Research article

Some new (p, q)-Dragomir–Agarwal and Iyengar type integral inequalities and their applications

  • Received: 04 November 2021 Revised: 17 December 2021 Accepted: 04 January 2022 Published: 11 January 2022
  • MSC : 26A33, 26A51, 26D07, 26D10, 26D15, 26D20

  • The main objective of this paper is to derive some new post quantum analogues of Dragomir–Agarwal and Iyengar type integral inequalities essentially by using the strongly φ-preinvexity and strongly quasi φ-preinvexity properties of the mappings, respectively. We also discuss several new special cases which show that the results obtained are quite unifying. In order to illustrate the efficiency of our main results, some applications regarding (p,q)-differentiable mappings that are in absolute value bounded are given.

    Citation: Muhammad Uzair Awan, Sadia Talib, Artion Kashuri, Ibrahim Slimane, Kamsing Nonlaopon, Y. S. Hamed. Some new (p, q)-Dragomir–Agarwal and Iyengar type integral inequalities and their applications[J]. AIMS Mathematics, 2022, 7(4): 5728-5751. doi: 10.3934/math.2022317

    Related Papers:

    [1] Hao Wang, Zhijuan Wu, Xiaohong Zhang, Shubo Chen . Certain exponential type $ m $-convexity inequalities for fractional integrals with exponential kernels. AIMS Mathematics, 2022, 7(4): 6311-6330. doi: 10.3934/math.2022351
    [2] Saad Ihsan Butt, Muhammad Nasim Aftab, Hossam A. Nabwey, Sina Etemad . Some Hermite-Hadamard and midpoint type inequalities in symmetric quantum calculus. AIMS Mathematics, 2024, 9(3): 5523-5549. doi: 10.3934/math.2024268
    [3] Humaira Kalsoom, Muhammad Amer Latif, Muhammad Idrees, Muhammad Arif, Zabidin Salleh . Quantum Hermite-Hadamard type inequalities for generalized strongly preinvex functions. AIMS Mathematics, 2021, 6(12): 13291-13310. doi: 10.3934/math.2021769
    [4] Miguel Vivas-Cortez, Muhammad Zakria Javed, Muhammad Uzair Awan, Artion Kashuri, Muhammad Aslam Noor . Generalized $ (p, q) $-analogues of Dragomir-Agarwal's inequalities involving Raina's function and applications. AIMS Mathematics, 2022, 7(6): 11464-11486. doi: 10.3934/math.2022639
    [5] Manar A. Alqudah, Artion Kashuri, Pshtiwan Othman Mohammed, Muhammad Raees, Thabet Abdeljawad, Matloob Anwar, Y. S. Hamed . On modified convex interval valued functions and related inclusions via the interval valued generalized fractional integrals in extended interval space. AIMS Mathematics, 2021, 6(5): 4638-4663. doi: 10.3934/math.2021273
    [6] Sufyan Asif, Muhammad Khalid Mahmood, Amal S. Alali, Abdullah A. Zaagan . Structures and applications of graphs arising from congruences over moduli. AIMS Mathematics, 2024, 9(8): 21786-21798. doi: 10.3934/math.20241059
    [7] Chunhong Li, Dandan Yang, Chuanzhi Bai . Some Opial type inequalities in (p, q)-calculus. AIMS Mathematics, 2020, 5(6): 5893-5902. doi: 10.3934/math.2020377
    [8] Waewta Luangboon, Kamsing Nonlaopon, Jessada Tariboon, Sortiris K. Ntouyas . On Simpson type inequalities for generalized strongly preinvex functions via $ (p, q) $-calculus and applications. AIMS Mathematics, 2021, 6(9): 9236-9261. doi: 10.3934/math.2021537
    [9] Jamshed Nasir, Shahid Qaisar, Saad Ihsan Butt, Ather Qayyum . Some Ostrowski type inequalities for mappings whose second derivatives are preinvex function via fractional integral operator. AIMS Mathematics, 2022, 7(3): 3303-3320. doi: 10.3934/math.2022184
    [10] Aqeel Ahmad Mughal, Deeba Afzal, Thabet Abdeljawad, Aiman Mukheimer, Imran Abbas Baloch . Refined estimates and generalization of some recent results with applications. AIMS Mathematics, 2021, 6(10): 10728-10741. doi: 10.3934/math.2021623
  • The main objective of this paper is to derive some new post quantum analogues of Dragomir–Agarwal and Iyengar type integral inequalities essentially by using the strongly φ-preinvexity and strongly quasi φ-preinvexity properties of the mappings, respectively. We also discuss several new special cases which show that the results obtained are quite unifying. In order to illustrate the efficiency of our main results, some applications regarding (p,q)-differentiable mappings that are in absolute value bounded are given.



    Quantum calculus which is often known as q-calculus is the branch of mathematics in which we obtain q-analogues of the mathematical objects which can be recaptured by taking q1. It is also known as calculus without limits and depends upon finite difference. In recent years it has emerged as a bridge between mathematics and physics. Due to its great many applications in different fields of applied sciences, it has attracted many researchers. Consequently a rapid developments in quantum calculus have been achieved. For example, Tariboon and Ntouyas [1] introduced the notions of q-derivatives and q-integrals on finite intervals. This idea attracted many researchers and resultantly many new q-analogues of classical mathematical objects have been obtained using their approach. They themselves have obtained the quantum analogues of Hermite–Hadamard's inequality, Hölders's inequality, trapezoidal inequality and Ostrowski type of inequalities etc. Alp et al. [2] obtained a new corrected version of q-Hermite–Hadamard's inequality. Noor et al. [3] and Sudsutad et al. [4] obtained independently some new quantum analogues of trapezoidal like inequalities. Liu and Zhuang [5] obtained quantum estimates of Hermite–Hadamard type of inequalities via twice q-differentiable convex functions. Noor et al. [6] obtained a new q-integral identity and obtained associated upper bounds by using the preinvexity property of the functions. Noor et al. [7] obtained new q-Ostrowski type of inequalities via first order q-differentiable convex functions. Deng et al. [8] obtained q-analogues of Simpson type of inequalities. Zhang et al. [9] obtained a very nice generalized q-integral identity and obtained associated bounds.

    In recent years the classical concepts of quantum calculus have been modified in different directions, see [10,11,12,13,14,15]. One of the significant generalizations of q-calculus is the post quantum often known as (p,q)-calculus. The main idea is that in quantum calculus, we deal with a q-number with one base q, however, in (p,q)-calculus, we deal with two independent variables p and q. This idea was first considered in [16]. Tunç and Gov [17] recently introduced the concepts of (p,q)-derivatives and (p,q)-integrals on the finite intervals.

    Definition 1.1 ([17]). Let Ψ:KR be a continuous mapping and let xK and 0<q<p1. Then the (p,q)-derivative on K of mapping Ψ at x is defined as

    ϖ1Dp,qΨ(x)=Ψ(px+(1p)ϖ1)Ψ(qx+(1q)ϖ1)(pq)(xϖ1),xϖ1.

    Definition 1.2 ([17]). Let Ψ:KRR be a continuous mapping. Then (p,q)-integral on K is defined as

    xϖ1Ψ(λ)ϖ1dp,qλ=(pq)(xϖ1)n=0qnpn+1Ψ(qnpn+1x+(1qnpn+1)ϖ1),

    for xK.

    For more details, see [18,19,20].

    Let us recall some basic definitions that will be used in the sequel.

    Definition 1.3 ([21]). A mapping Ψ:IR is said to be convex, if

    Ψ(λϖ1+(1λ)ϖ2)λΨ(ϖ1)+(1λ)Ψ(ϖ2) (1.1)

    holds for all ϖ1,ϖ2I and λ[0,1].

    For more details, see [22,23,24,25].

    Definition 1.4 ([26]). A set KηR is said to be invex with respect to η:R×RR, if

    ϖ1+λη(ϖ2,ϖ1)Kη,ϖ1,ϖ2Kη,λ[0,1].

    Definition 1.5 ([9,27]). A mapping Ψ:KηR on the invex set is said to be preinvex, if

    Ψ(ϖ1+λη(ϖ2,ϖ1))(1λ)Ψ(ϖ1)+λΨ(ϖ2) (1.2)

    holds for all ϖ1,ϖ2Kη and λ[0,1].

    We now introduce the class of strongly φ-preinvex mappings.

    Definition 1.6. Let φ:(0,1)R be a real mapping. A mapping Ψ:KηR on the invex set is said to be strongly φ-preinvex, if

    Ψ(ϖ1+λη(ϖ2,ϖ1))(1λ)φ(1λ)Ψ(ϖ1)+λφ(λ)Ψ(ϖ2)σλ(1λ)η2(ϖ2,ϖ1),

    holds for all ϖ1,ϖ2Kη, λ(0,1) with η(ϖ2,ϖ1)>0 and σ>0.

    Note that, if we take η(ϖ2,ϖ1)=ϖ2ϖ1 in Definition 1.6, then we have the class of strongly φ-convex functions which was introduced and studied in [28].

    Remark 1.1. Note that, if we take, respectively φ(μ)=1,μ1,μs1 and φ(μ)=1μ in Definition 1.6, then we recapture the classes of strongly preinvex [27], strongly P-preinvex [29], strongly s-preinvex [29] and strongly tgs-preinvex mappings, respectively. Moreover, if we choose σ0+, then all of these classes reduce to preinvex [26], P-preinvex [30], s-preinvex [30] and tgs-preinvex mappings [31], respectively. This shows that the class of strongly φ-preinvex mappings is quite unifying one as it relates several other unrelated classes.

    For the sake of completeness, let us now recall the Dragomir–Agarwal and Iyengar type of inequalities. Dragomir and Agarwal [41] obtained the following new integral identity and obtained associated inequalities essentially using the class of first order differentiable convex functions.

    Lemma 1.1. Let Ψ:IRR be a differentiable function, If ΨL[ϖ1,ϖ2], then

    Ψ(ϖ1)+Ψ(ϖ2)21ϖ2ϖ1ϖ2ϖ1Ψ(x)dx=ϖ2ϖ1210(12μ)Ψ(μϖ1+(1μ)ϖ2)dμ.

    The right side of Hermite–Hadamard inequality can be estimated by the inequality of Iyengar [42], which reads as

    |Ψ(ϖ1)+Ψ(ϖ2)21ϖ2ϖ1ϖ2ϖ1Ψ(x)dx|M(ϖ2ϖ1)414M(ϖ2ϖ1)(Ψ(ϖ2)Ψ(ϖ1))2,

    where by M we denote the Lipschitz constant, that is, M=sup{|Ψ(x)Ψ(y)xy|;xy}.

    Integral inequalities are important to predict upper and lower bounds in various applied sciences, e.g. in probability theory, functional inequalities, interpolation spaces, Sobolev spaces and information theory. For some recent studies and applications of integral inequalities in these directions, see [32,33,34,35,36,37,38,39,40].

    The main motivation of this article is to derive a new post-quantum integral identity using (p,q)-differentiable mappings. Using the identity as an auxiliary result, we will obtain some new variants of Dragomir–Agarwal and Iyengar type integral inequalities essentially via the class of strongly φ-preinvex mappings. We also discuss several new special cases which show that the results obtained are quite unifying. Finally, to support our results, we present some applications to (p,q)-differentiable mappings that are in absolute value bounded. We hope that the ideas and techniques of this paper will inspire interested readers working in this field.

    In this section, we discuss auxiliary results. These results will be helpful in obtaining the main results of this paper.

    Lemma 2.1. Let ω[0,1] and λ[0,), then

    ω0vλdp,qv=(pq)n=0(ωp)λ+1(qp)(λ+1)n=ωλ+1(pq)pλ+1qλ+1,

    and

    ω0(1v)λdp,qv=(pq)ωn=0qnpn+1(1qnωpn+1)λ.

    Now we derive a new (p,q)-integral identity which will be used as an auxiliary result for obtaining next results of the paper.

    Lemma 2.2. Suppose that Ψ:[ϖ1,ϖ1+η(ϖ2,ϖ1)]RR be a (p,q)-differentiable mapping on (ϖ1,ϖ1+η(ϖ2,ϖ1)) with η(ϖ2,ϖ1)>0 and 0<q<p1. If ϖ1Dp,qΨ is a (p,q)-integrable mapping on [ϖ1,ϖ1+η(ϖ2,ϖ1)], then

    1pη(ϖ2,ϖ1)ϖ1+pη(ϖ2,ϖ1)ϖ1Ψ(x)ϖ1dp,qxqΨ(ϖ1)+pΨ(ϖ1+η(ϖ2,ϖ1))[2]p,q=qη(ϖ2,ϖ1)21010(μλ)[ϖ1Dp,qΨ(ϖ1+λη(ϖ2,ϖ1))ϖ1Dp,qΨ(ϖ1+μη(ϖ2,ϖ1))]dp,qμdp,qλ, (2.1)

    where [n]p,q is the well-known (p,q)-integer expressed as:

    [n]p,q=pnqnpq.

    Proof. Using Definitions 1 and 2, we have

    1010(μλ)[ϖ1Dp,qΨ(ϖ1+λη(ϖ2,ϖ1))ϖ1Dp,qΨ(ϖ1+μη(ϖ2,ϖ1))]dp,qμdp,qλ=1010(μλ)[Ψ(ϖ1+pλη(ϖ2,ϖ1))Ψ(ϖ1+qλη(ϖ2,ϖ1))(pq)η(ϖ2,ϖ1)λΨ(ϖ1+pμη(ϖ2,ϖ1))Ψ(ϖ1+qμη(ϖ2,ϖ1))(pq)η(ϖ2,ϖ1)μ]dp,qμdp,qλ=1010μ[Ψ(ϖ1+pλη(ϖ2,ϖ1))Ψ(ϖ1+qλη(ϖ2,ϖ1))](pq)η(ϖ2,ϖ1)λdp,qμdp,qλ1010[Ψ(ϖ1+pμη(ϖ2,ϖ1))Ψ(ϖ1+qμη(ϖ2,ϖ1))](pq)η(ϖ2,ϖ1)dp,qμdp,qλ1010[Ψ(ϖ1+pλη(ϖ2,ϖ1))Ψ(ϖ1+qλη(ϖ2,ϖ1))](pq)η(ϖ2,ϖ1)dp,qμdp,qλ+1010λ[Ψ(ϖ1+pλη(ϖ2,ϖ1))Ψ(ϖ1+qλη(ϖ2,ϖ1))](pq)η(ϖ2,ϖ1)μdp,qμdp,qλ. (2.2)

    We can see that

    1010μ[Ψ(ϖ1+pλη(ϖ2,ϖ1))Ψ(ϖ1+qλη(ϖ2,ϖ1))](pq)η(ϖ2,ϖ1)λdp,qμdp,qλ=10μdp,qμ10[Ψ(ϖ1+pλη(ϖ2,ϖ1))Ψ(ϖ1+qλη(ϖ2,ϖ1))](pq)η(ϖ2,ϖ1)λdp,qλ=1[2]p,qη(ϖ2,ϖ1)[n=0Ψ(ϖ1+qnpnη(ϖ2,ϖ1))n=0Ψ(ϖ1+qn+1pn+1η(ϖ2,ϖ1))]=1[2]p,qη(ϖ2,ϖ1)[Ψ(ϖ1+η(ϖ2,ϖ1))Ψ(ϖ1)], (2.3)

    and

    1010[Ψ(ϖ1+pλη(ϖ2,ϖ1))Ψ(ϖ1+qλη(ϖ2,ϖ1))](pq)η(ϖ2,ϖ1)dp,qμdp,qλ=10dp,qμ10[Ψ(ϖ1+pλη(ϖ2,ϖ1))Ψ(ϖ1+qλη(ϖ2,ϖ1))](pq)η(ϖ2,ϖ1)dp,qλ=1η(ϖ2,ϖ1)[n=0qnpn+1Ψ(ϖ1+pqnpn+1η(ϖ2,ϖ1))n=0qnpn+1Ψ(ϖ1+qn+1pn+1η(ϖ2,ϖ1))]=1η(ϖ2,ϖ1)[n=0qnpn+1Ψ(ϖ1+pqnpn+1η(ϖ2,ϖ1))pqn=0qn+1pn+2Ψ(ϖ1+pqn+1pn+2η(ϖ2,ϖ1))]=1η(ϖ2,ϖ1)[1pΨ(ϖ1+η(ϖ2,ϖ1))+n=1qnpn+1Ψ(ϖ1+pqnpn+1η(ϖ2,ϖ1))pqn=1qnpn+1Ψ(ϖ1+pqnpn+1η(ϖ2,ϖ1))]=1η(ϖ2,ϖ1)[1pΨ(ϖ1+η(ϖ2,ϖ1))+(1pq)n=1qnpn+1Ψ(ϖ1+qnpn+1η(ϖ2,ϖ1))]=1η(ϖ2,ϖ1)[1qΨ(ϖ1+η(ϖ2,ϖ1))(pqq)n=0qnpn+1Ψ(ϖ1+qnpn+1η(ϖ2,ϖ1))]=1η(ϖ2,ϖ1)[1qΨ(ϖ1+η(ϖ2,ϖ1))1pqη(ϖ2,ϖ1)ϖ1+pη(ϖ2,ϖ1)ϖ1Ψ(x)ϖ1dp,qx]. (2.4)

    Similarly,

    1010λ[Ψ(ϖ1+pμη(ϖ2,ϖ1))Ψ(ϖ1+qμη(ϖ2,ϖ1))](pq)η(ϖ2,ϖ1)μdp,qμdp,qλ=1[2]p,qη(ϖ2,ϖ1)[Ψ(ϖ1+η(ϖ2,ϖ1))Ψ(ϖ1)], (2.5)

    and

    1010[Ψ(ϖ1+pλη(ϖ2,ϖ1))Ψ(ϖ1+qλη(ϖ2,ϖ1))](pq)η(ϖ2,ϖ1)dp,qμdp,qλ=1η(ϖ2,ϖ1)[1qΨ(ϖ1+η(ϖ2,ϖ1))1pqη(ϖ2,ϖ1)ϖ1+pη(ϖ2,ϖ1)ϖ1Ψ(x)ϖ1dp,qx]. (2.6)

    Substituting equalities (2.3)–(2.6) in (2.2), we get

    1010(μλ)[ϖ1Dp,qΨ(ϖ1+λη(ϖ2,ϖ1))ϖ1Dp,qΨ(ϖ1+μη(ϖ2,ϖ1))]dp,qμdp,qλ=1pqη2(ϖ2,ϖ1)ϖ1+pη(ϖ2,ϖ1)ϖ1Ψ(x)ϖ1dp,qx2qη2(ϖ2,ϖ1)Ψ(ϖ1+η(ϖ2,ϖ1))+2[2]p,qη2(ϖ2,ϖ1)[Ψ(ϖ1+η(ϖ2,ϖ1))Ψ(ϖ1)]. (2.7)

    Multiplying both sides of (2.7) by qη(ϖ2,ϖ1)2, we obtain the required result.

    Remark 2.1. If we take p=1 in Lemma 2.2, then we have the following new equality:

    1η(ϖ2,ϖ1)ϖ1+η(ϖ2,ϖ1)ϖ1Ψ(x)ϖ1dqxqΨ(ϖ1)+Ψ(ϖ1+η(ϖ2,ϖ1))[2]q=qη(ϖ2,ϖ1)21010(μλ)[ϖ1DqΨ(ϖ1+λη(ϖ2,ϖ1))ϖ1DqΨ(ϖ1+μη(ϖ2,ϖ1))]dqμdqλ.

    In this section, we discuss our main results.

    We now derive (p,q)-analogues of Dragomir–Agarwal type integral inequalities via strongly φ-preinvex functions.

    Theorem 3.1. For η(ϖ2,ϖ1)>0, let Ψ:[ϖ1,ϖ1+η(ϖ2,ϖ1)]R be (p,q)-differentiable mapping on (ϖ1,ϖ1+η(ϖ2,ϖ1)) and ϖ1Dp,qΨ be integrable on [ϖ1,ϖ1+η(ϖ2,ϖ1)] with 0<q<p1. If |ϖ1Dp,qΨ| is strongly φ-preinvex mapping on [ϖ1,ϖ1+η(ϖ2,ϖ1)] with modulus σ>0, then

    |1pη(ϖ2,ϖ1)ϖ1+pη(ϖ2,ϖ1)ϖ1Ψ(x)ϖ1dp,qxqΨ(ϖ1)+pΨ(ϖ1+η(ϖ2,ϖ1))[2]p,q|qη(ϖ2,ϖ1)[|ϖ1Dp,qΨ(ϖ1)|1010(1λ)φ(1λ)|μλ|dp,qμdp,qλ+|ϖ1Dp,qΨ(ϖ2)|1010λφ(λ)|μλ|dp,qμdp,qλM3ση2(ϖ2,ϖ1)],

    where

    M1:=2[2]2p,q([3]p,q[2]p,q)+[4]p,q([2]2p,q[3]p,q)[2]2p,q[3]p,q[4]p,q,M2:=2[2]p,q([3]p,q[4]p,q)+[5]p,q([2]p,q[3]p,q[4]p,q)[2]p,q[3]p,q[4]p,q[5]p,q,M3:=M1M2=2[2]2p,q([3]p,q[2]p,q)+[4]p,q([2]2p,q[3]p,q)[2]2p,q[3]p,q[4]p,q2[2]p,q([3]p,q[4]p,q)+[5]p,q([2]p,q[3]p,q[4]p,q)[2]p,q[3]p,q[4]p,q[5]p,q. (3.1)

    Proof. Using Lemma 2.2, property of modulus and the strongly φ-preinvexity of |ϖ1Dp,qΨ|, we have

    |1pη(ϖ2,ϖ1)ϖ1+pη(ϖ2,ϖ1)ϖ1Ψ(x)ϖ1dp,qxqΨ(ϖ1)+pΨ(ϖ1+η(ϖ2,ϖ1))[2]p,q|qη(ϖ2,ϖ1)21010|μλ||ϖ1Dp,qΨ(ϖ1+λη(ϖ2,ϖ1))|dp,qμdp,qλ+qη(ϖ2,ϖ1)21010|μλ||ϖ1Dp,qΨ(ϖ1+μη(ϖ2,ϖ1))|dp,qμdp,qλqη(ϖ2,ϖ1)21010|μλ|[(1λ)φ(1λ)|ϖ1Dp,qΨ(ϖ1)|+λφ(λ)|ϖ1Dp,qΨ(ϖ2)|ση2(ϖ2,ϖ1)λ(1λ)]dp,qμdp,qλ+qη(ϖ2,ϖ1)21010|μλ|[(1μ)φ(1μ)|ϖ1Dp,qΨ(ϖ1)|+μφ(μ)|ϖ1Dp,qΨ(ϖ2)|ση2(ϖ2,ϖ1)μ(1μ)]dp,qμdp,qλ=qη(ϖ2,ϖ1)2[|ϖ1Dp,qΨ(ϖ1)|1010(1λ)φ(1λ)|μλ|dp,qμdp,qλ+|ϖ1Dp,qΨ(ϖ2)|1010λφ(λ)|μλ|dp,qμdp,qλση2(ϖ2,ϖ1)1010λ(1λ)|μλ|dp,qμdp,qλ]+qη(ϖ2,ϖ1)2[|ϖ1Dp,qΨ(ϖ1)|1010(1μ)φ(1μ)|μλ|dp,qμdp,qλ+|ϖ1Dp,qΨ(ϖ2)|1010μφ(μ)|μλ|dp,qμdp,qλση2(ϖ2,ϖ1)1010μ(1μ)|μλ|dp,qμdp,qλ]=qη(ϖ2,ϖ1)[|ϖ1Dp,qΨ(ϖ1)|1010(1λ)φ(1λ)|μλ|dp,qμdp,qλ+|ϖ1Dp,qΨ(ϖ2)|1010λφ(λ)|μλ|dp,qμdp,qλM3ση2(ϖ2,ϖ1)].

    This completes the proof. We now discuss some special cases of Theorem 3.1.

    Ⅰ. If φ(μ)=φ(λ)=1, then Theorem 3.1 reduces to the following result for the class of strongly preinvex mapping.

    Corollary 3.1. Under the assumptions of Theorem 3.1, if |ϖ1Dp,qΨ| is strongly preinvex on [ϖ1,ϖ1+η(ϖ2,ϖ1)], then

    |1pη(ϖ2,ϖ1)ϖ1+pη(ϖ2,ϖ1)ϖ1Ψ(x)ϖ1dp,qxqΨ(ϖ1)+pΨ(ϖ1+η(ϖ2,ϖ1))[2]p,q|qη(ϖ2,ϖ1)[M4|ϖ1Dp,qΨ(ϖ1)|+M2|ϖ1Dp,qΨ(ϖ2)|M3ση2(ϖ2,ϖ1)],

    where

    M4:=[2]2p,q([4]p,q+2)2[2]p,q([3]p,q+[4]p,q)+[3]p,q[4]p,q[2]2p,q[3]p,q[4]p,q.

    Ⅱ. If φ(λ)=λ1,φ(μ)=μ1, then Theorem 3.1 reduces to the following result for the class of strongly P-preinvex mapping.

    Corollary 3.2. Under the assumptions of Theorem 3.1, if |ϖ1Dp,qΨ| is strongly P-preinvex on [ϖ1,ϖ1+η(ϖ2,ϖ1)], then

    |1pη(ϖ2,ϖ1)ϖ1+pη(ϖ2,ϖ1)ϖ1Ψ(x)ϖ1dp,qxqΨ(ϖ1)+pΨ(ϖ1+η(ϖ2,ϖ1))[2]p,q|qη(ϖ2,ϖ1)[M5(|ϖ1Dp,qΨ(ϖ1)|+|ϖ1Dp,qΨ(ϖ2)|)M3ση2(ϖ2,ϖ1)],

    where

    M5:=2([2]p,q1)[2]p,q[3]p,q.

    Ⅲ. If φ(μ)=μs1,φ(λ)=λs1, then Theorem 3.1 reduces to the following result for the class of strongly s-preinvex mapping.

    Corollary 3.3. Under the assumptions of Theorem 3.1, if |ϖ1Dp,qΨ| is strongly s-preinvex on [ϖ1,ϖ1+η(ϖ2,ϖ1)], then

    |1pη(ϖ2,ϖ1)ϖ1+pη(ϖ2,ϖ1)ϖ1Ψ(x)ϖ1dp,qxqΨ(ϖ1)+pΨ(ϖ1+η(ϖ2,ϖ1))[2]p,q|qη(ϖ2,ϖ1)[(21sM5M6)|ϖ1Dp,qΨ(ϖ1)|+M6|ϖ1Dp,qΨ(ϖ2)|M3ση2(ϖ2,ϖ1)],

    where

    M6:=2[2]p,q([s+2]p,q[s+1]p,q)+[s+3]p,q([2]p,q[s+1]p,q[s+2]p,q)[2]p,q[s+1]p,q[s+2]p,q[s+3]p,q.

    Ⅳ. If φ(μ)=1μ,φ(λ)=1λ, then Theorem 3.1 reduces to the following result for the class of strongly tgs-preinvex mapping.

    Corollary 3.4. Under the assumptions of Theorem 3.1, if |ϖ1Dp,qΨ| is strongly tgs-preinvex on [ϖ1,ϖ1+η(ϖ2,ϖ1)], then

    |1pη(ϖ2,ϖ1)ϖ1+pη(ϖ2,ϖ1)ϖ1Ψ(x)ϖ1dp,qxqΨ(ϖ1)+pΨ(ϖ1+η(ϖ2,ϖ1))[2]p,q|qη(ϖ2,ϖ1)M3[|ϖ1Dp,qΨ(ϖ1)|+|ϖ1Dp,qΨ(ϖ2)|ση2(ϖ2,ϖ1)].

    Theorem 3.2. For η(ϖ2,ϖ1)>0, let Ψ:[ϖ1,ϖ1+η(ϖ2,ϖ1)]R be (p,q)-differentiable mapping on (ϖ1,ϖ1+η(ϖ2,ϖ1)) and ϖ1Dp,qΨ be integrable on [ϖ1,ϖ1+η(ϖ2,ϖ1)] with 0<q<p1. If |ϖ1Dp,qΨ|r2 is strongly φ-preinvex mapping on [ϖ1,ϖ1+η(ϖ2,ϖ1)] with modulus σ>0 for r1>1 with r11+r12=1, then

    |1pη(ϖ2,ϖ1)ϖ1+pη(ϖ2,ϖ1)ϖ1Ψ(x)ϖ1dp,qxqΨ(ϖ1)+pΨ(ϖ1+η(ϖ2,ϖ1))[2]p,q|qη(ϖ2,ϖ1)M1r17×(|ϖ1Dp,qΨ(ϖ1)|r21010(1λ)φ(1λ)dp,qμdp,qλ+|ϖ1Dp,qΨ(ϖ2)|r21010λφ(λ)dp,qμdp,qλση2(ϖ2,ϖ1)([3]p,q[2]p,q)[2]p,q[3]p,q)1r2,

    where

    M7:=(pq)2(qr1+1pr1+1)n=0(1)n1(3+qr1n+1qn+12qp+1qp+2)r1(r11)(r1n+1)n![2]r1n+1p,q(qr1+1pr1+1).

    Proof. Using Lemma 2.2, Hölder's inequality, property of modulus and the strongly φ-preinvexity of |ϖ1Dp,qΨ|r2, we have

    |1pη(ϖ2,ϖ1)ϖ1+pη(ϖ2,ϖ1)ϖ1Ψ(x)ϖ1dp,qxqΨ(ϖ1)+pΨ(ϖ1+η(ϖ2,ϖ1))[2]p,q|qη(ϖ2,ϖ1)21010|μλ||ϖ1Dp,qΨ(ϖ1+λη(ϖ2,ϖ1))|dp,qμdp,qλ+qη(ϖ2,ϖ1)21010|μλ||ϖ1Dp,qΨ(ϖ1+μη(ϖ2,ϖ1))|dp,qμdp,qλ
    qη(ϖ2,ϖ1)2(1010|μλ|r1dp,qμdp,qλ)1r1(1010|ϖ1Dp,qΨ(ϖ1+λη(ϖ2,ϖ1))|r2dp,qμdp,qλ)1r2+qη(ϖ2,ϖ1)2(1010|μλ|r1dp,qμdp,qλ)1r1(1010|ϖ1Dp,qΨ(ϖ1+μη(ϖ2,ϖ1))|r2dp,qμdp,qλ)1r2qη(ϖ2,ϖ1)2M1r17×[(1010[(1λ)φ(1λ)|ϖ1Dp,qΨ(ϖ1)|r2+λφ(λ)|ϖ1Dp,qΨ(ϖ2)|r2ση2(ϖ2,ϖ1)λ(1λ)]dp,qμdp,qλ)1r2+(1010[(1μ)φ(1μ)|ϖ1Dp,qΨ(ϖ1)|r2+μφ(μ)|ϖ1Dp,qΨ(ϖ2)|r2ση2(ϖ2,ϖ1)μ(1μ)]dp,qμdp,qλ)1r2]=qη(ϖ2,ϖ1)2M1r17×[(|ϖ1Dp,qΨ(ϖ1)|r21010(1λ)φ(1λ)dp,qμdp,qλ+|ϖ1Dp,qΨ(ϖ2)|r21010λφ(λ)dp,qμdp,qλση2(ϖ2,ϖ1)1010λ(1λ)dp,qμdp,qλ)1r2+(|ϖ1Dp,qΨ(ϖ1)|r21010(1μ)φ(1μ)dp,qμdp,qλ+|ϖ1Dp,qΨ(ϖ2)|r21010μφ(μ)dp,qμdp,qλση2(ϖ2,ϖ1)1010μ(1μ)dp,qμdp,qλ)1r2]=qη(ϖ2,ϖ1)M1r17×(|ϖ1Dp,qΨ(ϖ1)|r21010(1λ)φ(1λ)dp,qμdp,qλ+|ϖ1Dp,qΨ(ϖ2)|r21010λφ(λ)dp,qμdp,qλση2(ϖ2,ϖ1)([3]p,q[2]p,q)[2]p,q[3]p,q)1r2.

    This completes the proof.

    We now discuss some special cases of Theorem 3.2.

    Ⅰ. If φ(μ)=φ(λ)=1, then Theorem 3.2 reduces to the following result for the class of strongly preinvex mapping.

    Corollary 3.5. Under the assumptions of Theorem 3.2, if |ϖ1Dp,qΨ|r2 is strongly preinvex on [ϖ1,ϖ1+η(ϖ2,ϖ1)], then

    |1pη(ϖ2,ϖ1)ϖ1+pη(ϖ2,ϖ1)ϖ1Ψ(x)ϖ1dp,qxqΨ(ϖ1)+pΨ(ϖ1+η(ϖ2,ϖ1))[2]p,q|qη(ϖ2,ϖ1)M1r17(([2]p,q1)|ϖ1Dp,qΨ(ϖ1)|r2+|ϖ1Dp,qΨ(ϖ2)|r2[2]p,qση2(ϖ2,ϖ1)([3]p,q[2]p,q)[2]p,q[3]p,q)1r2.

    Ⅱ. If φ(μ)=μ1,φ(λ)=λ1, then Theorem 3.2 reduces to the following result for the class of strongly P-preinvex mapping.

    Corollary 3.6. Under the assumptions of Theorem 3.2, if |ϖ1Dp,qΨ|r2 is strongly P-preinvex on [ϖ1,ϖ1+η(ϖ2,ϖ1)], then

    |1pη(ϖ2,ϖ1)ϖ1+pη(ϖ2,ϖ1)ϖ1Ψ(x)ϖ1dp,qxqΨ(ϖ1)+pΨ(ϖ1+η(ϖ2,ϖ1))[2]p,q|qη(ϖ2,ϖ1)M1r17(|ϖ1Dp,qΨ(ϖ1)|r2+|ϖ1Dp,qΨ(ϖ2)|r2ση2(ϖ2,ϖ1)([3]p,q[2]p,q)[2]p,q[3]p,q)1r2.

    Ⅲ. If φ(μ)=μs1,φ(λ)=λs1, then Theorem 3.2 reduces to the following result for the class of strongly s-preinvex mapping.

    Corollary 3.7. Under the assumptions of Theorem 3.2, if |ϖ1Dp,qΨ|r2 is strongly s-preinvex on [ϖ1,ϖ1+η(ϖ2,ϖ1)], then

    |1pη(ϖ2,ϖ1)ϖ1+pη(ϖ2,ϖ1)ϖ1Ψ(x)ϖ1dp,qxqΨ(ϖ1)+pΨ(ϖ1+η(ϖ2,ϖ1))[2]p,q|qη(ϖ2,ϖ1)M1r17((21s[s+1]p,q1)|ϖ1Dp,qΨ(ϖ1)|r2+|ϖ1Dp,qΨ(ϖ2)|r2[s+1]p,qση2(ϖ2,ϖ1)([3]p,q[2]p,q)[2]p,q[3]p,q)1r2.

    Ⅳ. If φ(μ)=1μ,φ(λ)=1λ, then Theorem 3.2 reduces to the following result for the class of strongly tgs-preinvex mapping.

    Corollary 3.8. Under the assumptions of Theorem 3.2, if |ϖ1Dp,qΨ|r2 is strongly tgs-preinvex on [ϖ1,ϖ1+η(ϖ2,ϖ1)], then

    |1pη(ϖ2,ϖ1)ϖ1+pη(ϖ2,ϖ1)ϖ1Ψ(x)ϖ1dp,qxqΨ(ϖ1)+pΨ(ϖ1+η(ϖ2,ϖ1))[2]p,q|qη(ϖ2,ϖ1)M1r17([3]p,q[2]p,q[2]p,q[3]p,q)1r2(|ϖ1Dp,qΨ(ϖ1)|r2+|ϖ1Dp,qΨ(ϖ2)|r2ση2(ϖ2,ϖ1))1r2.

    Theorem 3.3. For η(ϖ2,ϖ1)>0, let Ψ:[ϖ1,ϖ1+η(ϖ2,ϖ1)]R be (p,q)-differentiable mapping on (ϖ1,ϖ1+η(ϖ2,ϖ1)) and ϖ1Dp,qΨ be integrable on [ϖ1,ϖ1+η(ϖ2,ϖ1)] with 0<q<p1. If |ϖ1Dp,qΨ|r2 is strongly φ-preinvex on [ϖ1,ϖ1+η(ϖ2,ϖ1)] with modulus σ>0 for r21, then

    |1pη(ϖ2,ϖ1)ϖ1+pη(ϖ2,ϖ1)ϖ1Ψ(x)ϖ1dp,qxqΨ(ϖ1)+pΨ(ϖ1+η(ϖ2,ϖ1))[2]p,q|qη(ϖ2,ϖ1)M11r25×(|ϖ1Dp,qΨ(ϖ1)|r21010(1λ)φ(1λ)|μλ|dp,qμdp,qλ+|ϖ1Dp,qΨ(ϖ2)|r21010λφ(λ)|μλ|dp,qμdp,qλM3ση2(ϖ2,ϖ1))1r2,

    where M3 is given as in Theorem 3.1 and M5 is defined as in Corollary 3.2.

    Proof. Using Lemma 2.2, the well-known power mean inequality, property of modulus and the strongly φ-preinvexity of |ϖ1Dp,qΨ|r2, we have

    |1pη(ϖ2,ϖ1)ϖ1+pη(ϖ2,ϖ1)ϖ1Ψ(x)ϖ1dp,qxqΨ(ϖ1)+pΨ(ϖ1+η(ϖ2,ϖ1))[2]p,q|qη(ϖ2,ϖ1)21010|μλ||ϖ1Dp,qΨ(ϖ1+λη(ϖ2,ϖ1))|dp,qμdp,qλ+qη(ϖ2,ϖ1)21010|μλ||ϖ1Dp,qΨ(ϖ1+μη(ϖ2,ϖ1))|dp,qμdp,qλqη(ϖ2,ϖ1)2(1010|μλ|dp,qμdp,qλ)11r2(1010|μλ||ϖ1Dp,qΨ(ϖ1+λη(ϖ2,ϖ1))|r2dp,qμdp,qλ)1r2+qη(ϖ2,ϖ1)2(1010|μλ|dp,qμdp,qλ)11r2(1010|μλ||ϖ1Dp,qΨ(ϖ1+μη(ϖ2,ϖ1))|r2dp,qμdp,qλ)1r2qη(ϖ2,ϖ1)2M11r25×[(1010((1λ)φ(1λ)|ϖ1Dp,qΨ(ϖ1)|r2+λφ(λ)|ϖ1Dp,qΨ(ϖ2)|r2ση2(ϖ2,ϖ1)λ(1λ))dp,qμdp,qλ)1r2+(1010((1μ)φ(1μ)|ϖ1Dp,qΨ(ϖ1)|r2+μφ(μ)|ϖ1Dp,qΨ(ϖ2)|r2ση2(ϖ2,ϖ1)μ(1μ))dp,qμdp,qλ)1r2]
    =qη(ϖ2,ϖ1)2M11r25×[(|ϖ1Dp,qΨ(ϖ1)|r21010(1λ)φ(1λ)|μλ|dp,qμdp,qλ+|ϖ1Dp,qΨ(ϖ2)|r21010λφ(λ)|μλ|dp,qμdp,qλση2(ϖ2,ϖ1)1010λ(1λ)|μλ|dp,qμdp,qλ)1r2+(|ϖ1Dp,qΨ(ϖ1)|r21010(1μ)φ(1μ)|μλ|dp,qμdp,qλ+|ϖ1Dp,qΨ(ϖ2)|r21010μφ(μ)|μλ|dp,qμdp,qλση2(ϖ2,ϖ1)1010μ(1μ)|μλ|dp,qμdp,qλ)1r2]=qη(ϖ2,ϖ1)M11r25×(|ϖ1Dp,qΨ(ϖ1)|r21010(1λ)φ(1λ)|μλ|dp,qμdp,qλ+|ϖ1Dp,qΨ(ϖ2)|r21010λφ(λ)|μλ|dp,qμdp,qλM3ση2(ϖ2,ϖ1))1r2.

    This completes the proof.

    We now discuss some special cases of Theorem 3.3.

    Ⅰ. If φ(μ)=φ(λ)=1, then Theorem 3.3 reduces to the following result for the class of strongly preinvex mapping.

    Corollary 3.9. Under the assumptions of Theorem 3.3, if |ϖ1Dp,qΨ|r2 is strongly preinvex on [ϖ1,ϖ1+η(ϖ2,ϖ1)], then

    |1pη(ϖ2,ϖ1)ϖ1+pη(ϖ2,ϖ1)ϖ1Ψ(x)ϖ1dp,qxqΨ(ϖ1)+pΨ(ϖ1+η(ϖ2,ϖ1))[2]p,q|qη(ϖ2,ϖ1)M11r25(M4|ϖ1Dp,qΨ(ϖ1)|r2+M2|ϖ1Dp,qΨ(ϖ2)|r2M3ση2(ϖ2,ϖ1))1r2.

    Ⅱ. If φ(μ)=μ1,φ(λ)=λ1, then Theorem 3.3 reduces to the following result for the class of strongly P-preinvex mapping.

    Corollary 3.10. Under the assumptions of Theorem 3.3, if |ϖ1Dp,qΨ|r2 is strongly P-preinvex on [ϖ1,ϖ1+η(ϖ2,ϖ1)], then

    |1pη(ϖ2,ϖ1)ϖ1+pη(ϖ2,ϖ1)ϖ1Ψ(x)ϖ1dp,qxqΨ(ϖ1)+pΨ(ϖ1+η(ϖ2,ϖ1))[2]p,q|qη(ϖ2,ϖ1)M11r25(M5(|ϖ1Dp,qΨ(ϖ1)|r2+|ϖ1Dp,qΨ(ϖ2)|r2)M3ση2(ϖ2,ϖ1))1r2.

    Ⅲ. If φ(μ)=μs1,φ(λ)=λs1, then Theorem 3.3 reduces to the following result for the class of strongly s-preinvex mapping.

    Corollary 3.11. Under the assumptions of Theorem 3.3, if |ϖ1Dp,qΨ|r2 is strongly s-preinvex on [ϖ1,ϖ1+η(ϖ2,ϖ1)], then

    |1pη(ϖ2,ϖ1)ϖ1+pη(ϖ2,ϖ1)ϖ1Ψ(x)ϖ1dp,qxqΨ(ϖ1)+pΨ(ϖ1+η(ϖ2,ϖ1))[2]p,q|qη(ϖ2,ϖ1)M11r25((21sM5M6)|ϖ1Dp,qΨ(ϖ1)|r2+M6|ϖ1Dp,qΨ(ϖ2)|r2M3ση2(ϖ2,ϖ1))1r2.

    Ⅳ. If φ(μ)=1μ,φ(λ)=1λ, then Theorem 3.3 reduces to the following result for the class of strongly tgs-preinvex mapping.

    Corollary 3.12. Under the assumptions of Theorem 3.3, if |ϖ1Dp,qΨ|r2 is strongly tgs-preinvex on [ϖ1,ϖ1+η(ϖ2,ϖ1)], then

    |1pη(ϖ2,ϖ1)ϖ1+pη(ϖ2,ϖ1)ϖ1Ψ(x)ϖ1dp,qxqΨ(ϖ1)+pΨ(ϖ1+η(ϖ2,ϖ1))[2]p,q|qη(ϖ2,ϖ1)M11r25M1r23(|ϖ1Dp,qΨ(ϖ1)|r2+|ϖ1Dp,qΨ(ϖ2)|r2ση2(ϖ2,ϖ1))1r2.

    In this section, we derive new (p,q)-Iyengar type integral inequalities essentially by using the strongly quasi-preinvexity property of the mappings. For this, let us recall the following definition.

    Definition 3.1. A mapping Ψ:KηR on the invex set is said to be strongly quasi-preinvex, if

    Ψ(ϖ1+λη(ϖ2,ϖ1))max{Ψ(ϖ1),Ψ(ϖ2)}σλ(1λ)η2(ϖ2,ϖ1),

    holds for all ϖ1,ϖ2Kη, λ(0,1) with η(ϖ2,ϖ1)>0 and σ>0.

    Theorem 3.4. For η(ϖ2,ϖ1)>0, let Ψ:[ϖ1,ϖ1+η(ϖ2,ϖ1)]R be (p,q)-differentiable mapping on (ϖ1,ϖ1+η(ϖ2,ϖ1)) and ϖ1Dp,qΨ be integrable on [ϖ1,ϖ1+η(ϖ2,ϖ1)] with 0<q<p1. If |ϖ1Dp,qΨ| is strongly quasi-preinvex mapping on [ϖ1,ϖ1+η(ϖ2,ϖ1)] with modulus σ>0, then

    |1pη(ϖ2,ϖ1)ϖ1+pη(ϖ2,ϖ1)ϖ1Ψ(x)ϖ1dp,qxqΨ(ϖ1)+pΨ(ϖ1+η(ϖ2,ϖ1))[2]p,q|qη(ϖ2,ϖ1)[M5max{|ϖ1Dp,qΨ(ϖ1)|,|ϖ1Dp,qΨ(ϖ2)|}M3ση2(ϖ2,ϖ1)],

    where M3 is given as in Theorem 3.1 and M5 is defined as in Corollary 3.2.

    Proof. Using Lemma 2.2, property of modulus and the strongly quasi-preinvexity of |ϖ1Dp,qΨ|, we have

    |1pη(ϖ2,ϖ1)ϖ1+pη(ϖ2,ϖ1)ϖ1Ψ(x)ϖ1dp,qxqΨ(ϖ1)+pΨ(ϖ1+η(ϖ2,ϖ1))[2]p,q|qη(ϖ2,ϖ1)21010|μλ||ϖ1Dp,qΨ(ϖ1+λη(ϖ2,ϖ1))|dp,qμdp,qλ+qη(ϖ2,ϖ1)21010|μλ||ϖ1Dp,qΨ(ϖ1+μη(ϖ2,ϖ1))|dp,qμdp,qλqη(ϖ2,ϖ1)21010|μλ|[max{|ϖ1Dp,qΨ(ϖ1)|,|ϖ1Dp,qΨ(ϖ2)|}ση2(ϖ2,ϖ1)λ(1λ)]dp,qμdp,qλ+qη(ϖ2,ϖ1)21010|μλ|[max{|ϖ1Dp,qΨ(ϖ1)|,|ϖ1Dp,qΨ(ϖ2)|}ση2(ϖ2,ϖ1)μ(1μ)]dp,qμdp,qλ=qη(ϖ2,ϖ1)2[max{|ϖ1Dp,qΨ(ϖ1)|,|ϖ1Dp,qΨ(ϖ2)|}1010|μλ|dp,qμdp,qλση2(ϖ2,ϖ1)1010λ(1λ)|μλ|dp,qμdp,qλ]+qη(ϖ2,ϖ1)2[max{|ϖ1Dp,qΨ(ϖ1)|,|ϖ1Dp,qΨ(ϖ2)|}1010|μλ|dp,qμdp,qλση2(ϖ2,ϖ1)1010μ(1μ)|μλ|dp,qμdp,qλ]=qη(ϖ2,ϖ1)[M5max{|ϖ1Dp,qΨ(ϖ1)|,|ϖ1Dp,qΨ(ϖ2)|}M3ση2(ϖ2,ϖ1)].

    This completes the proof.

    Theorem 3.5. For η(ϖ2,ϖ1)>0, let Ψ:[ϖ1,ϖ1+η(ϖ2,ϖ1)]R be (p,q)-differentiable mapping on (ϖ1,ϖ1+η(ϖ2,ϖ1)) and ϖ1Dp,qΨ be integrable on [ϖ1,ϖ1+η(ϖ2,ϖ1)] with 0<q<p1. If |ϖ1Dp,qΨ|r2 is strongly quasi-preinvex mapping on [ϖ1,ϖ1+η(ϖ2,ϖ1)] with modulus σ>0 for r1>1 with r11+r12=1, then

    |1pη(ϖ2,ϖ1)ϖ1+pη(ϖ2,ϖ1)ϖ1Ψ(x)ϖ1dp,qxqΨ(ϖ1)+pΨ(ϖ1+η(ϖ2,ϖ1))[2]p,q|qη(ϖ2,ϖ1)M1r17(max{|ϖ1Dp,qΨ(ϖ1)|r2,|ϖ1Dp,qΨ(ϖ2)|r2}ση2(ϖ2,ϖ1)([3]p,q[2]p,q)[2]p,q[3]p,q)1r2,

    where M7 is given as in Theorem 3.2.

    Proof. Using Lemma 2.2, Hölder's inequality, property of modulus and the strongly quasi-preinvexity of |ϖ1Dp,qΨ|r2, we have

    |1pη(ϖ2,ϖ1)ϖ1+pη(ϖ2,ϖ1)ϖ1Ψ(x)ϖ1dp,qxqΨ(ϖ1)+pΨ(ϖ1+η(ϖ2,ϖ1))[2]p,q|qη(ϖ2,ϖ1)21010|μλ||ϖ1Dp,qΨ(ϖ1+λη(ϖ2,ϖ1))|dp,qμdp,qλ+qη(ϖ2,ϖ1)21010|μλ||ϖ1Dp,qΨ(ϖ1+μη(ϖ2,ϖ1))|dp,qμdp,qλqη(ϖ2,ϖ1)2(1010|μλ|r1dp,qμdp,qλ)1r1(1010|ϖ1Dp,qΨ(ϖ1+λη(ϖ2,ϖ1))|r2dp,qμdp,qλ)1r2+qη(ϖ2,ϖ1)2(1010|μλ|r1dp,qμdp,qλ)1r1(1010|ϖ1Dp,qΨ(ϖ1+μη(ϖ2,ϖ1))|r2dp,qμdp,qλ)1r2qη(ϖ2,ϖ1)2M1r17[(1010[max{|ϖ1Dp,qΨ(ϖ1)|r2,|ϖ1Dp,qΨ(ϖ2)|r2}ση2(ϖ2,ϖ1)λ(1λ)]dp,qμdp,qλ)1r2+(1010[max{|ϖ1Dp,qΨ(ϖ1)|r2,|ϖ1Dp,qΨ(ϖ2)|r2}ση2(ϖ2,ϖ1)μ(1μ)]dp,qμdp,qλ)1r2]=qη(ϖ2,ϖ1)2M1r17×[(max{|ϖ1Dp,qΨ(ϖ1)|r2,|ϖ1Dp,qΨ(ϖ2)|r2}ση2(ϖ2,ϖ1)1010λ(1λ)dp,qμdp,qλ)1r2+(max{|ϖ1Dp,qΨ(ϖ1)|r2,|ϖ1Dp,qΨ(ϖ2)|r2}ση2(ϖ2,ϖ1)1010μ(1μ)dp,qμdp,qλ)1r2]=qη(ϖ2,ϖ1)M1r17(max{|ϖ1Dp,qΨ(ϖ1)|r2,|ϖ1Dp,qΨ(ϖ2)|r2}ση2(ϖ2,ϖ1)([3]p,q[2]p,q)[2]p,q[3]p,q)1r2.

    This completes the proof.

    Theorem 3.6. For η(ϖ2,ϖ1)>0, let Ψ:[ϖ1,ϖ1+η(ϖ2,ϖ1)]R be (p,q)-differentiable mapping on (ϖ1,ϖ1+η(ϖ2,ϖ1)) and ϖ1Dp,qΨ be integrable on [ϖ1,ϖ1+η(ϖ2,ϖ1)] with 0<q<p1. If |ϖ1Dp,qΨ|r2 is strongly quasi-preinvex mapping on [ϖ1,ϖ1+η(ϖ2,ϖ1)] for r21, then

    |1pη(ϖ2,ϖ1)ϖ1+pη(ϖ2,ϖ1)ϖ1Ψ(x)ϖ1dp,qxqΨ(ϖ1)+pΨ(ϖ1+η(ϖ2,ϖ1))[2]p,q|qη(ϖ2,ϖ1)M11r25(M5max{|ϖ1Dp,qΨ(ϖ1)|r2,|ϖ1Dp,qΨ(ϖ2)|r2}M3ση2(ϖ2,ϖ1))1r2,

    where M3 is given as in Theorem 3.1 and M5 is defined as in Corollary 3.2.

    Proof. Using Lemma 2.2, the well-known power mean inequality, property of modulus and the strongly quasi-preinvexity of |ϖ1Dp,qΨ|r2, we have

    |1pη(ϖ2,ϖ1)ϖ1+pη(ϖ2,ϖ1)ϖ1Ψ(x)ϖ1dp,qxqΨ(ϖ1)+pΨ(ϖ1+η(ϖ2,ϖ1))[2]p,q|qη(ϖ2,ϖ1)21010|μλ||ϖ1Dp,qΨ(ϖ1+λη(ϖ2,ϖ1))|dp,qμdp,qλ+qη(ϖ2,ϖ1)21010|μλ||ϖ1Dp,qΨ(ϖ1+μη(ϖ2,ϖ1))|dp,qμdp,qλqη(ϖ2,ϖ1)2(1010|μλ|dp,qμdp,qλ)11r2(1010|μλ||ϖ1Dp,qΨ(ϖ1+λη(ϖ2,ϖ1))|r2dp,qμdp,qλ)1r2+qη(ϖ2,ϖ1)2(1010|μλ|dp,qμdp,qλ)11r2(1010|μλ||ϖ1Dp,qΨ(ϖ1+μη(ϖ2,ϖ1))|r2dp,qμdp,qλ)1r2qη(ϖ2,ϖ1)2M11r25×[(1010|μλ|(max{|ϖ1Dp,qΨ(ϖ1)|r2,|ϖ1Dp,qΨ(ϖ2)|r2}ση2(ϖ2,ϖ1)λ(1λ))dp,qμdp,qλ)1r2+(1010|μλ|(max{|ϖ1Dp,qΨ(ϖ1)|r2,|ϖ1Dp,qΨ(ϖ2)|r2}ση2(ϖ2,ϖ1)μ(1μ))dp,qμdp,qλ)1r2]=qη(ϖ2,ϖ1)2M11r25×[(max{|ϖ1Dp,qΨ(ϖ1)|r2,|ϖ1Dp,qΨ(ϖ2)|r2}1010|μλ|dp,qμdp,qλση2(ϖ2,ϖ1)1010λ(1λ)|μλ|dp,qμdp,qλ)1r2+(max{|ϖ1Dp,qΨ(ϖ1)|r2,|ϖ1Dp,qΨ(ϖ2)|r2}1010|μλ|dp,qμdp,qλση2(ϖ2,ϖ1)1010μ(1μ)|μλ|dp,qμdp,qλ)1r2]=qη(ϖ2,ϖ1)M11r25(M5max{|ϖ1Dp,qΨ(ϖ1)|r2,|ϖ1Dp,qΨ(ϖ2)|r2}M3ση2(ϖ2,ϖ1))1r2.

    This completes the proof.

    Remark 3.1. If we choose p=1 in our main results, we can get new special cases regarding quantum analogues of Dragomir–Agarwal and Iyengar type of integral inequalities essentially by using the strongly φ-preinvexity property of the mappings. We omit here their proofs and the details are left to the interested reader.

    We suppose that the following condition is satisfied:

    |ϖ1Dp,qΨ|Ω, (4.1)

    which means that the (p,q)-differentiable mapping Ψ is in absolute value bounded from the positive real number Ω. Applying the above condition, we are in a position to derive some new interesting inequalities using our main results.

    Proposition 4.1. Under the conditions of Theorem 3.1, the following inequality holds:

    |1pη(ϖ2,ϖ1)ϖ1+pη(ϖ2,ϖ1)ϖ1Ψ(x)ϖ1dp,qxqΨ(ϖ1)+pΨ(ϖ1+η(ϖ2,ϖ1))[2]p,q|qη(ϖ2,ϖ1)[Ω{1010(1λ)φ(1λ)|μλ|dp,qμdp,qλ+1010λφ(λ)|μλ|dp,qμdp,qλ}M3ση2(ϖ2,ϖ1)].

    Proof. Applying inequality (4.1) in Theorem 3.1, we have the desired result.

    Proposition 4.2. Under the conditions of Theorem 3.2, the following inequality holds:

    |1pη(ϖ2,ϖ1)ϖ1+pη(ϖ2,ϖ1)ϖ1Ψ(x)ϖ1dp,qxqΨ(ϖ1)+pΨ(ϖ1+η(ϖ2,ϖ1))[2]p,q|qη(ϖ2,ϖ1)M1r17×(Ωr2{1010(1λ)φ(1λ)dp,qμdp,qλ+1010λφ(λ)dp,qμdp,qλ}ση2(ϖ2,ϖ1)([3]p,q[2]p,q)[2]p,q[3]p,q)1r2.

    Proof. Using inequality (4.1) in Theorem 3.2, we get the desired result.

    Proposition 4.3. Under the conditions of Theorem 3.3, the following inequality holds:

    |1pη(ϖ2,ϖ1)ϖ1+pη(ϖ2,ϖ1)ϖ1Ψ(x)ϖ1dp,qxqΨ(ϖ1)+pΨ(ϖ1+η(ϖ2,ϖ1))[2]p,q|qη(ϖ2,ϖ1)M11r25×(Ωr2{1010(1λ)φ(1λ)|μλ|dp,qμdp,qλ+1010λφ(λ)|μλ|dp,qμdp,qλ}M3ση2(ϖ2,ϖ1))1r2.

    Proof. Applying inequality (4.1) in Theorem 3.3, we obtain the desired result.

    Proposition 4.4. Under the conditions of Theorem 3.4, the following inequality holds:

    |1pη(ϖ2,ϖ1)ϖ1+pη(ϖ2,ϖ1)ϖ1Ψ(x)ϖ1dp,qxqΨ(ϖ1)+pΨ(ϖ1+η(ϖ2,ϖ1))[2]p,q|qη(ϖ2,ϖ1)[M5ΩM3ση2(ϖ2,ϖ1)].

    Proof. Using inequality (4.1) in Theorem 3.4, we have the desired result.

    Proposition 4.5. Under the conditions of Theorem 3.5, the following inequality holds:

    |1pη(ϖ2,ϖ1)ϖ1+pη(ϖ2,ϖ1)ϖ1Ψ(x)ϖ1dp,qxqΨ(ϖ1)+pΨ(ϖ1+η(ϖ2,ϖ1))[2]p,q|qη(ϖ2,ϖ1)M1r17(Ωr2ση2(ϖ2,ϖ1)([3]p,q[2]p,q)[2]p,q[3]p,q)1r2.

    Proof. Applying inequality (4.1) in Theorem 3.5, we get the desired result.

    Proposition 4.6. Under the conditions of Theorem 3.6, the following inequality holds:

    |1pη(ϖ2,ϖ1)ϖ1+pη(ϖ2,ϖ1)ϖ1Ψ(x)ϖ1dp,qxqΨ(ϖ1)+pΨ(ϖ1+η(ϖ2,ϖ1))[2]p,q|qη(ϖ2,ϖ1)M11r25(M5Ωr2M3ση2(ϖ2,ϖ1))1r2.

    Proof. Using inequality (4.1) in Theorem 3.6, we obtain the desired result.

    In this paper, we have established a new post-quantum integral identity using (p,q)-differentiable mappings. From the applied identity as an auxiliary result, we have obtained some new variants of Dragomir–Agarwal and Iyengar type integral inequalities essentially pertaining to the class of strongly φ-preinvex and strongly quasi φ-preinvex mappings, respectively. We also discuss several new special cases which show that the results obtained are quite unifying. In order to illustrate the efficiency of our main results, some applications regarding (p,q)-differentiable mappings that are in absolute value bounded are provided as well. To the best of our knowledge, these results are new in the literature. Since the class of strongly φ-preinvex mappings have large applications in many mathematical areas, they can be applied to obtain several results in convex analysis, special mappings, quantum mechanics, related optimization theory, and mathematical inequalities and may stimulate further research in different areas of pure and applied sciences. Studies relating convexity, partial convexity, and preinvex mappings (as contractive operators) may have useful applications in complex interdisciplinary studies, such as maximizing the likelihood from multiple linear regressions involving Gauss–Laplace distribution. For more details, please see [43,44].

    This research was supported by Taif University Researchers Supporting Project Number (TURSP-2020/155), Taif University, Taif, Saudi Arabia.

    The authors declare that they have no conflict of interest.



    [1] J. Tariboon, S. K. Ntouyas, Quantum integral inequalities on finite intervals, J. Inequal. Appl., 2014 (2014), 121. https://doi.org/10.1186/1029-242X-2014-121 doi: 10.1186/1029-242X-2014-121
    [2] N. Alp, M. Z. Sarikaya, M. Kunt, İ. İşcan, q-Hermite–Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions, J. King Saud Univ. Sci., 30 (2018), 193–203. https://doi.org/10.1016/j.jksus.2016.09.007 doi: 10.1016/j.jksus.2016.09.007
    [3] M. A. Noor, K. I. Noor, M. U. Awan, Some quantum estimates for Hermite–Hadamard inequalities, Appl. Math. Comput., 251 (2015), 675–679. https://doi.org/10.1016/j.amc.2014.11.090 doi: 10.1016/j.amc.2014.11.090
    [4] W. Sudsutad, S. K. Ntouyas, J. Tariboon, Quantum integral inequalities for convex functions, J. Math. Inequal., 9 (2015), 781–793. https://doi.org/10.7153/jmi-09-64 doi: 10.7153/jmi-09-64
    [5] W. J. Liu, H. F. Zhuang, Some quantum estimates of Hermite–Hadamard inequalities for convex functions, J. Appl. Anal. Comput., 7 (2017), 501–522. https://doi.org/10.11948/2017031 doi: 10.11948/2017031
    [6] M. A. Noor, K. I. Noor, M. U. Awan, Some quantum integral inequalities via preinvex functions, Appl. Math. Comput., 269 (2015), 242–251. https://doi.org/10.1016/j.amc.2015.07.078 doi: 10.1016/j.amc.2015.07.078
    [7] M. A. Noor, M. U. Awan, K. I. Noor, Quantum Ostrowski inequalities for q-differentiable convex functions, J. Math. Inequal., 10 (2016), 1013–1018. https://doi.org/10.7153/jmi-10-81 doi: 10.7153/jmi-10-81
    [8] Y. P. Deng, M. U. Awan, S. H. Wu, Quantum integral inequalities of Simpson-type for strongly preinvex functions, Mathematics, 7 (2019), 751. https://doi.org/10.3390/math7080751 doi: 10.3390/math7080751
    [9] Y. Zhang, T. S. Du, H. Wang, Y. J. Shen, Different types of quantum integral inequalities via (α,m)–convexity, J. Inequal. Appl., 2018 (2018), 264. https://doi.org/10.1186/s13660-018-1860-2 doi: 10.1186/s13660-018-1860-2
    [10] C. Promsakon, M. A. Ali, H. Budak, M. Abbas, F. Muhammad, T. Sitthiwirattham, On generalizations of quantum Simpson's and quantum Newton's inequalities with some parameters, AIMS Math., 6 (2021), 13954–13975. https://doi.org/10.3934/math.2021807 doi: 10.3934/math.2021807
    [11] X. You, M. A. Ali, S. Erden, H. Budak, Y. M. Chu, On some new midpoint inequalities for the functions of two variables via quantum calculus, J. Inequal. Appl., 2021 (2021), 142. https://doi.org/10.1186/s13660-021-02678-9 doi: 10.1186/s13660-021-02678-9
    [12] M. A. Ali, N. Alp, H. Budak, Y. M. Chu, Z. Zhang, On some new quantum midpoint-type inequalities for twice quantum differentiable convex functions, Open Math., 19 (2021), 427–439. https://doi.org/10.1515/math-2021-0015 doi: 10.1515/math-2021-0015
    [13] H. Budak, S. Khan, M. A. Ali, Y. M. Chu, Refinements of quantum Hermite–Hadamard-type inequalities, Open Math., 19 (2021), 724–734. https://doi.org/10.1515/math-2021-0029 doi: 10.1515/math-2021-0029
    [14] P. Siricharuanun, S. Erden, M. A. Ali, H. Budak, S. Chasreechai, T. Sitthiwirattham, Some new Simpson's and Newton's formulas type inequalities for convex functions in quantum calculus, Mathematics, 9 (2021), 1992. https://doi.org/10.3390/math9161992 doi: 10.3390/math9161992
    [15] M. Vivas-Cortez, M. U. Awan, S. Talib, A. Kashuri, M. A. Noor, Some new post–quantum integral inequalities involving twice (p,q)–differentiable ψ–preinvex functions and applications, Axioms, 10 (2021), 283. https://doi.org/10.3390/axioms10040283 doi: 10.3390/axioms10040283
    [16] R. Chakrabarti, R. Jagannathan, A (p,q)-oscillator realization of two-parameter quantum algebras, J. Phys. A., 24 (1991). https://doi.org/10.1088/0305-4470/24/13/002 doi: 10.1088/0305-4470/24/13/002
    [17] M. Tunç, E. Göv, Some integral inequalities via (p,q)-calculus on finite intervals, RGMIA Res. Rep. Collect., 19 (2016), 95.
    [18] I. B. Sial, M. A. Ali, G. Murtaza, S. K. Ntouyas, J. Soontharanon, T. Sitthiwirattham, On some new inequalities of Hermite–Hadamard midpoint and trapezoid type for preinvex functions in (p,q)-calculus, Symmetry, 13 (2021), 1864. https://doi.org/10.3390/sym13101864 doi: 10.3390/sym13101864
    [19] T. Sitthiwirattham, G. Murtaza, M. A. Ali, S. K. Ntouyas, M. Adeel, J. Soontharanon, On some new trapezoidal type inequalities for twice (p,q)-differentiable convex functions in post-quantum calculus, Symmetry, 13 (2021), 1605. https://doi.org/10.3390/sym13091605 doi: 10.3390/sym13091605
    [20] H. Kalsoom, M. A. Ali, M. Idrees, P. Agarwal, M. Arif, New post quantum analogues of Hermite–Hadamard type inequalities for interval-valued convex functions, Math. Probl. Eng., 2021 (2021), 5529650. https://doi.org/10.1155/2021/5529650 doi: 10.1155/2021/5529650
    [21] M. Kadakal, İ. İşcan, Exponential type convexity and some related inequalities, J. Inequal. Appl., 2020 (2020), 82. https://doi.org/10.1186/s13660-020-02349-1 doi: 10.1186/s13660-020-02349-1
    [22] A. Ekinci, Inequalities for convex functions on time scales, TWMS J. Appl. Eng. Math., 9 (2019), 64–72.
    [23] A. A. El-Deeb, S. Rashid, On some new double dynamic inequalities associated with Leibniz integral rule on time scales, Adv. Differ. Equ., 2021 (2021), 125. https://doi.org/10.1186/s13662-021-03282-3 doi: 10.1186/s13662-021-03282-3
    [24] A. O. Akdemir, S. I. Butt, M. Nadeem, M. A. Ragusa, New general variants of Chebyshev type inequalities via generalized fractional integral operators, Mathematics, 9 (2021), 122. https://doi.org/10.3390/math9020122 doi: 10.3390/math9020122
    [25] S. I. Butt, M. Nadeem, G. Farid, On Caputo fractional derivatives via exponential s-convex functions, Turk. J. Sci., 5 (2020), 140–146.
    [26] T. Weir, B. Mond, Preinvex functions in multiple objective optimization, J. Math. Anal. Appl., 136 (1988), 29–38. https://doi.org/10.1016/0022-247X(88)90113-8 doi: 10.1016/0022-247X(88)90113-8
    [27] M. A. Noor, K. I. Noor, Some characterizations of strongly preinvex functions, J. Math. Anal. Appl., 316 (2006), 697–706. https://doi.org/10.1016/j.jmaa.2005.05.014 doi: 10.1016/j.jmaa.2005.05.014
    [28] S. S. Dragomir, Inequalities of Hermite–Hadamard type for φ–convex functions, RGMIA Res. Rep. Collect., 16 (2013), 87.
    [29] H. Angulo, J. Gimenez, A. M. Moros, K. Nikodem, On strongly h–convex functions, Ann. Funct. Anal., 2 (2011), 85–91. https://doi.org/10.15352/afa/1399900197 doi: 10.15352/afa/1399900197
    [30] M. A. Noor, K. I. Noor, M. U. Awan, J. Li, On Hermite–Hadamard inequalities for h–preinvex functions, Filomat, 28 (2014), 1463–1474. https://doi.org/10.2298/FIL1407463N doi: 10.2298/FIL1407463N
    [31] M. U. Awan, S. Talib, M. A. Noor, K. I. Noor, On γ-preinvex functions, Filomat, 34 (2020), 4137–4159. https://doi.org/10.2298/FIL2012137A doi: 10.2298/FIL2012137A
    [32] S. I. Butt, M. K. Bakula, D. Pecarič, J. Pecarič, Jensen–Grüss inequality and its applications for the Zipf–Mandelbrot law, Math. Meth. Appl. Sci., 44 (2021), 1664–1673. https://doi.org/10.1002/mma.6869 doi: 10.1002/mma.6869
    [33] S. I. Butt, J. Pecarič, I. Perič, Refinement of integral inequalities for monotone functions, J. Inequal. Appl., 2012 (2012), 301. https://doi.org/10.1186/1029-242X-2012-301 doi: 10.1186/1029-242X-2012-301
    [34] S. I. Butt, J. Pecarič, A. Vukelič, Generalization of Popoviciu-type inequalities via Fink's identity, Mediterr. J. Math., 13 (2016), 1495–1511. https://doi.org/10.1007/s00009-015-0573-8 doi: 10.1007/s00009-015-0573-8
    [35] S. I. Butt, S. Yousaf, A. O. Akdemir, M. A. Dokuyucu, New Hadamard–type integral inequalities via a general form of fractional integral operators, Chaos Solitons Fractals, 148 (2021). https://doi.org/10.1016/j.chaos.2021.111025 doi: 10.1016/j.chaos.2021.111025
    [36] S. I. Butt, S. Yousaf, A. Asghar, K. A. Khan, H. R. Moradi, New fractional Hermite–Hadamard–Mercer inequalities for harmonically convex function, J. Funct. Spaces, 2021 (2021), 5868326. https://doi.org/10.1155/2021/5868326 doi: 10.1155/2021/5868326
    [37] T. S. Du, C. Y. Luo, B. Yu, Certain quantum estimates on the parameterized integral inequalities and their applications, J. Math. Inequal., 15 (2021), 201–228. https://doi.org/10.7153/jmi-2021-15-16 doi: 10.7153/jmi-2021-15-16
    [38] I. Slimane, Z. Dahmani, Normalized fractional inequalities for continuous random variables, J. Interdiscip. Math., 2021 (2021), 1–15. https://doi.org/10.1080/09720502.2021.1932300 doi: 10.1080/09720502.2021.1932300
    [39] S. Rashid, S. I. Butt, S. Kanwal, H. Ahmad, M. K. Wang, Quantum integral inequalities with respect to Raina's function via coordinated generalized Ψ–convex functions with applications, J. Funct. Spaces, 2021 (2021), 6631474. https://doi.org/10.1155/2021/6631474 doi: 10.1155/2021/6631474
    [40] M. Alomari, q-Bernoulli inequality, Turk. J. Sci., 3 (2018), 32–39.
    [41] S. S. Dragomir, R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11 (1998), 91–95. https://doi.org/10.1016/S0893-9659(98)00086-X doi: 10.1016/S0893-9659(98)00086-X
    [42] F. Qi, P. Cerone, S. S. Dragomir, Some new Iyengar type inequalities, Rocky Mt. J. Math., 35 (2005), 997–1015. https://doi.org/10.1216/rmjm/1181069718 doi: 10.1216/rmjm/1181069718
    [43] V. Kak, P. Cheung, Quantum Calculus, Springer Verlag, 2002.
    [44] J. E. Pecarič, F. Proschan, Y. L. Tong, Convex Functions, Partial Ordering and Statistical Applications, Academic Press, New York, 1991.
  • This article has been cited by:

    1. Jinbo Ni, Gang Chen, Hudie Dong, Study on Hermite-Hadamard-type inequalities using a new generalized fractional integral operator, 2023, 2023, 1029-242X, 10.1186/s13660-023-02969-3
    2. Soubhagya Kumar Sahoo, Ravi P. Agarwal, Pshtiwan Othman Mohammed, Bibhakar Kodamasingh, Kamsing Nonlaopon, Khadijah M. Abualnaja, Hadamard–Mercer, Dragomir–Agarwal–Mercer, and Pachpatte–Mercer Type Fractional Inclusions for Convex Functions with an Exponential Kernel and Their Applications, 2022, 14, 2073-8994, 836, 10.3390/sym14040836
    3. Bandar Bin-Mohsin, Muhammad Zakria Javed, Muhammad Uzair Awan, Awais Gul Khan, Clemente Cesarano, Muhammad Aslam Noor, Exploration of Quantum Milne–Mercer-Type Inequalities with Applications, 2023, 15, 2073-8994, 1096, 10.3390/sym15051096
    4. Zeynep Çiftci, Merve Coşkun, Çetin Yildiz, Luminiţa-Ioana Cotîrlă, Daniel Breaz, On New Generalized Hermite–Hadamard–Mercer-Type Inequalities for Raina Functions, 2024, 8, 2504-3110, 472, 10.3390/fractalfract8080472
    5. Sofia Ramzan, Muhammad Uzair Awan, Miguel Vivas-Cortez, Hüseyin Budak, On Fractional Ostrowski-Mercer-Type Inequalities and Applications, 2023, 15, 2073-8994, 2003, 10.3390/sym15112003
    6. Miguel Vivas-Cortez, Muhammad Uzair Awan, Usama Asif, Muhammad Zakria Javed, Hüseyin Budak, Advances in Ostrowski-Mercer Like Inequalities within Fractal Space, 2023, 7, 2504-3110, 689, 10.3390/fractalfract7090689
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1872) PDF downloads(71) Cited by(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog