Citation: Balázs Boros, Stefan Müller, Georg Regensburger. Complex-balanced equilibria of generalized mass-action systems: necessary conditions for linear stability[J]. Mathematical Biosciences and Engineering, 2020, 17(1): 442-459. doi: 10.3934/mbe.2020024
[1] | F. Horn and R. Jackson, General mass action kinetics, Arch. Rational Mech. Anal., 47 (1972), 81-116. |
[2] | M. A. Savageau, Biochemical systems analysis. I. Some mathematical properties of the rate law for the component enzymatic reactions, J. Theor. Biol., 25 (1969), 365-369. |
[3] | E. O. Voit, Biochemical systems theory: a review, ISRN Biomath., Article ID 897658. |
[4] | S. Müller and G. Regensburger, Generalized mass action systems: Complex balancing equilibria and sign vectors of the stoichiometric and kinetic-order subspaces, SIAM J. Appl. Math., 72 (2012), 1926-1947. |
[5] | S. Müller and G. Regensburger, Generalized mass-action systems and positive solutions of polynomial equations with real and symbolic exponents, in Computer Algebra in Scientific Computing. Proceedings of the 16th International Workshop (CASC 2014) (eds. V. P. Gerdt, W. Koepf, E. W. Mayr and E. H. Vorozhtsov), vol. 8660 of Lecture Notes in Comput. Sci., Springer, Cham, 2014, 302-323. |
[6] | M. D. Johnston, S. Müller and C. Pantea, A deficiency-based approach to parametrizing positive equilibria of biochemical reaction systems, Bull. Math. Biol., 81 (2019), 1143-1172. |
[7] | S. Müller, J. Hofbauer and G. Regensburger, On the bijectivity of families of exponential/generalized polynomial maps, SIAM J. Appl. Algebra Geom., 3 (2019), 412-438. |
[8] | B. Boros, J. Hofbauer and S. Müller, On global stability of the Lotka reactions with generalized mass-action kinetics, Acta Appl. Math., 151 (2017), 53-80. |
[9] | B. Boros, J. Hofbauer, S. Müller and G. Regensburger, The center problem for the Lotka reactions with generalized mass-action kinetics, Qual. Theory Dyn. Syst., 17 (2018), 403-410. |
[10] | B. Boros, J. Hofbauer, S. Müller and G. Regensburger, Planar S-systems: Global stability and the center problem, Discrete Contin. Dyn. Syst. Ser. A, 39 (2019), 707-727. |
[11] | B. Boros and J. Hofbauer, Planar S-systems: Permanence, J. Differential Equations, 266 (2019), 3787-3817. |
[12] | G. Craciun, A. Dickenstein, A. Shiu and B. Sturmfels, Toric dynamical systems, J. Symbolic Comput., 44 (2009), 1551-1565. |
[13] | D. Siegel and M. D. Johnston, A stratum approach to global stability of complex balanced systems, Dyn. Syst., 26 (2011), 125-146. |
[14] | M. A. Al-Radhawi and D. Angeli, New approach to the stability of chemical reaction networks: piecewise linear in rates Lyapunov functions, IEEE Trans. Automat. Control, 61 (2016), 76-89. |
[15] | F. Blanchini and G. Giordano, Piecewise-linear Lyapunov functions for structural stability of biochemical networks, Automatica J. IFAC, 50 (2014), 2482-2493. |
[16] | R. A. Horn and C. R. Johnson, Topics in matrix analysis, Cambridge University Press, Cambridge, 1991. |
[17] | L. Hogben (ed.), Handbook of linear algebra, 2nd edition, Discrete Mathematics and its Applications (Boca Raton), CRC Press, Boca Raton, FL, 2014. |
[18] | B. L. Clarke, Stability of complex reaction networks, in Advances in Chemical Physics (eds. I. Prigogine and S. A. Rice), vol. 43, John Wiley & Sons, Ltd, 1980, 1-215. |
[19] | M. Feinberg, Foundations of chemical reaction network theory, vol. 202 of Applied Mathematical Sciences, Springer, Cham, 2019. |
[20] | S. Müller, E. Feliu, G. Regensburger, C. Conradi, A. Shiu and A. Dickenstein, Sign conditions for injectivity of generalized polynomial maps with applications to chemical reaction networks and real algebraic geometry, Found. Comput. Math., 16 (2016), 69-97. |
[21] | M. Banaji and C. Pantea, Some results on injectivity and multistationarity in chemical reaction networks, SIAM J. Appl. Dyn. Syst., 15 (2016), 807-869. |
[22] | E. Feliu, S. Müller and G. Regensburger, Characterizing injectivity of classes of maps via classes of matrices, Linear Algebra Appl., 580 (2019), 236-261. |
[23] | G. Teschl, Ordinary differential equations and dynamical systems, vol. 140 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2012. |
[24] | F. R. Gantmacher, The theory of matrices. Vols. 1, 2, Translated by K. A. Hirsch, Chelsea Publishing Co., New York, 1959. |
[25] | G. W. Cross, Three types of matrix stability, Linear Algebra Appl., 20 (1978), 253-263. |
[26] | M. D. Johnston, Topics in chemical reaction network theory, PhD thesis, University of Waterloo, 2011. |
[27] | R. A. Brualdi and H. J. Ryser, Combinatorial matrix theory, Cambridge University Press, Cambridge, 1991. |
[28] | B. E. Cain, Real, 3×3, D-stable matrices, J. Res. Nat. Bur. Standards Sect. B, 80B (1976), 75-77. |