied cdf is F(x|v) = (ex/µ −

1)/(ex/µ − v̄). As stated in Marshall and Olkin [33] this is a two-parameter competitor of the Weibull
and the Gamma distributions. The mean inactivity time (2.2) for v , 1 has the closed form

m(t, v) =

(e
t
µ − v̄)

(
t + µv ln

(
1 − v̄

e
t
µ − v̄

))
v̄(e

t
µ − 1)

. (2.7)

However, for v = 1 we know that F̄(x|v) = F̄(x) = e−
x
µ . The limit of (2.7) as v approaches 1 is

m(t, 1−) =
t

1 − e−
t
µ

− µ (2.8)

which is exactly the MIT of the exponential distribution with mean µ. Figure 1 plots the graph of m(t, v)
for different values of tilt parameter v. If v , 1 the expression in (2.7) is valid and for v = 1 the mean
inactivity time is as given in (2.8).
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Figure 1. The MIT function in Example 2.1 for µ = 1 and v = 0.5, 1, 1.5, 2.

Example 2.2. Consider the proportional hazard rates model F̄(x|v) = F̄v(x), v > 0 where the baseline
is exponential distribution with mean µ. Therefore, the implied sf is F̄(x|v) = e−xv/µ. This is the sf of the
exponential distribution with mean µ/v. Hence, from (2.8) for all v > 0 we have

m(t, v) =
t

1 − e−
tv
µ

−
µ

v
. (2.9)

Figure 2 plots the graph of m(t, v) in (2.9) for different values of v.
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Figure 2. The MIT function in Example 2.2 for µ = 1 and v = 0.5, 1, 1.5, 2.

Example 2.3. In the proportional reversed hazard rates model it holds that F(x|v) = Fv(x), v > 0 in
which F̄(x) = e−x/µ which concludes that F(x|v) = (1 − e−x/µ)v. For all v > 0,

m(t, v) =

µ
∫ 1

e−t/µ

(1 − y)v

y
dy

(1 − e−t/µ)v . (2.10)
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In general, the mean inactivity time function does not have a closed form in this case. However, for
some rational values of v it may have a closed form. For instance when v = 1/2 we get

m(t, v) = m(t,
1
2

) =
t + µ ln(2 − e−

t
µ )√

1 − e−
t
µ

− 2µ
√

1 − e−
t
µ .

and v = 3/2 we obtain

m(t, v) = m(t,
3
2

) = −
2
3
µ −

2µ

1 − e−
t
µ

+

µ ln
(

1+

√
1−e−

t
µ

1−
√

1−e−
t
µ

)
(1 − e−

t
µ )

3
2

.

For v = 2, we have

m(t, v) =
t + 2µe−

t
µ −

µ

2 e−
2t
µ − 3

2µ

(1 − e−
t
µ )2

.

Figure 3 plots the graph of m(t, v) in (2.10) for v = 1/2, 1, 3/2, 2.
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Figure 3. The MIT function in Example 2.3 for µ = 1 and v = 0.5, 1, 1.5, 2.

Example 2.4. In the proportional mean residual life model we have

F̄(t|v) =

(∫ ∞
t

F̄(x)dx
)1+ 1

v

µ1+ 1
v F̄(t)

.

By taking F̄(x) = e−x/µ as the baseline distribution it reduces to F̄(x|v) = e−x/vµ, v > 0. For all v > 0,

m(t, v) =
t

1 − e−
t

vµ
− vµ. (2.11)

Figure 4 exhibits the graph of m(t, v) in (2.11) for values v = 1/2, 1, 3/2, 2.
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Figure 4. The MIT function in Example 2.4 for µ = 1 and v = 0.5, 1, 1.5, 2.

Remark 2.1. In the proportional mean inactivity time model it holds that (cf. Eq (3.2) in Hooti
et al. [16])

F(t|v) = F(t)


∫ t

0
F(x)dx∫ F−1(1)

0
F(x)dx


1
v−1

, 0 < v < 1,

where F−1(p) = sup{x|F(x) ≤ p}. However, as for many standard distributions with finite mean µ

including the exponential distribution,
∫ F−1(1)

0
F(x)dx = +∞ thus the proportional mean inactivity time

model in such cases does not induce a proper distribution function (see, e.g., Hooti et al. [16]).
We will consider mixture of distribution (2.6) with respect to v which is a realization of V where we

assume that T and V , denote the resultant (overall population) and the random factor (of individuals)
in the population which have cdf’s F and G, respectively. The associated density functions will also
be denoted by f and g, respectively. Having the random factor to be realized as V = v, the conditional
MIT function of the random variable T is given by

m(t|v) = m(t, v), t ≥ 0, (2.12)

where v is the frailty associated with an individual. In (2.12), m(t | v) denotes the MIT of the conditional
random variable X | V = v which can be defined as

m(t|v) = E(t − T |T ≤ t,V = v).

The frailty V is basically considered to be unobservable and hence the individual level model in (2.6)
is unobservable. The random variable V is the mixing random variable. It is, therefore, reasonable to
consider the population model below in which the mean inactivity time is considered to be that of a
randomly drawn individual:

F∗(t) = E[F(t|V)] =

∫ +∞

−∞

F(t|v)dG(v), (2.13)
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where F(t|v) is as given in (2.6). The unconditional pdf of T is also given by

f ∗(t) = E[ f (t|V)] =

∫ ∞

−∞

f (t|v)dG(v). (2.14)

The functions (2.13) and (2.14) are known as the population-level distribution function and the
population-level density function, respectively.

According to Li et al. [30], the reversed hazard rate of the general mixture model (2.13) is given by

r∗(t) =

∫ +∞

−∞
f (t|v)g(v)dv∫ +∞

−∞
F(t|v)g(v)dv

=

∫ +∞

−∞

r(t|v)g(v|T ≤ t),

where g(v|T ≤ t) is the conditional pdf of V given that T ≤ t which is given by

g(v|T ≤ t) =
F(t|v)g(v)∫ +∞

−∞
F(t|v)g(v)dv

and

G(v|T ≤ t) = P(V ≤ v|T ≤ t) =

∫ v

−∞
F(t|v)g(v)dv∫ +∞

−∞
F(t|v)g(v)dv

is the corresponding distribution function. It is remarkable that G(v|T ≤ t) converges to G(v) as t → ∞.
The conclusion is that r∗(t) = E(r(t|V)|T ≤ t).

The population level mean inactivity time function is given by

m∗(t) =

∫ t

0

F∗(x)
F∗(t)

dx, t > 0. (2.15)

The following result shows that the mean inactivity time at time t in the dynamic population is the
average of the individual mean inactivity time among the lives left before time t.

Theorem 2.5. The population level mean inactivity time function is the expected value of m(t | V) with
respect to the conditional density of the frailty random variable V given T ≤ t. That is m∗(t) = E[m(t |
V) | T ≤ t].

Proof. Note that the conditional pdf of V given T ≤ t is given by

g(v|T ≤ t) =
∂

∂v
P(V ≤ v,T ≤ t)

P(T ≤ t)

=
∂

∂v

∫ v

0
P(T ≤ t|V = u)dG(u)

F(t)

=
∂

∂v

∫ v

0
F(t|u)g(u) du

F(t)

=
F(t|u)g(u)

F(t)
, t > 0, v > 0. (2.16)
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In view of (2.16), by using the Fubini Theorem it follows from (2.15) that

m∗(t) =

∫ t

0

∫ ∞
0

F(x|v)h(v) dvdx

F(t)

=

∫ ∞
0

∫ t

0
F(x|v)g(v) dxdv

F(t)

=

∫ ∞

0

∫ t

0
F(x|v)dx

F(t|v)
F(t|v)g(v)

F(t)
dv

=

∫ ∞

0
m(t|v)g(v|T ≤ t) dv = E[m(t|V)|T ≤ t]. (2.17)

�

3. Closure properties with respect to dependencies

This section includes some closure properties of the model with respect to some dependence
structures. According to Nelsen [38], the following notions of dependence are proposed.

Definition 3.1. (i) The random variables X and Y have positive [negative] likelihood ratio
dependence (PLRD [NLRD]) structure if their joint density f (x, y) is TP2 (RR2) in (x, y).

(ii) The random variable X is stochastically increasing [decreasing] in Y (SI(X|Y) [SD(X|Y)]) if
F(x | y) is non-increasing [non-decreasing] in y, for all x.

(iii) The random variables X and Y are left corner set decreasing [increasing] (LCSD [LCSI]) if
P(X ≤ x,Y ≤ y) is TP2 (RR2) in (x, y).

(iv) The random variable X is left tail decreasing [increasing] in Y (LTD(X|Y) [LTI(X|Y)]) if P(X ≤
x | Y ≤ y) is decreasing [increasing] in y, for all x.

It is well-known in the literature that

PLRD(X,Y)[NLRD(X,Y)] ⇒ LCSD(X,Y)[LCSI(X,Y)] ⇒ LTD(X | Y)[LTI(X | Y)]

and that
PLRD(X,Y)[NLRD(X,Y)] ⇒ SI(X | Y)[SD(X | Y)]

The dependence structure between the unconditional random variable T with cdf (2.13) and the
frailty variable V with cdf G may be explainable in terms of the deterministic notions of dependence
reported in Definition 3.1 and sufficient conditions on the shape of the individual-indexed MIT function
m(t|v) can be obtainable. We will assume, for simplicity, that m(t|v) is twice differentiable with respect
to t and differentiable with respect to v.

Definition 3.2. (a) Let (i) m(t|v) and ∂2m(t|v)/∂t2 be decreasing in v, for all t ≥ 0 such that ∂m(t|v)/∂t
is decreasing (resp. increasing) in v, for all t ≥ 0 and let (ii) m(t|v) be RR2 in (t, v) and let m(t|v)
be convex (resp. concave) in t ≥ 0, for all v. Then T and V are PLRD.

(b) Let (i) m(t|v) and ∂2m(t|v)/∂t2 be increasing in v, for all t ≥ 0 such that ∂m(t|v)/∂t is increasing
(resp. decreasing) in v, for all t ≥ 0 and let (ii) m(t|v) be TP2 in (t, v) and let m(t|v) be convex
(resp. concave) in t ≥ 0, for all v. Then T and V are NLRD.
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Proof. By Definition 4(iii) in Hooti et al. [16] and from Definition 3.1(i) T and V are PLRD if, and
only if, ∂2 ln( f (t|v))/∂v∂t ≥ 0, ∀ t ≥ 0,∀ v. Denote m′(t, v) = ∂m(t|v)/∂t and m′′(t, v) = ∂2m(t|v)/∂t2.
From (2.6), we get

f (t|v) =
1 − m′(t, v)

m(t, v)
exp

(
−

∫ ∞

t

1 − m′(x, v)
m(x, v)

dx
)

from which one has

∂

∂t
ln( f (t|v)) =

1 − m′(t, v)
m(t, v)

−
m′(t, v)
m(t, v)

−
m′′(t, v)

1 − m′(t, v)

=
1 − 2m′(t, v)

m(t, v)
−

m′′(t, v)
1 − m′(t, v)

=
1

m(t, v)
− 2

∂

∂t
ln(m(t, v)) −

m′′(t, v)
1 − m′(t, v)

.

Therefore,

∂2

∂v∂t
ln( f (t|v)) =

∂

∂v
1

m(t, v)
− 2

∂2

∂v∂t
ln(m(t, v))

−

∂
∂vm′′(t, v)

1 − m′(t, v)
−

m′′(t, v) ∂
∂vm′(t, v)

(1 − m′(t, v))2 .

To prove assertion (a), from assumptions we have for all t ≥ 0 and for all v, (∂/∂v)(1/m(t, v)) ≥ 0,
∂2 ln(m(t, v))/∂v∂t ≤ 0, (∂/∂v)m′′(t, v) ≤ 0, (∂/∂v)m′(t, v) ≤ (resp. ≥)0 and m′′(t, v) ≥ (resp. ≤)0 thus
using the last identity above one gets (∂2)/(∂v∂t) ln( f (t|v)) ≥ 0, for all t ≥ 0 and for all v, i.e., T and
V are PLRD. To present a proof for assertion (b), we similarly conclude by assumptions that for all
t ≥ 0 and for all v, (∂/∂v)(1/m(t, v)) ≤ 0, ∂2 ln(m(t, v))/∂v∂t ≥ 0, (∂/∂v)m′′(t, v) ≥ 0, (∂/∂v)m′(t, v) ≥
(resp. ≤)0 and m′′(t, v) ≥ (resp. ≤)0 thus it follows that (∂2)/(∂v∂t) ln( f (t|v)) ≤ 0, for all t ≥ 0 and for
all v, i.e., T and V are NLRD. �

In the following theorem sufficient conditions for weaker dependencies are presented.

Definition 3.3. Let m(t|v) be decreasing (increasing) in v, for all t ≥ 0 so that m(t|v) be RR2 (TP2) in
(t, v). Then

(i) T is stochastically increasing (decreasing) in V.
(ii) T and V are LCSD (LCSI) and also LTD (LTI).

Proof. By virtue of (2.6), one writes

F(t|v) = P(T ≤ t|V = v) = exp
(
−

∫ ∞

t

(
1

m(x, v)
−
∂

∂x
ln(m(x, v))

)
dx

)
for the cdf of T given V = v (individual-level present frailty) and denotes the cdf of T given V ≤ v
(individual-level past frailty) by

F∗(t|v) = P(T ≤ t|V ≤ v) =

∫ v

−∞

F(t|y)g(y)
G(v)

dy
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To have S I(T |V) (S D(T |V)) a necessary and sufficient condition is that

∂ ln(F(t|v))/∂v ≥ (≤)0

for all t ≥ 0 and for all v and that T and V are LCSD (LCSI) if, and only if, ∂2 ln(F∗(t|v))/∂t∂v ≥ (≤)0
for all t ≥ 0 and for all v. To indicate the first dependency statement, we write

∂

∂v
ln(F(t|v)) =

∫ +∞

t

(
∂2

∂v∂x
ln(m(x, v)) −

∂

∂v
1

m(x, v)

)
dx

which is non-negative (non-positive) by assumption and hence the proof of (i) is completed. To have
the second dependency property we see that

∂2 ln(F∗(t|v))/∂t∂v ≥ (≤)0

holds whenever
f (t|v)F(t|y) ≥ (≤) f (t|y)F(t|v) f or all y ≤ v,

which holds if and only if r(t|v) ≥ (≤)r(t|y) for all y ≤ v. It is known from (2.4) that if m(t|v) be
decreasing (increasing) in v, for all t ≥ 0 so that m(t|v) be RR2 (TP2) in (t, v) then r(t|v) is increasing
(decreasing) in v. Hence the results immediately follow. �

The following lemma which is due to Foschi and Spizzichino [11] makes Theorem 3.1 applicable to
conclude some stochastic comparisons of individual-level (conditional) random variables in the mean
inactivity time frailty model. This may reveal further aspects of association of T and V in the model.

Lemma 3.4. (i) The random variables T and V have positive [negative] likelihood ratio dependence
(PLRD [NLRD]) structure iff T |V = v1 ≤lr (≥lr)T |V = v2, for all v1 ≤ v2.

(ii) The random variable T is stochastically increasing [decreasing] in X (SI(T |V) [SD(T |V)]) iff
T |V = v1 ≤st (≥st)T |V = v2, for all v1 ≤ v2.

(iii) The random variables T and V are left corner set decreasing [increasing] (LCSD [LCSI]) iff
T |V ≤ v1 ≤rhr (≥rhr)T |V ≤ v2, for all v1 ≤ v2.

(iv). The random variable T is left tail decreasing [increasing] in V (LTD(T |V) [LTI(T |V)]) iff
T |V ≤ v1 ≤st (≥st)T |V ≤ v2, for all v1 ≤ v2.

Lemma 3.4 is useful to interpret the results of Theorem 3.1 and Theorem 3.2 which has been
originally stated for dependencies in terms of stochastic orders between special conditional random
variables. The interpretation will be more detailed when the model is applied to a context where T
and V have physical senses.

4. Weighted proportional mean inactivity time

The dynamic MIT model proposed in Section 2 stands as a general frailty model with the bivariate
MIT function m(t, v) as the underlying unique characteristic of the distribution. The feature of
association between t (time) and v (frailty) in m(t, v) has an important role in the model to conclude
further implications. Thus, a search for proper choices of this function is worth as the reader of the
paper may seek it also. As argued previously, any function (t, v) 7→ m(t, v) having an arbitrary shape
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cannot be an MIT function which is in turn a difficulty in theoretical case. The multiplicative
association m(t, v) = m1(v)m2(t) (in which m1 and m2 are two proper non-negative functions) is a
typical instance of the general dynamic MIT model which proposes a weighted model as a particular
case (which is also a generalization of the commonly used PMIT model in literature) by which a
number of regular properties of the MIT function such as the T P2 property and the RR2 property is
induced being important for developing ordering properties in the model as will be seen in the sequel.

To develop the properties of proportional models in reliability and survival analysis some weighted
versions of models have been considered in the literature recently. For example, Jarrahiferiz et al. [18]
have proposed the weighted proportional hazards model and Kayid et al. [24] have studied the weighted
proportional reversed hazard rates model. The definition of a weighted version of the proportional
mean inactivity time model is therefore a natural extension but the model is still a partial model. It
is ordinarily pointed out, as illustrated also in Section 2, that there is a baseline mean inactivity time
m0(t), say, on which a model about a response variable is constructed. Let us assume that γ(·) is a
non-negative function which is continuous so that

m(t|v) = vγ(t)m0(t). (4.1)

The association of t and v in the individual-level mean inactivity time function is multiplicative and
γ plays the role of capturing further variations due to time in the PMIT model where m(t|v) = vm0(t)
which has already been defined and analyzed in the literature (see, e.g., Asadi and Berred [3] and
Rezaei [39]). Unlike the PMIT model in the WPMIT model the resulting cdf does not have a closed
expression. Based on (2.6), the conditional cdf of T given V = v is

F(t|v) =
γ(∞)m0(∞)
γ(t)m0(t)

e−
1
v

∫ ∞
t

dx
γ(x)m0(x) =

U′(t)
U′(∞)

exp
(
−

U(t)
v

)
, (4.2)

where U(t) =
∫ ∞

t
dx/(γ(x)m0(x)) and U′ denotes the derivative of U. The associated pdf is also

obtained as

f (t|v) =
∂

∂t

(
U′(t)

U′(∞)
e−

U(t)
v

)
=

U′′(t)
U′(∞)

e−
U(t)

v −
(U′(t))2

vU′(∞)
e−

U(t)
v

=
1

U′(∞)

(
U′′(t) −

(U′(t))2

v

)
e−

U(t)
v , (4.3)

in which U′′ is the second derivative of U. The expression in the right hand side of (4.3) has to be
positive. It is known that

U(t) = v
∫ ∞

t

dx
m(x|v)

, U′(t) = −
v

m(t|v)
, U′′(t) = −v

∂

∂t
1

m(t|v)
.

Thus, we can write

U′′(t) −
(U′(t))2

v
= −v

∂

∂t
1

m(t|v)
−

v
m2(t|v)
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= −v
(
∂

∂t
1

m(t|v)
+

1
m2(t|v)

)
= −

v
m(t|v)

(
∂

∂t
log

(
1

m(t|v)

)
−

m′(t|v)
m(t|v)

)
= −

v
m2(t|v)

(1 − m′(t|v)) ≤ 0, for all t ≥ 0,

where the last inequality holds because m′(t|v) < 1 for all t ≥ 0. Now, since U′(∞) < 0 hence

1
U′(∞)

(
U′′(t) −

(U′(t))2

v

)
≥ 0, for all t ≥ 0.

The model given in (4.1) is a model with multiplicative effects of time and frailty as m(t|v) = a(t)b(v)
in which a(·) and b(·) are non-negative functions product of them fulfilling the properties of a mean
inactivity time function as enumerated in Section 2. In the model (4.1) we have a(t) = γ(t)m0(t) and
b(v) = v. The model is, hereafter, called the weighted proportional mean inactivity time (WPMIT)
model.

Conditions under which (4.1), for a given v > 0, is valid as an MIT function so that (4.2) stands as
a valid distribution function are derived below:

(i) γ(t) > 0, for all t > 0.

(ii) ∂
∂t (γ(t)m0(t)) < 1/v, for all t ≥ 0.

(iii) U′(∞)
U′(t) eU(t)/v < ∞, for all t > 0.

(iv) U′(∞)
U′(0+)e

U(0+)/v = ∞,

where U(0+) and U′(0+) denote the right limit of U and U′, respectively, at the point 0.
The following example illustrates an appropriate situation where the WPMIT model stands valid.

Let F0 be the baseline distribution function in the model with MIT function m0. Note that U(∞) and
U′(∞) in all previous statements is replaced with U(uT0) and U′(uT0) in which uT0 = sup{t ≥ 0|F0(t) <
1} which applies for both finite and infinite supports for non-negative random variables.

Example 4.1. Let T0 be an exponential random variable with mean one and with MIT function m0

which is given by (see e.g., (2.8))

m0(t) =
t

1 − e−t − 1.

Suppose that γ(t) = (2t − 1 + e−2t)/(4(1 + e−t)(t − 1 + e−t)). Then if v = 2, we get

m(t|v) = m(t|2) =
t

1 − e−2t −
1
2

which is the MIT function of an exponential random variable with mean µ = 1/2. We can see that (i)
γ(t) > 0 for all t > 0. We know that for any a > 0, e−at > 1 − at for all t ≥ 0; thus for all t ≥ 0 we
have that (t − 1 + e−t) > 0 and that (2t − 1 + e−2t) > 0 which concludes that γ(·) is a positive function
on (0,+∞). We also see that the condition (ii) holds true because

∂

∂t
(γ(t)m0(t)) =

1 − e−2t − 2te−2t

2(1 − e−2t)2 <
1
2
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is equivalent to 1− e−2t < 2t for all t > 0 as stated in case (i). For condition (iii) after some calculation
we get

U′(∞)
U′(t)

eU(t)/v =
1

1 − e−2t

which is finite for any t > 0. The condition (iv) also easily follows since

U′(∞)
U′(0+)

eU(0+)/v = lim
t→0+

U′(∞)
U′(t)

eU(t)/v = lim
t→0+

1
1 − e−2t = ∞.

The heterogeneity is usually left to be unexplained in many problems in nature. The amount and
even the distribution function of the random frailty V cannot be determined accurately. The mixture of
the family of the proportional mean inactivity time has been initially considered by Badı́a and Cha [5]
and they developed some bending properties of the mean inactivity time (see, e.g., Theorem 4(d) and
Example 6 in Badı́a and Cha [5]). The importance of studying the influence of the heterogeneity caused
solely by the frailty on the distribution of the response variable T in the WPMIT model. To evaluate
the effect of variation of frailty variable one considers Vi for i = 1, 2 as the frailty associated with the
ith population under consideration. We shall assume that Vi has an absolutely continuous cdf Gi with
corresponding density function gi. The corresponding response variable is denoted by Ti. In the spirit
of (4.2), the unconditional cdf of Ti which represents a typical mixture model is as follows:

F∗i (t) =

∫ ∞

0

U′(t)
U′(∞)

exp
(
−

U(t)
v

)
dG(v) =

U′(t)
U′(∞)

E(exp
(
−

U(t)
Vi

)
). (4.4)

The dependence structure of T and V inspires aspects of stochastic relation among the random
variables T and V . In accordance with Theorems 3.1 and 3.2 the dependence structure in MIT frailty
models depends on the shape (behaviour) of the mean inactivity time m(t|v) and its partial derivatives.
In the WPMIT model, to realize the dependency between the frailty V and the random variable T which
has cdf

F(t) =
U′(t)

U′(∞)
E

[
exp

(
−

U(t)
V

)]
(4.5)

one can apply Theorem 3.1(b). It is known that m(t|v) = vγ(t)m0(t) is TP2 and also RR2 in (t, v) and that
m(t|v) is increasing in v for all t ≥ 0. If γ(t)m0(t) is increasing and convex in t ≥ 0 then by Theorem
3.1(b) T and V are NLRD and also SD, LCSI and LTI. In addition, according to the parenthetical
part of Theorem 3.2, which can be particularly applied in the cases where, in contrast to the previous
case, γ(t)m0(t) is not increasing and convex in t ≥ 0, T and V are LCSI and also LTI. The population
distribution function (4.5) can be reduced to a specific individual in the population at the fixed frailty
level V = v0 whenever G(v) = 0 for all v < v0 and G(v) = 1 for all v ≥ v0, i.e. if P(V = v0) = 1 which
means that V is degenerate in v0 > 0.

To present further aspects of the stochastic relation of V and T , we can study how the stochastic
orders between V1 and V2 are translated to the (same or different) stochastic orders among T1 and
T2. From the foregoing discussions, it is deduced that since V has a negative effect on the response
variable T in the WPMIT model, thus it is expected that stochastic variation of V in one direction
induces stochastic variation of T in another direction. In general, there is no compelling reason, other
than mathematical tractability, to choose a the distribution of V . Thus, it is particularly important to
investigate how the probability distribution of the overall random variable responds to variations in
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the probability distribution of the frailty. Stochastic comparison that translates the order between two
frailty random variables into that between the corresponding overall variables helps in understanding
the effect of mis-specification of the frailty distribution.

Recently, Xu and Li [42] proved that the (likelihood ratio) lr order, the hr order and rhr order
between two frailty variables imply the lr order, the rhr order, and the hr order between the
corresponding population variables, respectively. Gupta and Kirmani [14] conducted stochastic
comparisons of frailty models arising from different choices of the distribution of frailty. They
established that an increase in the frailty random variable in terms of the lr order tends to decrease the
population random variable in the hr order.

Here, we demonstrate that the MIT order and the increasing concave (icv) order between two frailty
variables imply the mrl order and the usual stochastic order of the corresponding population variables,
respectively.

The main result about stochastic order relations in the WPMIT model is presented here. We assume
that Vi and Ti for i = 1, 2 are non-negative random variables with absolutely continuous distribution
functions.
Theorem 4.1. Let m(t|v) = vγ(t)m0(t) such that U(t) =

∫ ∞
t

(1/γ(x)m0(x))dx is twice differentiable in
t. Suppose the conditions given in Remark 5 of Badı́a and Cha [5] for interchanging derivatives and
integrals hold.

(i) If m(t|v) is increasing and convex in t > 0 for all v > 0, then V1 ≤lr V2 implies T1 ≥lr T2.

(ii) V1 ≤st V2 implies T1 ≥st T2.

(iii) V1 ≤hr V2 implies T1 ≥rhr T2.

(iv) Let F(t|v) be convex in v > 0 for all t ≥ 0. Then V1 ≤mrl V2 implies T1 ≥smit T2 and hence
T1 ≥mit T2.

(v) Let F(t|v) be convex in v > 0 for all t ≥ 0. Then V1 ≤icx V2 implies T1 ≥icv T2.

Proof. (i) By considering (4.3), it suffices to prove that

f ∗i (t) =

∫ ∞

0
f (t|v)dGi(v) =

∫ ∞

0

1
U′(∞)

(
U′′(t) −

(U′(t))2

v

)
e−

U(t)
v gi(v)dv

is RR2 in (i, t) when i = 1, 2 and t ≥ 0. Since V1 ≤lr V2 thus gi(v) is TP2 in (i, v) when i = 1, 2 and
v > 0. If f (t|v) is RR2 in (t, v) as t ≥ 0 and v > 0 thus by general composition theorem in Karlin [19]
we deduce that f ∗i (t) is RR2 as a function of i = 1, 2 and t > 0. We intend to prove that f (t|v) is RR2 in
(t, v) within the domain. Let us observe that

∂2

∂t∂v
log(e−

U(t)
v ) =

U′(t)
v2 < 0, for all t > 0

which by appealing to Definition 4(iii) in Hooti et al. [16] implies that the function e−U(t)/v is RR2 in
(t, v) when t ≥ 0 and v > 0. Denoting by

sign
= the equality in sign, we have

d
dv

U′′(t2) − (U′(t2))2/v
U′′(t1) − (U′(t1))2/v

sign
= U′′(t1)(U′(t2))2 − U′′(t2)(U′(t1))2

which is non-positive for all 0 ≤ t1 ≤ t2 when U(t) is convex in t ≥ 0, if, and only if, U′′(t)/(U′(t))2

is increasing in t ≥ 0. We have U′(t) = −v/m(t|v) and also that U′′(t)/(U′(t))2 = v−1m′(t|v). Thus the
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required conditions hold from assumption. Therefore, we proved that (U′(∞))−1(U′′(t) − v−1(U′(t))2)
is RR2 in (t, v) when t ≥ 0 and v > 0. It is known that the product of two RR2 functions is itself another
RR2 function and develop that f (t|v) which is the product of two RR2 functions (U′(∞))−1(U′′(t) −
v−1(U′(t))2) and e−U(t)/v is RR2 in (t, v) ∈ [0,∞) × (0,∞).

(ii) It is clear that m(t|v) = vγ(t)m0(t) is increasing in v, for all t ≥ 0 and m(t|v) is TP2 in (t, v) and
thus according to Theorem 3.2(i) S D(T |V) holds by which

F(t|v1) = P(T ≤ t|V = v1) ≤ P(T ≤ t|V = v2) = F(t|v2), for all v1 ≤ v2.

We showed that F(t|v) is increasing in v > 0 for all t ≥ 0. The assumption V1 ≤st V2 yields
∫ ∞

a
d(G2(v)−

G1(v)) ≥ 0 for all a ≥ 0. Thus, by Lemma 7.1(a) in Barlow and Proschan [6],
∫ ∞
−∞

F(t|v)d(G2(v) −
G1(v)) ≥ 0 for all t ≥ 0, i.e. F∗2(t) ≥ F∗1(t), for all t ≥ 0 and hence the result follows.

(iii) The proof obtains if F∗i (t) is TP2 in (i, t) when i = 1, 2 and t ≥ 0. The partial derivatives of
F(t|v) with respect to t and also v exist and they are continuous. We have

∂

∂v
F(t|v) =

∂

∂v

(
U′(t)

U′(∞)
exp

(
−

U(t)
v

))
=

U′(t)U(t)
U′(∞)v2 e−

U(t)
v ,

which is non-negative from Theorem 3.2(i). Integration by parts provides that

F∗i (t) =

∫ ∞

0
F(t|v)gi(v) dv

= l − u +

∫ ∞

0

U′(t)U(t)
U′(∞)v2 e−

U(t)
v Ḡi(v)dv

=

∫ ∞

0

U′(t)U(t)
U′(∞)v2 e−

U(t)
v Gi(v)dv,

where

l = lim
v→0

F(t|v)Ḡi(v) = lim
v→0

U′(t)
U′(∞)

exp
(
−

U(t)
v

)
Ḡi(v) = 0

and since Ḡi(+∞) = 0, i = 1, 2 thus

u = lim
v→∞

F(t|v)Ḡi(v) = lim
v→∞

U′(t)
U′(∞)

exp
(
−

U(t)
v

)
Ḡi(v) = 0.

It is evidently seen that (U′(t)U(t)/U′(∞)v2)e−U(t)/v is RR2 in (t, v) when t ≥ 0 and v > 0. It is also
verified that V1 ≤hr V2 if, and only if, Ḡi(v) is TP2 in (i, v) when i = 1, 2 and v > 0 which holds by
assumption. The result is proved by applying the general composition theorem of Karlin [19].

(iv) We need to show that
∫ t

0
xF∗i (x) dx is TP2 in (i, t) when i = 1, 2 and t ≥ 0. The partial derivative

of Λ(t, v) =
∫ t

0
xF(x|v) dx with respect to v is

∂

∂v
Λ(t, v) =

∫ t

0
x
∂

∂v
F(x|v) dx =

∫ t

0

xU′(x)U(x)
U′(∞)v2 e−

U(x)
v dx

which is non-negative since for all x ≥ 0 and v > 0,

∂

∂v
F(x|v) =

U′(x)U(x)
U′(∞)v2 e−

U(x)
v ≥ 0.
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We also can get
∂2

∂v2 Λ(t, v) =

∫ t

0
x
∂2

∂v2 F(x|v) dx,

where
∂2

∂v2 F(x|v) =
U(x)U′(x)e−

U(x)
v

v3U′(∞)

(
U(x)

v
− 2

)
.

We can see by using integration by parts that∫ t

0
xF∗i (x) dx =

∫ ∞

0

(∫ t

0
xF(x|v)dx

)
gi(v) dv

= l − u +

∫ ∞

0
Ḡi(v)

(
∂

∂v
Λ(t, v)

)
dv

=

∫ ∞

0
Ḡi(v)

(
∂

∂v
Λ(t, v)

)
dv,

in which, according to proof of (iii),

l = lim
v→0

Ḡi(v)Λ(t, v) =

∫ t

0
lim
v→0

U′(x)
U′(∞)

exp
(
−

U(x)
v

)
Ḡi(v) dx = 0

and also

u = lim
v→∞

Ḡi(v)Λ(t, v) =

∫ t

0
lim
v→∞

U′(x)
U′(∞)

exp
(
−

U(x)
v

)
Ḡi(v) dx = 0.

Once again, integration by parts yields∫ ∞

0
Ḡi(v)

(
∂

∂v
Λ(t, v)

)
dv = l∗ − u∗ +

∫ ∞

0

(∫ v

0
Ḡi(y)dy

) (
∂2

∂v2 Λ(t, v)
)

dv

=

∫ ∞

0

(∫ v

0
Ḡi(y)dy

) (
∂2

∂v2 Λ(t, v)
)

dv,

where

l∗ = lim
v→0

(∫ ∞

v
Ḡi(y)dy

)
∂

∂v
Λ(t, v)

=

∫ t

0
lim
v→0

xU′(x)U(x)
v2U′(∞)

exp
(
−

U(x)
v

) (∫ ∞

v
Ḡi(y)dy

)
dx = 0

and further, since E(Vi) < ∞ provides that
∫ ∞

v
Ḡi(y)dy→ 0 as v→ ∞, thus

u∗ = lim
v→∞

(∫ ∞

v
Ḡi(y)dy

)
∂

∂v
Λ(t, v)

=

∫ t

0
lim
v→∞

xU′(x)U(x)
v2U′(∞)

exp
(
−

U(x)
v

) (∫ ∞

v
Ḡi(y)dy

)
dx = 0.
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From assumption,
∫ ∞

v
Ḡi(y)dy is TP2 in (i, v) when i = 1, 2 and v > 0. It can also be checked that

∂2Λ(t, v)/∂v2 is RR2 in (t, v) when t ≥ 0 and v > 0. Thus by the general composition formula of
Karlin [19] the result follows.

(v) It suffices to prove that
∫ t

0
F∗2(x)dx ≥

∫ t

0
F∗1(x)dx for all t ≥ 0. As in the proof of assertion (iv)

we have ∫ t

0
F∗i (x)dx =

∫ ∞

0

(
∂

∂v
Θ(t, v)

)
Ḡi(v)dv,

where Θ(t, v) =
∫ t

0
F(x|v)dx. From the assumption it holds that V1 ≤icx V2 which is equivalent to∫ ∞

a
Ḡ2(v)dv ≥

∫ ∞

a
Ḡ2(v)dv, for all a ≥ 0.

Since F(x|v) is convex in v > 0 for all x ≥ 0 thus (∂/∂v)Θ(t, v) is a non-decreasing function in v, for all
t ≥ 0, thus by Lemma 7.1(a) in Barlow and Proschan [6], for all t ≥ 0 we obtain∫ t

0
F∗2(x)dx −

∫ t

0
F∗1(x)dx =

∫ ∞

0

(
∂

∂v
Θ(t, v)

)
d
(∫ ∞

v
Ḡ1(y)dy −

∫ ∞

v
Ḡ2(y)dy

)
≥ 0.

The proof of the theorem is complete. �

5. Applications

In this section, we apply the WPMIT model to a real data set and also carry out a simulation study
to demonstrate the proficiency of the model. From a study argued by Siddiqui and Gehan [44] the
survival times T1,T2, . . . ,T43 for patients suffering from chronic granulocytic leukemia, with t = 0
taken as the date of diagnosis, are available as follows:

7 47 58 74 177 232 273 285 317 429 440
445 455 468 495 497 532 571 579 581 650 702
715 779 881 900 930 968 1077 1109 1314 1334 1367

1534 1712 1784 1877 1886 2045 2056 2260 2429 2509.

Let us consider T0 as a random variable with Rescaled Power distribution with CDF F0(t) =
(

t
η

)θ
for

0 < t < η in which θ > 0 and also η > 0 and we denote it by T0 ∼ RP(θ, η). The MIT of T0 is
obtained as m0(t) = t

θ+1 for 0 ≤ t ≤ η. For values of t < 0 and values of t > η we take, conventionally,
m0(t) = 0. To assign the baseline distribution, we take θ = 2 and η = 2700 and further, to build the
MIT of response variable we assume that γ(t) = I[t ≤ η∗] where I[A] is the indicator of the set A and
η∗ < 2700. Then the random variable T with MIT m(t|v, η∗) = t

θ′+1 I[t ≤ η∗], in which θ′ = 2701
v − 1 with

v < 2701. Hence, Ti ∼ RP
(

2701
v − 1, η∗

)
for i = 1, 2, . . . , 43. The formation of the baseline distribution

is, therefore, preserved under the WPMIT model. The maximum likelihood estimation (MLE) of (v, η∗)
is derived as:

η̂∗ = T(43) = max{T1,T2, . . . ,T43} = 2509

and
v̂ =

2701
1 + ln(T(43)) − 1

43

∑43
i=1 ln(Ti)

= 1112.315.
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Now, we perform a simulation study on the WPMIT model. To build a a regression model on the
basis of the WPMIT model, suppose that the baseline distribution is exponential with mean one
which, as discussed in Example 1, has MIT m0(t) = t

1−e−t − 1. Let us choose γ(t) = (k(t))θ where θ > 0
and k(t) = 2t−1+e−2t

(1+e−t)(t−1+e−t) . We generate a sample of size n = 200 from the baseline distribution using the
function runif in R. We first generate U1,U2, . . . ,U200 from U(0, 1). Then,
Ti = − ln(Ui), i = 1, 2, . . . , 200 follows the baseline distribution. The associated MIT function at Ti is
m0(Ti) = Ti

1−e−Ti
− 1, i = 1, 2, . . . , 200. If we denote by T the random variable with MIT function

m(t|v, θ) = vγ(t)m0(t) then at time point Ti it is given by m(Ti|v, θ) = v (k(Ti))θ m0(Ti), i = 1, 2, . . . , 200.
To examine the accuracy of the model, we take v = 1

2 and θ = 1 and also set Mi = ln(m0(Ti)) and
S i = ln(m(Ti|v, θ)). Then the linear model Wi = ln(v) + θ ln (k(Ti)) + Mi + εi in which ε1, ε2, . . . , ε200

are errors and constituting a random sample from normal distribution with mean 0 and variance 0.002.
The model Zi = Wi − Mi = ln(v) + θ ln (k(Ti)) + εi, i = 1, 2, . . . , 200 is known as a simple linear
regression model with unknown parameters v and θ. By applying the method of least squares,
estimations for v and θ are acquired as

θ̂ =

∑200
i=1 Ziln (k(Ti)) −

∑200
i=1 Zi

∑200
i=1 ln(k(Ti))

200∑200
i=1 ln2((k(Ti))) −

(∑200
i=1 ln((k(Ti))))2

200

and

ln(v̂) =

∑200
i=1 Zi

200
−
θ̂
∑200

i=1 ln(k(Ti))
200

.

By using the simulated values T1,T2, . . . ,T200, the amounts of estimations are v̂ = 0.4990268 and
θ̂ = 1.002384.

6. Conclusions

The results on the PMIT model in the literature are limiting as further refined stochastic aspects of
the model have been lacking. In this paper, a general MIT frailty model in which the frailty variable V
(in the population level) with possible realization v (in the individual level) takes a new dimension of
the model into consideration contributed to have advanced perspectives on the model. The association
between the lifetime variable in the population and the random frailty which can be quantified
partially through dependence concepts PLRD (NLRD), SI(SD), LCSD (LCSI) and LTD (LTI) was
characterized which further concluded that, in most cases, the dependence structure induced is
negative and the direction of the stochastic variation of frailty variable has to be in opposite of the
direction of the stochastic variation of the lifetime variable. Therefore, a negative influence of frailty
verbile on the magnitude of the population lifetime is appreciated by the model. This property was,
later on, established and examined in a particular model where the effect of time and frailty on the
MIT is considered to be multiplicative, using the theory of stochastic orderings including the lr order,
the usual stochastic order, the rhr order, the (strong) MIT order and the icv order. The new
multiplicative model is called the WPMIT model. In the final part of the paper, this model was
applied on a real data set and provided maximum likelihood estimations of the parameters. To
authenticate the WPMIT model as a regression model, a simulation process of the model was also
carried out to estimate the parameters by using least squares method.
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