Citation: Carsten Conradi, Elisenda Feliu, Maya Mincheva. On the existence of Hopf bifurcations in the sequential and distributive double phosphorylation cycle[J]. Mathematical Biosciences and Engineering, 2020, 17(1): 494-513. doi: 10.3934/mbe.2020027
[1] | C. Conradi and A. Shiu, Dynamics of post-translational modification systems: recent progress and future directions, Biophys. J., 114 (2018), 507-515. |
[2] | T. Suwanmajo and J. Krishnan, Exploring the intrinsic behaviour of multisite phosphorylation systems as part of signalling pathways, J. R. Soc. Interface, 15 (2018), 20180109. |
[3] | J. Gunawardena, Multisite protein phosphorylation makes a good threshold but can be a poor switch, Proc. Natl. Acad. Sci. U.S.A., 102 (2005), 14617-14622. |
[4] | C. Salazar and T. Hofer, Multisite protein phosphorylation-from molecular mechanisms to kinetic models, FEBS J., 276 (2009), 3177-3198. |
[5] | M. Thomson and J. Gunawardena, Unlimited multistability in multisite phosphorylation systems, Nature, 460 (2009), 274-277. |
[6] | C. Conradi, D. Flockerzi and J. Raisch, Multistationarity in the activation of an MAPK: parametrizing the relevant region in parameter space, Math. Biosci., 211 (2008), 105-131. |
[7] | C. Conradi and M. Mincheva, Catalytic constants enable the emergence of bistability in dual phosphorylation, J. R. S. Interface, 11. |
[8] | J. Hell and A. D. Rendall, A proof of bistability for the dual futile cycle, Nonlinear Anal. Real World Appl., 24 (2015), 175-189. |
[9] | D. Flockerzi, K. Holstein and C. Conradi, N-site Phosphorylation Systems with 2N-1 Steady States, Bull. Math. Biol., 76 (2014), 1892-1916. |
[10] | L. Wang and E. D. Sontag, On the number of steady states in a multiple futile cycle, J. Math. Biol., 57 (2008), 29-52. |
[11] | C. Conradi and A. Shiu, A global convergence result for processive multisite phosphorylation systems, Bull. Math. Biol., 77 (2015), 126-155. |
[12] | C. Conradi, M. Mincheva and A. Shiu, Emergence of oscillations in a mixed-mechanism phosphorylation system, Bull. Math. Biol., 81 (2019), 1829-1852. |
[13] | T. Suwanmajo and J. Krishnan, Mixed mechanisms of multi-site phosphorylation, J. R. Soc. Interface, 12 (2015), 20141405. |
[14] | N. Obatake, A. Shiu, X. Tang and A. Torres, Oscillations and bistability in a model of ERK regulation, J. Math. Biol., (2019), https://doi.org/10.1007/s00285-019-01402-y. |
[15] | Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, Springer-Verlag, 1995. |
[16] | H. Errami, M. Eiswirth, D. Grigoriev, et al., Detection of hopf bifurcations in chemical reaction networks using convex coordinates, J. Comput. Phys., 291 (2015), 279-302. |
[17] | M. El Kahoui and A. Weber, Deciding Hopf bifurcations by quantifier elimination in a softwarecomponent architecture, J. Symbolic Comput., 30 (2000), 161-179. |
[18] | W. M. Liu, Criterion of hopf bifurcations without using eigenvalues, Journal of Mathematical Analysis and Applications, 182 (1994), 250-256. |
[19] | X. Yang, Generalized form of Hurwitz-Routh criterion and Hopf bifurcation of higher order, Appl. Math. Lett., 15 (2002), 615-621. |
[20] | B. L. Clarke, Stability of Complex Reaction Networks, 1-215, John Wiley & Sons, Ltd, 2007. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470142622.ch1. |
[21] | B. L. Clarke, Stoichiometric network analysis, Cell Biochem. Biophys., 12 (1988), 237-253. |
[22] | R. T. Rockafellar, Convex Analysis, Princeton University Press, 1970. |
[23] | B. D. Aguda and B. L. Clarke, Bistability in chemical reaction networks: Theory and application to the peroxidase-oxidase reaction, J. Chem. Phys., 87 (1987), 3461-3470. |
[24] | K. Gatermann, M. Eiswirth and A. Sensse, Toric ideals and graph theory to analyze hopf bifurcations in mass action systems, J. Symbol. Comput., 40 (2005), 1361-1382. |
[25] | C. Conradi and D. Flockerzi, Switching in mass action networks based on linear inequalities, SIAM J. Appl. Dyn. Syst., 11 (2012), 110-134. |
[26] | E. Feliu, C. Lax, S. Walcher, et al., Quasi-steady state and singular perturbation reduction for reaction networks with non-interacting species, arXiv, 1908.11270. |
[27] | A. Cornish-Bowden, Fundamentals of Enzyme Kinetics, 3rd edition, Portland Press, London, 2004. |
[28] | A. Goeke, S. Walcher and E. Zerz, Determining "small parameters" for quasi-steady state, J. Differ. Equations, 259 (2015), 1149-1180. |
[29] | A. Goeke, S. Walcher and E. Zerz, Classical quasi-steady state reduction-a mathematical characterization, Phys. D, 345 (2017), 11-26. |
[30] | H.-R. Tung, Precluding oscillations in Michaelis-Menten approximations of dual-site phosphorylation systems, Math. Biosci., 306 (2018), 56-59. |
[31] | M. Banaji, Inheritance of oscillation in chemical reaction networks, Appl. Math. Comp., 325 (2018), 191-209. |
[32] | C. Conradi, E. Feliu, M. Mincheva, et al., Identifying parameter regions for multistationarity, PLoS Comput. Biol., 13 (2017), e1005751. |
[33] | A. Sadeghimanesh and E. Feliu, The multistationarity structure of networks with intermediates and a binomial core network, Bull. Math. Biol., 81 (2019), 2428-2462. |
[34] | A. von Kamp, S. Thiele, O. Hädicke, et al., Use of CellNetAnalyzer in biotechnology and metabolic engineering, J. Biotechnol., 261 (2017), 221-228. |