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Abstract: It is well known that, for mass-action systems, complex-balanced equilibria are asymp-
totically stable. For generalized mass-action systems, even if there exists a unique complex-balanced
equilibrium (in every stoichiometric class and for all rate constants), it need not be stable. We first
discuss several notions of matrix stability (on a linear subspace) such as D-stability and diagonal sta-
bility, and then we apply abstract results on matrix stability to complex-balanced equilibria of gener-
alized mass-action systems. In particular, we show that linear stability (on the stoichiometric subspace
and for all rate constants) implies uniqueness. For cyclic networks, we characterize linear stability (in
terms of D-stability of the Jacobian matrix); and for weakly reversible networks, we give necessary
conditions for linear stability (in terms of D-semistability of the Jacobian matrices of all cycles in the
network). Moreover, we show that, for classical mass-action systems, complex-balanced equilibria
are not just asymptotically stable, but even diagonally stable (and hence linearly stable). Finally, we
recall and extend characterizations of D-stability and diagonal stability for matrices of dimension up
to three, and we illustrate our results by examples of irreversible cycles (of dimension up to three) and
of reversible chains and S-systems (of arbitrary dimension).

Keywords: reaction networks; generalized mass-action kinetics; diagonal stability; D-stability

1. Introduction

In their foundational paper from 1972, Horn and Jackson considered chemical reaction networks
(CRNs) with mass-action kinetics [1]. In particular, they proved that complex-balanced equilibria are
asymptotically stable (for all rate constants), by using an entropy-like Lyapunov function. However,
mass-action kinetics is an assumption that holds for elementary reactions in homogeneous and dilute
solutions. In intracellular environments, which are highly structured and crowded, more general ki-
netics such as power laws are needed [2, 3]. Already Horn and Jackson observed that every CRN
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with power-law kinetics can be written as another CRN with mass-action kinetics (possibly with non-
integer stoichiometric coefficients). Typically, the resulting network does not have desired properties
such as weak reversibility and zero deficiency. The more recent definition of CRNs with generalized
mass-action kinetics (involving both stoichiometric coefficients and kinetic orders) allows to study
power-law kinetics without having to rewrite the network [4,5]. Moreover, a CRN with classical mass-
action kinetics may not have zero deficiency and may not be weakly reversible, but there may be a
dynamically equivalent CRN with generalized mass-action kinetics that has the desired properties [6].

For the resulting generalized mass-action systems, existence and uniqueness of complex-balanced
equilibria (in every stoichiometric class and for all rate constants) is well understood [4, 7], but not
much is known about their stability. Even planar S-systems with a unique complex-balanced equi-
librium display rich dynamical behavior, including super/sub-critical or degenerate Hopf bifurcations,
centers, and up to three limit cycles; see [8–11].

For chemical reaction networks with classical mass-action kinetics, linear Lyapunov functions have
been used in approaches to the global attractor conjecture [12, 13]. For certain classes of networks, in
particular, non-autocatalytic networks with monotonic kinetics, piecewise linear/polyhedral Lyapunov
functions have been constructed [14, 15]. However, no Lyapunov functions are known for complex-
balanced equilibria of arbitrary generalized mass-action systems, and hence we first approach the prob-
lem by linearization. In other words, instead of asymptotic stability, we investigate linear stability (on
the stoichiometric subspace and for all rate constants). To this end, we first discuss several notions of
matrix stability (on a linear subspace) such as D-stability and diagonal stability; see [16, Ch. 2], [17,
Ch. 26] and the references therein and [18] for the first application to chemical reaction networks. In
particular, diagonal stability of the Jacobian matrix allows to construct Lyapunov functions with sep-
arated variables. Our main results characterize linear stability of complex-balanced equilibria (on the
stoichiometric subspace and for all rate constants) for cyclic networks and give necessary conditions
for weakly reversible networks.

In the setting of classical mass-action systems, we prove that complex-balanced equilibria are not
just asymptotically stable, but even diagonally stable (and hence linearly stable). For an alternative
proof, see [19, Thm. 15.2.2.]. As opposed to asymptotic stability, linear stability is robust with respect
to small perturbations of the system. In particular, this allows to show the robustness of the classical
deficiency zero theorem with respect to small perturbations of the kinetic orders from the stoichiometric
coefficients; see [7, Cor. 47].

Organization of the work and main results. In Section 2, we introduce generalized mass-action
systems, and in Section 3, we discuss several notions of matrix stability (on a linear subspace). In Sec-
tion 4, we present our main results: For classical mass-action systems, complex-balanced equilibria
are diagonally stable (and hence linearly stable); see Theorem 8. For generalized mass-action systems,
linear stability of complex balanced equilibria implies uniqueness; see Theorem 10. For cyclic net-
works, linear stability is equivalent to D-stability of the Jacobian matrix; see Theorem 11. For weakly
reversible networks, linear stability implies D-semistability of the Jacobian matrices of all cycles in
the network; see Theorem 13. In Section 5, we recall and extend characterizations of notions of matrix
stability, and finally, in Section 6, we illustrate our results by a series of examples.
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2. Generalized mass-action systems

A generalized chemical reaction network (G, y, ỹ) is based on a directed graph G = (V, E) without
self-loops; every vertex i ∈ V = {1, . . . ,m} is labeled with a (stoichiometric) complex y(i) ∈ Rn

≥0, and
every source vertex i ∈ Vs ⊆ V is labeled with a kinetic-order complex ỹ(i) ∈ Rn. If every component
of G is strongly connected, we call G and (G, y, ỹ) weakly reversible.

A generalized mass-action system (Gk, y, ỹ) is a generalized chemical reaction network (G, y, ỹ)
together with edge labels k ∈ RE

+, resulting in the labeled digraph Gk. Every edge (i → i′) ∈ E,
representing the chemical reaction y(i)→ y(i′), is labeled with a rate constant ki→i′ > 0.

The ODE system for the species concentrations x ∈ Rn
+, associated with the generalized mass-action

system (Gk, y, ỹ), is given by
dx
dt

=
∑

(i→i′)∈E

ki→i′ xỹ(i)(y(i′) − y(i)
)
. (1)

The sum ranges over all reactions, and every summand is a product of the reaction rate and the differ-
ence of product and educt complexes. Thereby, for x ∈ Rn

+ and y ∈ Rn, we define xy = xy1
1 · · · x

yn
n ∈ R+.

Moreover, for Y = (y1, . . . , ym) ∈ Rn×m, we define xY ∈ Rm
+ via (xY) j = xy j

for j = 1, . . . ,m.

Example 1. Consider the Lotka reactions 0 → X, X → Y, and Y → 0 with generalized mass-action
kinetics

0
(α1X + β1Y)

X
(α2X + β2Y)

Y
(α3X + β3Y)

k12

k23k31

Thereby, the first vertex is labeled with the stoichiometric complex 0 and the kinetic-order complex
α1X + β1Y in brackets. (Analogously, for the second and third vertex.) Hence, the reaction rate of
0→ X is given by k1→2 xα1yβ1 .

The associated ODE system is given by

dx
dt

= k12 xα1yβ1 − k23 xα2yβ2 ,

dy
dt

= k23 xα2yβ2 − k31 xα3yβ3 .

The right-hand-side of the ODE system (1) can be decomposed into stoichiometric, graphical, and
kinetic-order contributions,

dx
dt

= YIE diag(k)(I s
E)T xỸ = YAk xỸ , (2)

where Y, Ỹ ∈ Rn×V are the matrices of stoichiometric and kinetic-order complexes, IE, I s
E ∈ R

V×E are
the incidence and source matrices∗ of the digraph G, and Ak = IE diag(k)(I s

E)T ∈ RV×V is the Laplacian
∗Explicitly, (IE)i, j→ j′ = −1 if i = j, (IE)i, j→ j′ = 1 if i = j′, and (IE)i, j→ j′ = 0 otherwise. Further, (I s

E)i, j→ j′ = 1 if i = j and (I s
E)i, j→ j′ = 0

otherwise. Finally, (Ak)i′ ,i = ki→i′ if (i→ i′) ∈ E, (Ak)i,i = −
∑

i→i′ ki→i′ , and (Ak)i′ ,i = 0 otherwise.
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matrix of the labeled digraph Gk. (We note that columns of Ỹ corresponding to non-source vertices can
be chosen arbitrarily.)

Clearly, the change over time lies in the stoichiometric subspace

S = im(YIE),

that is, dx
dt ∈ S . Equivalently, trajectories are confined to cosets of S , that is, x(t) ∈ x(0) + S . For

x′ ∈ Rn
+, the set (x′ + S ) ∩ Rn

+ is called a stoichiometric class.
Analogously, we introduce the kinetic-order subspace

S̃ = im(Ỹ IE).

A positive equilibrium x ∈ Rn
+ of the ODE system (2) that fulfills Ak xỸ = 0 is called a complex-

balanced equilibrium. The set of all complex-balanced equilibria is given by

Zk = {x ∈ Rn
+ | Ak xỸ = 0}.

The Jacobian matrix of the right-hand-side of (2) is given by

J(x) = YAk diag(xỸ) ỸT diag(x−1). (3)

For given generalized chemical reaction network (G, y, ỹ), we study whether, for all rate constants
k ∈ RE

+ (such that Zk , ∅), all complex-balanced equilibria x∗ ∈ Zk are linearly stable on S , that is, the
corresponding Jacobian matrices J(x∗) are stable on S .

Before we turn to stability, we recall the well-known fact that every positive vector is a complex-
balanced equilibrium for some rate constant (see e.g. the proof of Lemma 1 in [5]). Further, we state
a characterization of the uniqueness of complex-balanced equilibria in terms of sign vectors of the
stoichiometric and kinetic-order subspaces (see Proposition 3.1 in [4]).

Proposition 2. Consider a weakly reversible generalized chemical reaction network, and let x∗ ∈ Rn
+.

Then, there exist rate constants k ∈ RE
+ such that x∗ ∈ Zk.

Proposition 3. Consider a weakly reversible generalized chemical reaction network. There exists at
most one complex-balanced equilibrium in every stoichiometric class and for all rate constants if and
only if sign(S ) ∩ sign(S̃ ⊥) , {0}.

For surveys on the uniqueness of equilibria and related injectivity results, see [20–22].

3. Notions of matrix stability

Let S be a linear subspace of Rn. For an ODE system ẋ = f (x) with f : Rn → Rn and im f ⊆
S , cosets of S are forward invariant. Hence, given an equilibrium x ∈ Rn, one is interested in its
asymptotic stability on the coset x + S . To approach the problem via linearization, one considers the
Jacobian matrix J(x) =

∂ f
∂x ∈ R

n×n, more precisely, the linear map J(x)|S : S → S . By the Hartman-
Grobman Theorem, if x is hyperbolic (that is, if all eigenvalues of J(x)|S have non-zero real part), then
the original ODE system is dynamically equivalent (technically: topologically conjugate) to the linear
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ODE system ẏ = J(x)y on S ; see e.g. [23, Thm. 9.9]. In the following, we recall notions of stability of
a square matrix and extend them to stability on a linear subspace.

A square matrix is stable (respectively, semistable) if all its eigenvalues have negative (respectively,
non-positive) real part. We start with a matrix formulation of Lyapunov’s Theorem; see [24, Ch. XV,
Thm. 3’] or [16, Thm. 2.2.1].

Proposition 4. Let A ∈ Rn×n. The following implications hold:

There exists P = PT > 0
s.t. PA + ATP < 0.

⇒
There exists P = PT > 0

s.t. PA + ATP ≤ 0.

m ⇓

A is stable. ⇒ A is semistable.

Proof. Obviously, the implications from left to right hold.
The equivalence on the left is Lyapunov’s Theorem.
Finally, if there exists P = PT > 0 with PA + ATP ≤ 0, then the origin is Lyapunov stable for the

linear ODE ẋ = Ax (by the Lyapunov function x 7→ xTPx), and thus A cannot have an eigenvalue with
positive real part. �

Let S be a linear subspace. We say that a square matrix A with im A ⊆ S is stable on S (respectively,
semistable on S ) if all eigenvalues of the linear map A|S : S → S have negative (respectively, non-
positive) real part. We extend Lyapunov’s Theorem to stability on a linear subspace.

Proposition 5. Let A ∈ Rn×n and S ⊆ Rn be a linear subspace with im A ⊆ S . The following implica-
tions hold:

There exists P = PT > 0 on S
s.t. PA + ATP < 0 on S .

⇒
There exists P = PT > 0 on S

s.t. PA + ATP ≤ 0 on S .

m ⇓

A is stable on S . ⇒ A is semistable on S .

Proof. Obviously, the implications from left to right hold.
To prove the equivalence on the left, let s = dim S and S = im B with B ∈ Rn×s and BTB = I ∈ Rs×s.

Then, for every x ∈ S , there exists a unique y ∈ Rs such that x = By. Further, y = BTx and, using
ẋ = Ax (on S ), we have ẏ = BTABy (on Rs). Thus, A is stable on S if and only if BTAB ∈ Rs×s is
stable on Rs. By Proposition 4, the latter is equivalent to the existence of Q ∈ Rs×s with Q = QT > 0
such that yT(QBTAB + BTATBQ)y < 0 for all 0 , y ∈ Rs. This is further equivalent to the existence of
P = BQBT ∈ Rn×n with P = PT > 0 on S such that xT(PA + ATP)x < 0 for all 0 , x ∈ S .

Finally, let P = PT > 0 on S and PA + ATP ≤ 0 on S . With B as above, let Q = BTPB ∈ Rs×s and
note that A = BBTA (because x = BBTx for all x ∈ S ). Then Q = QT > 0 and QBTAB + BTATBQ ≤ 0.
By Proposition 4, BTAB is semistable, and, as in the previous paragraph, the latter is equivalent to A
being semistable on S . �

We recall more notions of stability of square matrices. For convenience, let D+ ⊆ R
n×n denote the

set of diagonal matrices with positive diagonal. A matrix A ∈ Rn×n is diagonally stable (respectively,
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diagonally semistable) if there exists P ∈ D+ such that PA+ATP < 0 (respectively, PA+ATP ≤ 0). We
note that diagonal stability is also known as Lyapunov diagonal stability or Volterra-Lyapunov stability.
A matrix A ∈ Rn×n is D-stable (respectively, D-semistable) if AD is stable (respectively, semistable)
for all D ∈ D+. The following statement summarizes the relations between these notions.

Proposition 6. Let A ∈ Rn×n. The following implications hold:

A is diagonally stable. ⇒ A is diagonally semistable.

⇓ ⇓

A is D-stable. ⇒ A is D-semistable.

⇓ ⇓

A is stable. ⇒ A is semistable.

Proof. Obviously, the implications from left to right hold.
To prove the implications from the first to the second row, let P ∈ D+ be such that PA + ATP < 0

(respectively, PA + ATP ≤ 0). Then, for any D ∈ D+, we have (DP)(AD) + (AD)T(DP) = D(PA +

ATP)D < 0 (respectively, ≤ 0), and by Proposition 4, AD is stable (respectively, semistable).
Finally, the implications from the second row to the third row are trivial. (If AD is (semi)stable for

any D ∈ D+, then this holds for D = I.) �

Let S be a linear subspace. We say that A ∈ Rn×n with im A ⊆ S is diagonally stable on S
(respectively, diagonally semistable on S ) if there exists P ∈ D+ such that PA + ATP < 0 on S
(respectively, PA + ATP ≤ 0 on S ). We say that A ∈ Rn×n with im A ⊆ S is D-stable on S (respectively,
D-semistable on S ) if AD is stable on S (respectively, semistable on S ) for all D ∈ D+. Finally,
we introduce an even stronger notion. We say that A ∈ Rn×n with im A ⊆ S is diagonally D-stable
on S (respectively, diagonally D-semistable on S ) if, for all D ∈ D+, there exists P ∈ D+ such that
PAD + DATP < 0 on S (respectively, PAD + DATP ≤ 0 on S ). We note that diagonal D-stability on
S trivially implies diagonal stability on S , and the two notions agree for S = Rn, see also [25, p. 257].
Moreover, we have the following relations.

Proposition 7. Let A ∈ Rn×n and S ⊆ Rn be a linear subspace with im A ⊆ S . The following implica-
tions hold:

A is diagonally D-stable on S . ⇒ A is diagonally D-semistable on S .

⇓ ⇓

A is D-stable on S . ⇒ A is D-semistable on S .

⇓ ⇓

A is stable on S . ⇒ A is semistable on S .

Proof. Obviously, the implications from left to right hold.
The implications from the first to the second row follow immediately from Proposition 5.
Finally, the implications from the second row to the third row are trivial. �
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4. Main results

In the following, we say that an equilibrium x∗ is linearly stable (in its stoichiometric class x∗ + S )
if the Jacobian matrix J(x∗) is stable on S . In short:

x∗ is linearly stable (in x∗ + S ), if J(x∗) is stable on S .

Analogously, we say that x∗ is diagonally D-stable/diagonally stable/D-stable (in x∗ + S ) if J(x∗) is
diagonally D-stable/diagonally stable/D-stable on S .

4.1. Linear stability for mass-action systems

We start by showing that, for classical mass-action systems (where ỹ = y), complex-balanced
equilibria are diagonally D-stable (and hence diagonally stable/D-stable/linearly stable) in their stoi-
chiometric classes, and not just locally asymptotically stable (as shown via the classical entropy-like
Lyapunov function).

Linear stability of complex-balanced equilibria was shown in [26, Theorem 4.3.2] and [19, The-
orem 15.2.2.]. In the latter work, the author also proved diagonal stability, without noting it and
using an ad-hoc inequality. Here, we even show diagonal D-stability, thereby using the negative semi-
definiteness of the Laplacian matrix of an undirected graph.

Theorem 8. Consider a weakly reversible chemical reaction network. Then, for all rate constants,
complex-balanced equilibria are linearly stable (in their stoichiometric classes). In fact, they are
diagonally D-stable (and hence also diagonally stable, D-stable, and linearly stable).

Proof. Let k ∈ RE
+ and x∗ ∈ Zk. We show that the corresponding Jacobian matrix J = J(x∗) is diagonally

D-stable on S . By Proposition 7, all other conclusions follow.
Let D ∈ D+. We show that there exists P = diag((x∗)−1)D ∈ D+ such that H = PJD + DJTP < 0 on

S . Let k∗ ∈ RE
+ be defined by k∗i→i′ = ki→i′ (x∗)y(i) for (i→ i′) ∈ E. Then, Ak diag((x∗)Y) = Ak∗ . Using (3)

for the Jacobian matrix J, we have

H = P Y
(
Ak∗ + AT

k∗

)
YTP.

Now, let Ak̄ = Ak∗ + AT
k∗ and hence H = P YAk̄ YTP. The symmetric matrix Ak̄ is the Laplacian matrix

of a labeled undirected graph Gk̄ with G = (V, E) and k̄ ∈ RE
+. In particular, Ak̄ = −IE′ diag(k̄) IT

E′ for
some directed version E′ of the undirected edges E and the corresponding incidence matrix IE′ (with
im IE′ = im IE); see e.g. [27]. Hence, Ak̄ ≤ 0 and H = −P YIE′ diag(k̄) IT

E′ Y
TP ≤ 0 on S .

Suppose vTHv = 0 for some v ∈ S . Then, IT
E′ Y

TPv = 0. Now, S = im(YIE) = im(YIE′), S ⊥ =

ker(IT
E′ Y

T), and hence Pv ∈ S ⊥. Clearly, vTPv = 0 which finally implies v = 0, since P > 0.
Hence, H < 0 on S , and J is diagonally D-stable on S . �

In the result above, we prove diagonal stability of J on S , by providing a diagonal, positive definite
matrix P such that PJ + JTP < 0 on S . This property implies the existence of a function with separated
variables L(x) =

∑n
i=1 Li(xi) that serves as a Lyapunov function for showing the asymptotic stability of

the complex-balanced equilibrium x∗ ∈ Rn
+ (in its stoichiometric class).

As an example, consider a scaled version of the classical entropy-like Lyapunov function L(x) =∑n
i=1 pi x∗i [xi(log(xi/x∗i ) − 1) + x∗i ], where P = diag(p1, . . . , pn), and the function g(x) = ∇L(x) f (x),
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where dx
dt = f (x). Then, the gradient of g at x∗ vanishes, and the Hessian matrix of g at x∗ is H =

PJ + JTP with H < 0 on S . Hence, in x∗ + S , the function g has a local maximum at x∗ with g(x∗) = 0.
That is, L is a Lyapunov function at x∗, and x∗ is asymptotically stable (in x∗ + S ).

4.2. Linear stability implies uniqueness

Now, we turn to generalized mass-action systems. We show that linear stability of complex-
balanced equilibria implies uniqueness (in their stoichiometric classes). We start with a useful technical
result.

Lemma 9. Consider a weakly reversible generalized mass-action system, and let x∗ ∈ Zk. Then,
ker(Ak diag((x∗)Ỹ)) = ker IT

E.

Proof. The dimension of ker IT
E equals the number of connected components of the graph G = (V, E),

and the characteristic vectors of the vertex sets of the connected components form a basis.
Let k∗ ∈ RE

+ be defined by k∗i→i′ = ki→i′ (x∗)ỹ(i) for (i → i′) ∈ E. Then, Ak diag((x∗)Ỹ) = Ak∗ . Clearly,
Ak∗ is the Laplacian matrix of the labeled directed graph Gk∗ , and the dimension of its kernel also equals
the number of connected components of G; see e.g. [5, Section 4] and the references therein.

By definition, x∗ ∈ Zk if Ak(x∗)Ỹ = 0. Due to the block structure of the Laplacian matrix, the
characteristic vectors of the vertex sets of the connected components are in the kernel of Ak diag((x∗)Ỹ).
(As an example, consider a strongly connected graph G, and let 1V be the characteristic vector of V .
Then, Ak diag((x∗)Ỹ) 1V = Ak(x∗)Ỹ = 0.) Altogether, ker(Ak diag((x∗)Ỹ)) = ker IT

E. �

Theorem 10. Consider a weakly reversible generalized chemical reaction network. If, for all rate
constants, complex-balanced equilibria are linearly stable (in their stoichiometric classes), then they
are unique (in their stoichiometric classes).

Proof. Assume that, for some k′ ∈ RE
+, there exists a stoichiometric class with at least two complex-

balanced equilibria. Then, by Proposition 3, there exist vectors 0 , u ∈ S̃ ⊥ and 0 , v ∈ S with
sign(u) = sign(v). Now, S̃ = im(Ỹ IE), S̃ ⊥ = ker(IT

E ỸT), and hence IT
E ỸTu = 0. Let x∗ ∈ Rn

+ be such that
u = diag((x∗)−1)v, and let k ∈ RE

+ be such that x∗ ∈ Zk, see Proposition 2. Then,

IT
E ỸT diag((x∗)−1)v = 0,

that is, ỸT diag((x∗)−1)v ∈ ker IT
E = ker(Ak diag((x∗)Ỹ)), the latter by Lemma 9. Using (3) for the

Jacobian matrix J, we have

Jv = Y Ak diag((x∗)Ỹ)︸           ︷︷           ︸ ỸT diag((x∗)−1)v︸              ︷︷              ︸ = 0.

Hence, for all P = PT > 0, we have vT(PJ + JTP)v = 0, and by Proposition 5, J is not stable on S . �

As can be demonstrated by the generalized reaction network X(X) 
 Y(0), linear stability implies
uniqueness, but not existence in every stoichiometric class.

4.3. The network is a cycle

In the following result, we characterize diagonal stability and linear stability of complex-balanced
equilibria, provided that the network is a cycle.
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Theorem 11. Consider a cyclic generalized chemical reaction network, and let A = YAk=1ỸT. The
following implications hold:

For all rate constants,
complex-balanced equilibria

are diagonally stable
(in their stoichiometric classes).

⇒

For all rate constants,
complex-balanced equilibria

are linearly stable
(in their stoichiometric classes).

m m

A is diagonally D-stable on S . ⇒ A is D-stable on S .

Proof. The implication in the first (respectively, second) row follows immediately from Proposition 5
(respectively, Proposition 7).

To prove the two equivalences, let k ∈ RE
+ and x∗ ∈ Zk. Since G = (V, E) is a cycle, the quantity

c = ki→i′ (x∗)ỹ(i) is the same for all (i→ i′) ∈ E. In particular, Ak diag((x∗)Ỹ) = c Ak=1. Using (3) for the
Jacobian matrix J, we have

J = c YAk=1ỸTD

with D = diag((x∗)−1). Finally, recall that every x∗ ∈ Rn
+ is a complex-balanced equilibrium for some

k ∈ RE
+, see Proposition 2. Hence, every D ∈ D+ is of the form D = diag((x∗)−1) for some k, and the

equivalences follow. �

4.4. The network is weakly reversible

In the previous subsection, we characterized diagonal stability and linear stability of complex-
balanced equilibria, provided that the network is a cycle. In this subsection, we extend those results to
weakly reversible networks, but instead of equivalent we only give necessary conditions for diagonal
and linear stability. We start with a useful technical result.

Lemma 12. Consider a weakly reversible generalized chemical reaction network, let C be a cycle of
the network, and let x∗ ∈ Rn

+. Then, there exists a family of rate constants kε ∈ RE
+ (with ε > 0) such

that x∗ ∈ Zkε for every ε > 0 and Jε → YAC
k=1ỸT diag((x∗)−1) as ε → 0, where AC

k=1 is the Laplacian
matrix of the cycle C with all rate constants set to 1.

Proof. For a cycle C′, let kC′ ∈ RE
≥0 be defined by

kC′
i→i′ =

1
(x∗)ỹ(i) ·

1, if (i→ i′) ∈ C′,

0, if (i→ i′) < C′.

For ε > 0, let kε = kC + ε
∑

C′,C kC′ , where the summation is over all cycles C′ of G, except for the
given cycle C. Then, x∗ ∈ Zkε and

Akε diag((x∗)Ỹ) = AC
k=1 + ε

∑
C′,C

AC′
k=1.

Using (3) for the Jacobian matrix Jε, we obtain the desired limit as ε→ 0. �
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Theorem 13. Consider a weakly reversible generalized chemical reaction network, and, for a cycle C
of the network, let AC = YAC

k=1ỸT and S C be the corresponding stoichiometric subspace. The following
implications hold:

For all rate constants,
complex-balanced equilibria

are diagonally stable
(in their stoichiometric classes).

⇒

For all rate constants,
complex-balanced equilibria

are linearly stable
(in their stoichiometric classes).

⇓ ⇓

For all cycles C,
AC is diagonally D-semistable on S C.

⇒
For all cycles C,

AC is D-semistable on S C.

Proof. The implications in the first (respectively, second) row follows immediately from Proposition 5
(respectively, Proposition 7).

Next, we prove the implication in the right column. Assume there exists a cycle C in G and a
matrix D ∈ D+ such that ACD has an eigenvalue with positive real part. Let x∗ ∈ Rn

+ be such that
D = diag((x∗)−1). Further, let kε ∈ RE

+ (with ε > 0) be a family of rate constants as in Lemma 12,
and let Jε denote the corresponding Jacobian matrix. Since Jε → ACD as ε → 0 and, in general, the
spectrum of a matrix depends continuously on its entries, the matrix Jε has an eigenvalue with positive
real part for ε > 0 small enough. That is, the complex-balanced equilibrium x∗ is not linearly stable.

Finally, we prove the implication in the left column (by contradiction). Assume there exists a cycle
C in G and a matrix D ∈ D+ such that for all P ∈ D+ there exists a w ∈ S C with

wT(PACD + D(AC)TP)w > 0. (4)

Clearly, the term vT(PB + BTP)v is continuous (in all arguments v ∈ S , P ∈ D+, B ∈ Rn×n), and hence
the map g, defined by

g(B) = min
P∈D+ :
‖P‖=1

max
v∈S :
‖v‖=1

vT(PB + BTP)v

is also continuous, since maximum and minimum are taken over compact sets. Since S C is a subspace
of S (and hence w ∈ S ), the inequality (4) implies g(ACD) > 0.

As above, let x∗ ∈ Rn
+ be such that D = diag((x∗)−1). Further, let kε ∈ RE

+ (with ε > 0) be a
family of rate constants as in Lemma 12, and let Jε denote the corresponding Jacobian matrix. Since,
by assumption, all complex-balanced equilibria are diagonally stable, there exists Pε ∈ D+ such that
PεJε + (Jε)TPε < 0 on S . As a consequence, g(Jε) < 0 for all ε > 0, and

0 < g(ACD) = g(lim
ε→0

Jε) = lim
ε→0

g(Jε) ≤ 0,

a contradiction. �

5. Characterization of D-stability and diagonal stability

For both D-stability and diagonal stability, an explicit characterization is available only up to dimen-
sion three. For arbitrary dimension, we recall the following necessary conditions (see e.g. [25, Sec-
tion 2]).
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Proposition 14. Let A ∈ Rn×n. The following statements hold.

(i) If A is D-stable, then A is a P+
0 -matrix (that is, all its signed principal minors are non-negative

and at least one of each order is positive).
(ii) If A is diagonally stable, then A is a P-matrix (that is, all its signed principal minors are positive).

It is relatively easy to check that, for dimension two, equivalence holds in the previous result.

Proposition 15. Let A ∈ R2×2. The following statements hold.

(i) The matrix A is D-stable if and only if it is a P+
0 -matrix.

(ii) The matrix A is diagonally stable if and only if it is a P-matrix.

For dimension three, we have the following characterizations (see [28] and [25, Theorem 4(c)]).
Thereby, for A ∈ Rn×n, let Mi j denote the principal minor (of order two) aiia j j − ai ja ji.

Proposition 16. Let A ∈ R3×3. The following statements hold.

(i) The matrix A is D-stable if and only if

(a) A is a P+
0 -matrix and

(b) the three pairs (−a11,M23), (−a22,M13), (−a33,M12) dominate − det A, that is,( √
−a11M23 +

√
−a22M13 +

√
−a33M12

)2
≥ − det A

with equality implying that at least one of the three pairs has exactly one member equal to
zero.

(ii) The matrix A is diagonally stable if and only if

(a) A is a P-matrix and
(b) there exists y ∈ R such that

(a13 y + a31)2 − 4 a11a33 y < 0 and

(b1 y + b2)2 − 4 M12M23 y < 0,

where b1 = a12a23 − a22a13 and b2 = a21a32 − a22a31.

Finally, as new results, we characterize D-(semi)stability on a linear subspace with dimension one
or two.

Proposition 17. Let A ∈ Rn×n and S ⊆ Rn be a linear subspace with im A ⊆ S and dim S = 1. Then,
A is D-semistable on S if and only if aii ≤ 0 for all i.

Proof. For D ∈ D+, the characteristic polynomial of AD is

det(λI − AD) = λn−1(λ + b) with b =
∑

1≤i≤n

(−aii)di.

Thus, A is D-semistable on S if and only if b ≥ 0 for all d1, . . . , dn > 0 which is equivalent to aii ≤ 0
for all i. �
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Proposition 18. Let A ∈ Rn×n and S ⊆ Rn be a linear subspace with im A ⊆ S and dim S = 2. Then,
A is D-stable on S if and only if

(a) aii ≤ 0 for all i and aii < 0 for some i and
(b) Mi j ≥ 0 for all i , j and Mi j > 0 for some i , j.

Proof. For D ∈ D+, the characteristic polynomial of AD is

det(λI − AD) = λn−2(λ2 + bλ + c)

with
b =

∑
1≤i≤n

(−aii)di and c =
∑

1≤i, j≤n
i, j

Mi jdid j.

Thus, A is D-stable on S if and only if b > 0 and c > 0 for all d1, . . . , dn > 0 which is equivalent to (a)
and (b). �

6. Examples

To illustrate our main results, Theorems 11 and 13, we present a series of examples. In particular,
we consider the following networks, leading to special ODE systems:

• irreversible three-cycle (dimension two)→ trinomial ODE system
• irreversible three-cycle (dimension three, stoichiometric subspace of dimension two)→ binomial

ODE system
• irreversible four-cycle (dimension three)→ binomial ODE system
• reversible chain (arbitrary dimension)
• S-system (arbitrary dimension)→ binomial ODE system

For the two- and three-dimensional examples, we use the characterizations of D-stability and diagonal
stability given in Propositions 15, 16, and 18. For the examples with arbitrary dimension, we use
Proposition 17.

Example 19. Consider the generalized mass-action system

a1X + b1Y
(α1X + β1Y)

a2X + b2Y
(α2X + β2Y)

a3X + b3Y
(α3X + β3Y)

k12

k23k31

and the resulting ODE system

dx
dt

= k12(a2 − a1)xα1yβ1 + k23(a3 − a2)xα2yβ2 + k31(a1 − a3)xα3yβ3 ,

dy
dt

= k12(b2 − b1)xα1yβ1 + k23(b3 − b2)xα2yβ2 + k31(b1 − b3)xα3yβ3 .
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The matrix YAk=1ỸT is given by

(YAk=1ỸT)11 = α1(a2 − a1) + α2(a3 − a2) + α3(a1 − a3),

(YAk=1ỸT)12 = β1(a2 − a1) + β2(a3 − a2) + β3(a1 − a3),

(YAk=1ỸT)21 = α1(b2 − b1) + α2(b3 − b2) + α3(b1 − b3),

(YAk=1ỸT)22 = β1(b2 − b1) + β2(b3 − b2) + β3(b1 − b3),

and

det(YAk=1ỸT) = det
[
a2 − a1 b2 − b1

a3 − a2 b3 − b2

]
︸                     ︷︷                     ︸

dab

· det
[
α2 − α1 β2 − β1

α3 − α2 β3 − β2

]
︸                      ︷︷                      ︸

dαβ

.

Now, assume dab , 0, that is, dim S = 2. By Theorem 11 and Proposition 15(i), the unique complex-
balanced equilibrium is linearly stable for all k if and only if

dab dαβ > 0,
α1(a2 − a1) + α2(a3 − a2) + α3(a1 − a3) ≤ 0,
β1(b2 − b1) + β2(b3 − b2) + β3(b1 − b3) ≤ 0,

and the latter two are not both zero.

Example 20. Consider the generalized mass-action system

X
(α1X + β1Y + γ1Z)

Y
(α2X + β2Y + γ2Z)

Z
(α3X + β3Y + γ3Z)

k12

k23k31

and the resulting ODE system

dx
dt

= k31xα3yβ3zγ3 − k12xα1yβ1zγ1 ,

dy
dt

= k12xα1yβ1zγ1 − k23xα2yβ2zγ2 ,

dz
dt

= k23xα2yβ2zγ2 − k31xα3yβ3zγ3 .

Clearly, dim S = 2. The matrix YAk=1ỸT is given by
α3 − α1 β3 − β1 γ3 − γ1

α1 − α2 β1 − β2 γ1 − γ2

α2 − α3 β2 − β3 γ2 − γ3

 .
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By Theorem 11 and Proposition 18, all complex-balanced equilibria are linearly stable if and only if

α3 ≤ α1, β1 ≤ β2, γ2 ≤ γ3

with at least one of the three inequalities satisfied strictly and

det
[
α3 − α1 β3 − β1

α1 − α2 β1 − β2

]
≥ 0,

det
[
α3 − α1 γ3 − γ1

α2 − α3 γ2 − γ3

]
≥ 0,

det
[
β1 − β2 γ1 − γ2

β2 − β3 γ2 − γ3

]
≥ 0

with at least one of the three inequalities satisfied strictly.

Example 21. Consider the generalized mass-action system

0
(α1X + β1Y + γ1Z)

X
(α2X + β2Y + γ2Z)

Y
(α3X + β3Y + γ3Z)

Z
(α4X + β4Y + γ4Z)

k12

k23

k34

k41

and the resulting ODE system

dx
dt

= k12xα1yβ1zγ1 − k23xα2yβ2zγ2 ,

dy
dt

= k23xα2yβ2zγ2 − k34xα3yβ3zγ3 ,

dz
dt

= k34xα3yβ3zγ3 − k41xα4yβ4zγ4 .

Clearly, dim S = 3. The matrix YAk=1ỸT is given by
α1 − α2 β1 − β2 γ1 − γ2

α2 − α3 β2 − β3 γ2 − γ3

α3 − α4 β3 − β4 γ3 − γ4

 .
For simplicity, we consider particular kinetic orders

0
(γZ)

X
(X)

Y
(αX + Y)

Z
(βY + Z)

k12

k23

k34

k41
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and the resulting matrix

YAk=1ỸT =


−1 0 γ

1 − α −1 0
α 1 − β −1

 .
In the following table, we choose particular values for the kinetic orders α, β, and γ, leading to

different situations regarding stability, D-stability, diagonal stability, and being a P+
0 -matrix.

α β γ YAk=1ỸT

0 0 0 diagonally stable
5 0 −3 D-stable, but not diagonally stable
3 4 −4 stable P+

0 -matrix, but not D-stable
2 −2 1 stable, but not P+

0 -matrix
0 −2 −3 unstable P+

0 -matrix

In the first and second case, for all rate constants, there exists a complex-balanced equilibrium which
is linearly stable by Theorem 11 and Proposition 16(i) and unique by Theorem 10. In the third and
fourth case, the unique complex-balanced equilibrium is linearly stable for some rate constants, but
not for all.

Example 22. Consider the generalized chemical reaction network

y(1)
(ỹ(1))

y(2)
(ỹ(2))

· · ·
y(m)

(ỹ(m))

where the graph G is a reversible chain. In particular, all cycles of G correspond to reversible reac-
tions. For every cycle i� i + 1 (denoted by C), we have

YAC
k=1ỸT = −(y(i + 1) − y(i))(ỹ(i + 1) − ỹ(i))T,

a dyadic product. By Proposition 17, this (rank-one) matrix is D-semistable on S C = im(y(i + 1)− y(i))
if and only if all diagonal entries are non-positive. By Theorem 13, if there is a cycle i� i + 1 and an
index (species) s ∈ {1, . . . , n} with

−(y(i + 1) − y(i))s(ỹ(i + 1) − ỹ(i))s > 0,

then there is a complex-balanced equilibrium (for some rate constants) that is not linearly stable.

Example 23. For the real matrices G,H ∈ Rn×n and the positive vectors α, β ∈ Rn
+, the ODE system

ẋ1 = α1 xg11
1 · · · x

g1n
n − β1 xh11

1 · · · x
h1n
n

...

ẋn = αn xgn1
1 · · · x

gnn
n − βn xhn1

1 · · · x
hnn
n

on Rn
+ is called an S-system [2, 3].
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This ODE is associated to the generalized mass-action system

0
(g11X1 + · · · + g1nXn)

X1

(h11X1 + · · · + h1nXn)

α1

β1

...

0
(gn1X1 + · · · + gnnXn)

Xn

(hn1X1 + · · · + hnnXn)

αn

βn

For every cycle C (corresponding to a reversible reaction 0� Xi), the matrix YAC
k=1ỸT has (g·i−h·i)T

as its i-th row, and all other rows are zero. By Proposition 17, this (rank-one) matrix is D-semistable
on S C = im(ei) if and only if the diagonal entry gii − hii is non-positive. By Theorem 13, if there is a
reversible reaction 0 � Xi such that gii > hii, then there is a complex-balanced equilibrium (for some
rate constants) that is not linearly stable.
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