The main objective of this paper is to derive some new post quantum analogues of Dragomir–Agarwal and Iyengar type integral inequalities essentially by using the strongly $ \varphi $-preinvexity and strongly quasi $ \varphi $-preinvexity properties of the mappings, respectively. We also discuss several new special cases which show that the results obtained are quite unifying. In order to illustrate the efficiency of our main results, some applications regarding $ ({\mathrm{p}}, {\mathrm{q}}) $-differentiable mappings that are in absolute value bounded are given.
Citation: Muhammad Uzair Awan, Sadia Talib, Artion Kashuri, Ibrahim Slimane, Kamsing Nonlaopon, Y. S. Hamed. Some new (p, q)-Dragomir–Agarwal and Iyengar type integral inequalities and their applications[J]. AIMS Mathematics, 2022, 7(4): 5728-5751. doi: 10.3934/math.2022317
The main objective of this paper is to derive some new post quantum analogues of Dragomir–Agarwal and Iyengar type integral inequalities essentially by using the strongly $ \varphi $-preinvexity and strongly quasi $ \varphi $-preinvexity properties of the mappings, respectively. We also discuss several new special cases which show that the results obtained are quite unifying. In order to illustrate the efficiency of our main results, some applications regarding $ ({\mathrm{p}}, {\mathrm{q}}) $-differentiable mappings that are in absolute value bounded are given.
[1] | J. Tariboon, S. K. Ntouyas, Quantum integral inequalities on finite intervals, J. Inequal. Appl., 2014 (2014), 121. https://doi.org/10.1186/1029-242X-2014-121 doi: 10.1186/1029-242X-2014-121 |
[2] | N. Alp, M. Z. Sarikaya, M. Kunt, İ. İşcan, ${\mathrm{q}}$-Hermite–Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions, J. King Saud Univ. Sci., 30 (2018), 193–203. https://doi.org/10.1016/j.jksus.2016.09.007 doi: 10.1016/j.jksus.2016.09.007 |
[3] | M. A. Noor, K. I. Noor, M. U. Awan, Some quantum estimates for Hermite–Hadamard inequalities, Appl. Math. Comput., 251 (2015), 675–679. https://doi.org/10.1016/j.amc.2014.11.090 doi: 10.1016/j.amc.2014.11.090 |
[4] | W. Sudsutad, S. K. Ntouyas, J. Tariboon, Quantum integral inequalities for convex functions, J. Math. Inequal., 9 (2015), 781–793. https://doi.org/10.7153/jmi-09-64 doi: 10.7153/jmi-09-64 |
[5] | W. J. Liu, H. F. Zhuang, Some quantum estimates of Hermite–Hadamard inequalities for convex functions, J. Appl. Anal. Comput., 7 (2017), 501–522. https://doi.org/10.11948/2017031 doi: 10.11948/2017031 |
[6] | M. A. Noor, K. I. Noor, M. U. Awan, Some quantum integral inequalities via preinvex functions, Appl. Math. Comput., 269 (2015), 242–251. https://doi.org/10.1016/j.amc.2015.07.078 doi: 10.1016/j.amc.2015.07.078 |
[7] | M. A. Noor, M. U. Awan, K. I. Noor, Quantum Ostrowski inequalities for ${\mathrm{q}}$-differentiable convex functions, J. Math. Inequal., 10 (2016), 1013–1018. https://doi.org/10.7153/jmi-10-81 doi: 10.7153/jmi-10-81 |
[8] | Y. P. Deng, M. U. Awan, S. H. Wu, Quantum integral inequalities of Simpson-type for strongly preinvex functions, Mathematics, 7 (2019), 751. https://doi.org/10.3390/math7080751 doi: 10.3390/math7080751 |
[9] | Y. Zhang, T. S. Du, H. Wang, Y. J. Shen, Different types of quantum integral inequalities via $(\alpha, m)$–convexity, J. Inequal. Appl., 2018 (2018), 264. https://doi.org/10.1186/s13660-018-1860-2 doi: 10.1186/s13660-018-1860-2 |
[10] | C. Promsakon, M. A. Ali, H. Budak, M. Abbas, F. Muhammad, T. Sitthiwirattham, On generalizations of quantum Simpson's and quantum Newton's inequalities with some parameters, AIMS Math., 6 (2021), 13954–13975. https://doi.org/10.3934/math.2021807 doi: 10.3934/math.2021807 |
[11] | X. You, M. A. Ali, S. Erden, H. Budak, Y. M. Chu, On some new midpoint inequalities for the functions of two variables via quantum calculus, J. Inequal. Appl., 2021 (2021), 142. https://doi.org/10.1186/s13660-021-02678-9 doi: 10.1186/s13660-021-02678-9 |
[12] | M. A. Ali, N. Alp, H. Budak, Y. M. Chu, Z. Zhang, On some new quantum midpoint-type inequalities for twice quantum differentiable convex functions, Open Math., 19 (2021), 427–439. https://doi.org/10.1515/math-2021-0015 doi: 10.1515/math-2021-0015 |
[13] | H. Budak, S. Khan, M. A. Ali, Y. M. Chu, Refinements of quantum Hermite–Hadamard-type inequalities, Open Math., 19 (2021), 724–734. https://doi.org/10.1515/math-2021-0029 doi: 10.1515/math-2021-0029 |
[14] | P. Siricharuanun, S. Erden, M. A. Ali, H. Budak, S. Chasreechai, T. Sitthiwirattham, Some new Simpson's and Newton's formulas type inequalities for convex functions in quantum calculus, Mathematics, 9 (2021), 1992. https://doi.org/10.3390/math9161992 doi: 10.3390/math9161992 |
[15] | M. Vivas-Cortez, M. U. Awan, S. Talib, A. Kashuri, M. A. Noor, Some new post–quantum integral inequalities involving twice $(p, q)$–differentiable $\psi$–preinvex functions and applications, Axioms, 10 (2021), 283. https://doi.org/10.3390/axioms10040283 doi: 10.3390/axioms10040283 |
[16] | R. Chakrabarti, R. Jagannathan, A $({\mathrm{p}}, {\mathrm{q}})$-oscillator realization of two-parameter quantum algebras, J. Phys. A., 24 (1991). https://doi.org/10.1088/0305-4470/24/13/002 doi: 10.1088/0305-4470/24/13/002 |
[17] | M. Tunç, E. Göv, Some integral inequalities via $({\mathrm{p}}, {\mathrm{q}})$-calculus on finite intervals, RGMIA Res. Rep. Collect., 19 (2016), 95. |
[18] | I. B. Sial, M. A. Ali, G. Murtaza, S. K. Ntouyas, J. Soontharanon, T. Sitthiwirattham, On some new inequalities of Hermite–Hadamard midpoint and trapezoid type for preinvex functions in $({\mathrm{p}}, {\mathrm{q}})$-calculus, Symmetry, 13 (2021), 1864. https://doi.org/10.3390/sym13101864 doi: 10.3390/sym13101864 |
[19] | T. Sitthiwirattham, G. Murtaza, M. A. Ali, S. K. Ntouyas, M. Adeel, J. Soontharanon, On some new trapezoidal type inequalities for twice $({\mathrm{p}}, {\mathrm{q}})$-differentiable convex functions in post-quantum calculus, Symmetry, 13 (2021), 1605. https://doi.org/10.3390/sym13091605 doi: 10.3390/sym13091605 |
[20] | H. Kalsoom, M. A. Ali, M. Idrees, P. Agarwal, M. Arif, New post quantum analogues of Hermite–Hadamard type inequalities for interval-valued convex functions, Math. Probl. Eng., 2021 (2021), 5529650. https://doi.org/10.1155/2021/5529650 doi: 10.1155/2021/5529650 |
[21] | M. Kadakal, İ. İşcan, Exponential type convexity and some related inequalities, J. Inequal. Appl., 2020 (2020), 82. https://doi.org/10.1186/s13660-020-02349-1 doi: 10.1186/s13660-020-02349-1 |
[22] | A. Ekinci, Inequalities for convex functions on time scales, TWMS J. Appl. Eng. Math., 9 (2019), 64–72. |
[23] | A. A. El-Deeb, S. Rashid, On some new double dynamic inequalities associated with Leibniz integral rule on time scales, Adv. Differ. Equ., 2021 (2021), 125. https://doi.org/10.1186/s13662-021-03282-3 doi: 10.1186/s13662-021-03282-3 |
[24] | A. O. Akdemir, S. I. Butt, M. Nadeem, M. A. Ragusa, New general variants of Chebyshev type inequalities via generalized fractional integral operators, Mathematics, 9 (2021), 122. https://doi.org/10.3390/math9020122 doi: 10.3390/math9020122 |
[25] | S. I. Butt, M. Nadeem, G. Farid, On Caputo fractional derivatives via exponential $s$-convex functions, Turk. J. Sci., 5 (2020), 140–146. |
[26] | T. Weir, B. Mond, Preinvex functions in multiple objective optimization, J. Math. Anal. Appl., 136 (1988), 29–38. https://doi.org/10.1016/0022-247X(88)90113-8 doi: 10.1016/0022-247X(88)90113-8 |
[27] | M. A. Noor, K. I. Noor, Some characterizations of strongly preinvex functions, J. Math. Anal. Appl., 316 (2006), 697–706. https://doi.org/10.1016/j.jmaa.2005.05.014 doi: 10.1016/j.jmaa.2005.05.014 |
[28] | S. S. Dragomir, Inequalities of Hermite–Hadamard type for $\varphi$–convex functions, RGMIA Res. Rep. Collect., 16 (2013), 87. |
[29] | H. Angulo, J. Gimenez, A. M. Moros, K. Nikodem, On strongly $h$–convex functions, Ann. Funct. Anal., 2 (2011), 85–91. https://doi.org/10.15352/afa/1399900197 doi: 10.15352/afa/1399900197 |
[30] | M. A. Noor, K. I. Noor, M. U. Awan, J. Li, On Hermite–Hadamard inequalities for $h$–preinvex functions, Filomat, 28 (2014), 1463–1474. https://doi.org/10.2298/FIL1407463N doi: 10.2298/FIL1407463N |
[31] | M. U. Awan, S. Talib, M. A. Noor, K. I. Noor, On $\gamma$-preinvex functions, Filomat, 34 (2020), 4137–4159. https://doi.org/10.2298/FIL2012137A doi: 10.2298/FIL2012137A |
[32] | S. I. Butt, M. K. Bakula, D. Pecarič, J. Pecarič, Jensen–Grüss inequality and its applications for the Zipf–Mandelbrot law, Math. Meth. Appl. Sci., 44 (2021), 1664–1673. https://doi.org/10.1002/mma.6869 doi: 10.1002/mma.6869 |
[33] | S. I. Butt, J. Pecarič, I. Perič, Refinement of integral inequalities for monotone functions, J. Inequal. Appl., 2012 (2012), 301. https://doi.org/10.1186/1029-242X-2012-301 doi: 10.1186/1029-242X-2012-301 |
[34] | S. I. Butt, J. Pecarič, A. Vukelič, Generalization of Popoviciu-type inequalities via Fink's identity, Mediterr. J. Math., 13 (2016), 1495–1511. https://doi.org/10.1007/s00009-015-0573-8 doi: 10.1007/s00009-015-0573-8 |
[35] | S. I. Butt, S. Yousaf, A. O. Akdemir, M. A. Dokuyucu, New Hadamard–type integral inequalities via a general form of fractional integral operators, Chaos Solitons Fractals, 148 (2021). https://doi.org/10.1016/j.chaos.2021.111025 doi: 10.1016/j.chaos.2021.111025 |
[36] | S. I. Butt, S. Yousaf, A. Asghar, K. A. Khan, H. R. Moradi, New fractional Hermite–Hadamard–Mercer inequalities for harmonically convex function, J. Funct. Spaces, 2021 (2021), 5868326. https://doi.org/10.1155/2021/5868326 doi: 10.1155/2021/5868326 |
[37] | T. S. Du, C. Y. Luo, B. Yu, Certain quantum estimates on the parameterized integral inequalities and their applications, J. Math. Inequal., 15 (2021), 201–228. https://doi.org/10.7153/jmi-2021-15-16 doi: 10.7153/jmi-2021-15-16 |
[38] | I. Slimane, Z. Dahmani, Normalized fractional inequalities for continuous random variables, J. Interdiscip. Math., 2021 (2021), 1–15. https://doi.org/10.1080/09720502.2021.1932300 doi: 10.1080/09720502.2021.1932300 |
[39] | S. Rashid, S. I. Butt, S. Kanwal, H. Ahmad, M. K. Wang, Quantum integral inequalities with respect to Raina's function via coordinated generalized $\Psi$–convex functions with applications, J. Funct. Spaces, 2021 (2021), 6631474. https://doi.org/10.1155/2021/6631474 doi: 10.1155/2021/6631474 |
[40] | M. Alomari, $q$-Bernoulli inequality, Turk. J. Sci., 3 (2018), 32–39. |
[41] | S. S. Dragomir, R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11 (1998), 91–95. https://doi.org/10.1016/S0893-9659(98)00086-X doi: 10.1016/S0893-9659(98)00086-X |
[42] | F. Qi, P. Cerone, S. S. Dragomir, Some new Iyengar type inequalities, Rocky Mt. J. Math., 35 (2005), 997–1015. https://doi.org/10.1216/rmjm/1181069718 doi: 10.1216/rmjm/1181069718 |
[43] | V. Kak, P. Cheung, Quantum Calculus, Springer Verlag, 2002. |
[44] | J. E. Pecarič, F. Proschan, Y. L. Tong, Convex Functions, Partial Ordering and Statistical Applications, Academic Press, New York, 1991. |