Citation: Zamra Sajid, Morten Andersen, Johnny T. Ottesen. Mathematical analysis of the Cancitis model and the role of inflammation in blood cancer progression[J]. Mathematical Biosciences and Engineering, 2019, 16(6): 8268-8289. doi: 10.3934/mbe.2019418
[1] | P. J. Campbell and A. R. Green, The myeloproliferative disorders, N. Engl. J. Med., 355 (2006), 2452-2466. |
[2] | H. C. Hasselbalch, Chronic inflammation as a promotor of mutagenesis in essential thrombocythemia, polycythemia vera and myelofibrosis. A human inflammation model for cancer development?, Leukemia Res., 37 (2013), 214-220. |
[3] | H. C. Hasselbalch, Perspectives on chronic inflammation in essential thrombocythemia, polycythemia vera, and myelofibrosis: is chronic inflammation a trigger and driver of clonal evolution and development of accelerated atherosclerosis and second cancer?, Blood, 119 (2012), 3219- 3226. |
[4] | S. Y. Kristinsson, O. Landgren, J. Samuelsson, et al., Autoimmunity and the risk of myeloproliferative neoplasms, Haematologica, 95 (2010), 1216-1220. |
[5] | M. Andersen, Z. Sajid, R. K. Pedersen, et al., Mathematical modelling as a proof of concept for MPNs as a human inflammation model for cancer development, Plos One, 12 (2017), 1-18. |
[6] | T. Barbui, A. Carobbio, G. Finazzi, et al., Inflammation and thrombosis in essential thrombocythemia and polycythemia vera: different role of C-reactive protein and pentraxin 3, Haematologica, 96 (2011), 315-318. |
[7] | N. L. Komarova, Principles of regulation of self-renewing cell lineages, Plos One, 8 (2013). |
[8] | N. L. Komarova and P. van den Driessche, Stability of control networks in autonomous homeostatic regulation of stem cell lineages, B. Math. Biol., 80 (2015), 1345-1365. |
[9] | J. Yang, D. E. Axelrod and N. L. Komarova, Determining the control networks regulating stem cell lineages in colonic crypts, J. Theor. Biol., 429 (2017), 190-203. |
[10] | F. Michor, Y. Iwasa and M. A. Nowak, Dynamics of cancer progression, Nature Rev. Cancer, 4 (2004), 197-205. |
[11] | F. Michor, T. P. Hughes, Y. Iwasa, et al., Dynamics of chronic myeloid leukaemia, Nature, 435 (2005), 1267-1270. |
[12] | D. Dingli and F. Michor, Successful Therapy Must Eradicate Cancer Stem Cells, Stem Cells, 24 (2006), 2603-2610. |
[13] | G. Clapp, T. Lepoutre, R. El Cheikh, et al., Implication of autologousimmune system in bcr-abl transcript variations in chronic myelogenous leukemia patients treated with imatinib, Cancer Res., 75 (2015), 4053-4062. |
[14] | T. Stiehl and A. Marciniak-Czochra, Mathematical modelling of leukemogenesis and cancer stem cell dynamics, Math. Model. Nat. Phenom., 7 (2012), 166-202. |
[15] | T. Stiehl, A. D. Ho and A. Marciniak-Czochra, Mathematical modelling of the impact of cytokine response of acute myeloid leukemia cells on patient prognosis, Sci. Rep., 2809 (2018). |
[16] | H. Haeno, R. L. Levine, D. G. Gilliland, et al., A progenitor cell origin of myeloid malignancies, Proc. Natl. Acad. Sci. USA, 106 (2009), 16616-16621. |
[17] | J. Zhang, A. G. Fleischman, D. Wodarz, et al., Determining the role of infammation in the selection of JAK2 mutant cells in myeloproliferative neoplasms, J. Theor. Biol., 425 (2017), 43-52. |
[18] | J. T. Ottesen, Z. Sajid, R. K. Pedersen, et al., Bridging blood cancers and inflammation: The reduced Cancitis model, J. Theor. Biol., 465 (2019), 90-108. |
[19] | C. Walkley, J. Shea, N. Sims, et al., Rb regulates interactions between hematopoietic stem cells and their bone marrow microenvironment, Cell, 129 (2007), 1081-1095. |
[20] | T. Stiehl, N. Baran, A. D. Ho, et al., Cell division patterns in acute myeloid leukemia stem-like cells determine clinical course: A model to predict patient survival, Cancer Res., 75 (2015), 940-949. |
[21] | T. Walenda, T. Stiehl, H. Braun, et al., Feedback Signals in Myelodysplastic Syndromes: Increased Self-Renewal of the Malignant Clone Suppresses Normal Hematopoiesis, PLoS Comput. Biol., 10 (2014), e1003599. |
[22] | Y. W. Kim, B. K. Koo, H. W. Jeong, et al., Defective Notch activation in microenvironment leads to myeloproliferative disease, Blood, 112 (2008), 4628-4638. doi: 10.1182/blood-2008-03-148999 |
[23] | K. Y. King and M. A. Goodell, Inflammatory modulation of hematopoietic stem cells: viewing the hematopoietc stem cell as a foundation for the immune response, Nat. Rev. Immmunol., 11 (2014), 685-692. |
[24] | E. Rovida, I. Marzi, M. G. Cipolleschi, et al., One more stem cell niche: how the sensitivity of chronic myeloid leukemia cells to imatinib mesylate is modulated within a "hypoxic" environment, Hypoxia, (2014), 1-10. |
[25] | A. Marciniak-Czochra, T. Stiehl, A. D. Ho, et al., Modeling of asymmetric cell division in hematopoietic stem cells-regulation of self-renewal is essential for efficient repopulation, Stem Cells Dev., 18 (2009), 377-385. |
[26] | A. L. Jackson and L. A. Loeb, The mutation rate and cancer, Eur. J. Haematol., 97 (2016), 63-69. |
[27] | A. Knutson, Mutation and Cancer: Statistical study of retinoblastoma, Proc. Natl. Acad. Sci. USA, 68 (1971), 820-823. |
[28] | F. Michor, Y. Iwasa and N. MA, The age incidence of chronic myeloid leukemia can be explained by a one-mutation model, Proc. Natl. Acad. Sci. USA, 103 (2006), 14931-14934. |
[29] | F. Michor, Mathematical models of cancer stem cells, J. Clin. Oncol., 26 (2008), 2854-2861. |
[30] | E. Voit, A first course in system biology, Garland Science, Taylor & Francis Group, New York and London, 68 (2013). |
[31] | A. L. Sørensen and H. C. Hasselbalch, Smoking and Philadelphia-negative chronic myeloproliferative neoplasms, Genetics, 148 (1998), 1483-1490. |
[32] | H. C. Hasselbalch, Smoking as a contributing factor for development of polycythemia vera and related neoplasms, Leukemia Res., 015 (2015). |
[33] | V. A. Kuznetsov and G. D. Knott, Modeling tumor regrowth and immunotherapy, Math. Comput. Model., 33 (2001), 1275-1287. |
[34] | C. Robinson, Dynamical Systems, Stability, Symbolic Dynamics, and Chaos, in Second CRC Press, Boca Raton, Fla., 1999. |