In this paper, we establish a new (p,q)-integral identity. Then, the obtained result is employed to derive (p,q)-integral Simpson type inequalities involving generalized strongly preinvex functions. Moreover, our results are also used to study some special cases and some examples are given to illustrate the investigated results.
Citation: Waewta Luangboon, Kamsing Nonlaopon, Jessada Tariboon, Sortiris K. Ntouyas. On Simpson type inequalities for generalized strongly preinvex functions via (p,q)-calculus and applications[J]. AIMS Mathematics, 2021, 6(9): 9236-9261. doi: 10.3934/math.2021537
[1] | Humaira Kalsoom, Muhammad Amer Latif, Muhammad Idrees, Muhammad Arif, Zabidin Salleh . Quantum Hermite-Hadamard type inequalities for generalized strongly preinvex functions. AIMS Mathematics, 2021, 6(12): 13291-13310. doi: 10.3934/math.2021769 |
[2] | Xue-Xiao You, Muhammad Aamir Ali, Ghulam Murtaza, Saowaluck Chasreechai, Sotiris K. Ntouyas, Thanin Sitthiwirattham . Post-quantum Simpson's type inequalities for coordinated convex functions. AIMS Mathematics, 2022, 7(2): 3097-3132. doi: 10.3934/math.2022172 |
[3] | Chunhong Li, Dandan Yang, Chuanzhi Bai . Some Opial type inequalities in (p, q)-calculus. AIMS Mathematics, 2020, 5(6): 5893-5902. doi: 10.3934/math.2020377 |
[4] | Muhammad Uzair Awan, Sadia Talib, Artion Kashuri, Ibrahim Slimane, Kamsing Nonlaopon, Y. S. Hamed . Some new (p, q)-Dragomir–Agarwal and Iyengar type integral inequalities and their applications. AIMS Mathematics, 2022, 7(4): 5728-5751. doi: 10.3934/math.2022317 |
[5] | Maimoona Karim, Aliya Fahmi, Shahid Qaisar, Zafar Ullah, Ather Qayyum . New developments in fractional integral inequalities via convexity with applications. AIMS Mathematics, 2023, 8(7): 15950-15968. doi: 10.3934/math.2023814 |
[6] | Da Shi, Ghulam Farid, Abd Elmotaleb A. M. A. Elamin, Wajida Akram, Abdullah A. Alahmari, B. A. Younis . Generalizations of some $ q $-integral inequalities of Hölder, Ostrowski and Grüss type. AIMS Mathematics, 2023, 8(10): 23459-23471. doi: 10.3934/math.20231192 |
[7] | Kamsing Nonlaopon, Muhammad Uzair Awan, Sadia Talib, Hüseyin Budak . Parametric generalized $ (p, q) $-integral inequalities and applications. AIMS Mathematics, 2022, 7(7): 12437-12457. doi: 10.3934/math.2022690 |
[8] | Muhammad Tariq, Hijaz Ahmad, Soubhagya Kumar Sahoo, Artion Kashuri, Taher A. Nofal, Ching-Hsien Hsu . Inequalities of Simpson-Mercer-type including Atangana-Baleanu fractional operators and their applications. AIMS Mathematics, 2022, 7(8): 15159-15181. doi: 10.3934/math.2022831 |
[9] | Muhammad Tariq, Asif Ali Shaikh, Sotiris K. Ntouyas, Jessada Tariboon . Some novel refinements of Hermite-Hadamard and Pachpatte type integral inequalities involving a generalized preinvex function pertaining to Caputo-Fabrizio fractional integral operator. AIMS Mathematics, 2023, 8(11): 25572-25610. doi: 10.3934/math.20231306 |
[10] | Muhammad Umar, Saad Ihsan Butt, Youngsoo Seol . Milne and Hermite-Hadamard's type inequalities for strongly multiplicative convex function via multiplicative calculus. AIMS Mathematics, 2024, 9(12): 34090-34108. doi: 10.3934/math.20241625 |
In this paper, we establish a new (p,q)-integral identity. Then, the obtained result is employed to derive (p,q)-integral Simpson type inequalities involving generalized strongly preinvex functions. Moreover, our results are also used to study some special cases and some examples are given to illustrate the investigated results.
Quantum calculus, also called q-calculus, is the study of calculus without limits. In the beginning study of the q-calculus, Newton's infinite series was established by Euler (17071783). Then, Jackson [1] relied on the knowledge of Euler to define q-derivative and q-integral of a continuous function on the interval (0,∞), based on q-calculus of infinite series, in 1910. In q-calculus, the main objective is to obtain the q-analoques of mathematical objects recaptured by taking q→1−. In recent years, the q-calculus has attracted interest because it can be applied in various fields such as mathematics and physics, see [2,3,4,5,6,7,8,9,10,11,12,13,14,15,16] for more details and the references cited therein. In 2002, Kac and Cheung [17] summarized the basic theoretical concept of the q-calculus in their book.
In 2013, Tariboon and Ntouyas [18] defined the new q-derivative and q-integral of a continuous function on finite interval and proved their basic properties. Moreover, they investigated the existence and uniqueness results of initial value problems for first and second order impulsive q-difference equations. Then, these definitions have been studied in various inequalities, for example, Simpson type inequalities, Newton type inequalities, Hermite-Hadamard inequalities, Ostrowski inequalities, and Fejér type inequalities, see [19,20,21,22,23,24,25] for more details and the references cited therein.
Post-quantum calculus, also called (p,q)-calculus, is another generalization of the q-calculus on the interval (0,∞). The (p,q)-calculus consists of two-parameter quantum calculus (p and q-numbers) which are independent. The (p,q)-calculus was first introduced by Chakrabarti and Jagannathan [26] in 1991. Then, the new (p,q)-derivative and (p,q)-integral of a continuous function on finite interval were improved by Tunç and Göv [27,28] in 2016. In (p,q)-calculus, we obtain q-calculus formula for case of p=1, and then get classical formula for case of q→1−. Based on (p,q)-calculus, many literatures have been published by many researchers, see [29,30,31,32,33,34,35,36,37,38,39] for more details and the references cited therein.
Several generalizations and extensions of convexity have been studied via various techniques in several directions. In 1981, Hanson [40] presented that a significant generalization of convex functions was that of invex functions. His initial result inspired many literatures and expanded the role and applications of invexity in both areas of pure and applied sciences [41,42,43,44]. A class of convex functions, called a preinvex function, was presented by Ben-Israel and Mond [45] in 1986. Moreover, the basic properties of the preinvex functions and their role in optimization were introduced by Weir and Mond [46] in 1988. In recent years, these concepts have been studied by many researchers in various fields, see [47,48,49,50,51] for more details and some researchers have studied the preinvex functions via q-calculus, see [52,53,54,55,56,57] for more details. After that, Noor et al. [58] studied a new class of generalized convex functions, called a strongly preinvex function, in 2006. Then, Deng et al. [59] studied strongly preinvex functions via q-calculus of Simpson type inequalities in 2019.
Mathematical inequalities play important roles in the study of pure and applied mathematics [60,61,62]. One of the most interesting inequalities is Simpson type inequalities. Simpson's rules, developed by Simpson (1710–1761), are techniques for the numerical integration and the numerical estimation of definite integrals. Then, there were a lot of results on Simpson's type inequalities studied by many researchers, see [63,64,65,66,67,68,69,70,71] for more details and the references cited therein. Simpson's quadrature (Simpson's 1/3 rule) is formulated as follows:
∫baf(x)dx≈16[f(a)+4f(a+b2)+f(b)], |
see [72] for more details. The estimation of Simpson inequality is as follows:
Theorem 1.1. [72] If f:[a,b]→R is a four times continuously differentiable function on (a,b) and
‖f(4)‖∞=supx∈(a,b)|f(4)(x)|<∞, |
then
|16[f(a)+4f(a+b2)+f(b)]−1b−a∫baf(x)dx|≤12880‖f(4)‖∞(b−a)5. |
Motivated by the above mentioned reports, we propose to study some new properties of Simpson type inequalities for the generalized strongly preinvex functions via (p,q)-calculus.
The rest of the paper is organized as follows. In Section 2 contains some basic knowledge and notation used in the next sections. In Section 3, we give some properties of Simpson type inequalities via (p,q)-calculus. In Section 4, we display some examples to illustrate the applications of the (p,q)-calculus for Simpson type inequalities. In the final section, we summarize our results.
In this section, we give basic knowledge used in our work. Throughout this paper, let [a,b]⊆R be an interval with a<b and 0<q<p≤1 be constants.
Definition 2.1. [48] A set K⊂R is said to be invex with respect to η:R×R→R, if
y+λη(x,y)∈K, | (2.1) |
holds for all x,y∈K and λ∈[0,1].
Definition 2.2. [48] A function f on the invex set K⊂R is said to be preinvex with respect to η:R×R→R, if
f(y+λη(x,y))≤(1−λ)f(y)+λf(x) | (2.2) |
holds for all x,y∈K and λ∈[0,1].
In Definition 2.2, if η(x,y)=x−y, then (2.2) reduces to
f((1−λ)y+x)≤(1−λ)f(y)+λf(x), |
which is the convex functions, see [73,74,75,76] for more details.
Definition 2.3. [58] A function f on the invex set K⊂R is said to be strongly preinvex with respect to η:R×R→R, and modulus μ>0, if
f(y+λη(x,y))≤(1−λ)f(y)+λf(x)−μλ(1−λ)η2(x,y) | (2.3) |
holds for all x,y∈K and λ∈[0,1].
Definition 2.4. [59] A function f on the invex set K⊂R is said to be generalized strongly preinvex with respect to η:R×R→R, and modulus μ≥0, if
f(y+λη(x,y))≤(1−λ)f(y)+λf(x)−μλ(1−λ)η2(x,y) | (2.4) |
holds for all x,y∈K and λ∈[0,1].
In Definition 2.4, if μ=0, then the generalized strongly preinvex functions reduce to the preinvex functions as defined in Definition 2.2.
Definition 2.5. [27,28] If f:[a,b]→R is a continuous function and 0<q<p≤1, then the (p,q)-derivative of function f at t∈[a,b] is defined by
aDp,qf(t)=f(pt+(1−p)a)−f(qt+(1−q)a)(p−q)(t−a),t≠a,aDp,qf(a)=limt→aaDp,qf(t). | (2.5) |
The function f is said to be (p,q)-differentiable function on [a,b] if aDp,qf(t) exists for all t∈[a,b].
In Definition 2.5, if p=1, then aD1,qf(t)=aDqf(t), and (2.5) reduces to
aDqf(t)=f(t)−f(qt+(1−q)a)(1−q)(t−a),t≠a,aDqf(a)=limt→aaDqf(t), | (2.6) |
which is the q-derivative of function f defined on [a,b], see [77,78,79] for more details. In addition, if a=0, then 0Dqf(t)=Dqf(t), and (2.6) reduces to
Dqf(t)=f(t)−f(qt)(1−q)(t),t≠0,Dqf(a)=limt→0Dqf(t), | (2.7) |
which is the q-derivative of function f defined on [0,b], see [17] for more details.
Definition 2.6. [27,28] If f:[a,b]→R is a continuous function and 0<q<p≤1, then the (p,q)-integral of function f at t∈[a,b] is defined by
∫baf(t)adp,qt=(p−q)(b−a)∞∑j=0qjpj+1f(qjpj+1b+(1−qjpj+1)a). | (2.8) |
The function f is said to be (p,q)-integrable function on [a,b] if ∫baf(t)adp,qt exists for all t∈[a,b].
If a=0, then (2.8) is the (p,q)-integral on [0,b] which can be expressed as:
∫b0f(x)dp,qx=(p−q)b∞∑j=0qjpj+1f(qjpj+1b). | (2.9) |
In addition, If p=1, then (2.9) reduces to
∫b0f(x)dqx=(1−q)b∞∑j=0qjf(qjb), | (2.10) |
which is the q-Jackson integral, see [17] for more details.
Theorem 2.1. [27] If f,g:[a,b] are continuous functions, c∈[a,b],s∈R, then the following identities hold:
(i) ∫ba(f(t)+g(t))adp,qt=∫baf(t)adp,qt+∫bag(t)adp,qt;
(ii) ∫basf(t)adp,qt=s∫baf(t)adp,qt;
(iii)∫bcf(t)adp,qt=∫baf(t)adp,qt−∫caf(t)adp,qt.
Lemma 2.1. [27]} For α∈R∖{−1}, the following expression holds:
∫ba(x−a)αadp,qx=p−qpα+1−qα+1(b−a)α+1. |
In this section, we establish a new (p,q)-integral identity. The defined identity is then used to derive the (p,q)-integral inequalities of Simpson type for generalized strongly preinvex function.
Lemma 3.1. Let f:[a,a+η(b,a)]→R be a (p,q)-differentiable function on (a,a+η(b,a)) with η(b,a)>0. If aDp,qf is a (p,q)-integrable function on [a,a+η(b,a)], then
16[f(a)+4f(2a+η(b,a)2)+f(a+η(b,a))]−1pη(b,a)∫a+pη(b,a)af(t)adp,qt=η(b,a)∫10Ψ(t,q)aDp,qf(a+tη(b,a))dp,qt, | (3.1) |
where
Ψ(t,q)={qt−16,for0≤t<12;qt−56,for12≤t≤1. |
Proof. It is not difficult to see that
∫10Ψ(t,q)adp,qf(a+tη(b,a))dp,qt=Q1+Q2, | (3.2) |
where
Q1=∫120(qt−16)aDp,qf(a+tη(b,a))dp,qt, |
and
Q2=∫112(qt−56)aDp,qf(a+tη(b,a))adp,qt. |
Using Definitions 2.5, 2.6, and Theorem 2.1, we have
Q1=∫120(qt−16)aDp,qf(a+tη(b,a))dp,qt=∫120qtaDp,qf(a+tη(b,a))dp,qt−16∫120aDp,qf(a+tη(b,a))dp,qt=∫120qf(a+ptη(b,a))−f(a+qtη(b,a))(p−q)η(b,a)dp,qt−16∫120f(a+ptη(b,a))−f(a+qtη(b,a))t(p−q)η(b,a)dp,qt=12η(b,a)[∞∑j=0qj+1pj+1f(a+qj2pjη(b,a))−∞∑j=0qj+1pj+1f(a+qj+12pj+1η(b,a))]−16η(b,a)[∞∑j=0f(a+qj2pjη(b,a))−∞∑j=0f(a+qj+12pj+1η(b,a))]=12η(b,a)[qp∞∑j=0qjpjf(a+qj2pjη(b,a))−∞∑j=1qjpjf(a+qj2pjη(b,a))]−16η(b,a)[∞∑j=0f(a+qj2pjη(b,a))−∞∑j=1f(a+qj2pjη(b,a))]=12η(b,a)[qpf(2a+η(b,a)2)−p−qp∞∑j=1qjpjf(a+qj2pjη(b,a))]−16η(b,a)[f(2a+η(b,a)2)−f(a)]=q2pη(b,a)f(2a+η(b,a)2)−p−q2pη(b,a)∞∑j=0qjpjf(a+qj2pjη(b,a))+p−q2pη(b,a)f(2a+η(b,a)2)−16η(b,a)[f(2a+η(b,a)2)−f(a)]=13η(b,a)f(2a+η(b,a)2)+f(a)6η(b,a)−1η(b,a)∫120f(a+ptη(b,a))dp,qt. | (3.3) |
Then, we find that
Q2=∫112(qt−56)aDp,qf(a+tη(b,a))adp,qt=∫10(qt−56)aDp,qf(a+tη(b,a))dp,qt−∫120(qt−56)aDp,qf(a+tη(b,a))dp,qt=∫10qtaDp,qf(a+tη(b,a))dp,qt−56∫10aDp,qf(a+tη(b,a))dp,qt−(∫120qtaDp,qf(a+tη(b,a))dp,qt−56∫120aDp,qf(a+tη(b,a))dp,qt). | (3.4) |
Consider
∫10qtaDp,qf(a+tη(b,a))dp,qt−56∫10aDp,qf(a+tη(b,a))dp,qt=∫10qf(a+ptη(b,a))−f(a+qtη(b,a))(p−q)η(b,a)dp,qt−56∫10f(a+ptη(b,a))−f(a+qtη(b,a))t(p−q)η(b,a)dp,qt=1η(b,a)[∞∑j=0qj+1pj+1f(a+qjpjη(b,a))−∞∑j=0qj+1pj+1f(a+qj+1pj+1η(b,a))]−56η(b,a)[∞∑j=0f(a+qjpjη(b,a))−∞∑j=0f(a+qj+1pj+1η(b,a))]=1η(b,a)[qp∞∑j=0qjpjf(a+qjpjη(b,a))−∞∑j=1qjpjf(a+qj2pjη(b,a))]−56η(b,a)[∞∑j=0f(a+qjpjη(b,a))−∞∑j=1f(a+qjpjη(b,a))]=1η(b,a)[qpf(a+η(b,a))−p−qp∞∑j=1qjpjf(a+qjpjη(b,a))]−5(f(a+η(b,a))−f(a))6η(b,a)=qf(a+η(b,a))pη(b,a)−p−qpη(b,a)∞∑j=0qjpjf(a+qjpjη(b,a))+(p−q)f(a+η(b,a))pη(b,a)−5(f(a+η(b,a))−f(a))6η(b,a)=f(a+η(b,a))6η(b,a)+5f(a)6η(b,a)−1η(b,a)∫10f(a+ptη(b,a))dp,qt. |
Similarly, we have
∫120qtaDp,qf(a+tη(b,a))dp,qt−56∫120aDp,qf(a+tη(b,a))dp,qt=−13η(b,a)f(2a+η(b,a)2)+5f(a)6η(b,a)−1η(b,a)∫120f(a+ptη(b,a))dp,qt. |
From (3.4), we obtain
Q2=f(a+η(b,a))6η(b,a)+13η(b,a)f(2a+η(b,a)2)−1η(b,a)∫10f(a+ptη(b,a))dp,qt+1η(b,a)∫120f(a+ptη(b,a))dp,qt. | (3.5) |
Substituting (3.3) and (3.5) in (3.2), we have
∫10Ψ(t,q)aDp,qf(a+tη(b,a))dp,qt=Q1+Q2=f(a)6η(b,a)+23η(b,a)f(2a+η(b,a)2)+f(a+η(b,a))6η(b,a)−1η(b,a)∫10f(a+ptη(b,a))dp,qt=16[f(a)η(b,a)+4η(b,a)f(2a+η(b,a)2)+f(a+η(b,a))η(b,a)]−1pη2(b,a)∫a+pη(b,a)af(t)adp,qt. |
Multiplying the above equality with η(b,a), we obtain the required result. Therefore, the proof is completed.
Remark 3.1. If p=1, then (3.1) reduces to
16[f(a)+4f(2a+η(b,a)2)+f(a+η(b,a))]−1η(b,a)∫a+η(b,a)af(t)adp,qt=η(b,a)∫10Ψ(t,q)aDqf(a+tη(b,a))dqt, |
where
Ψ(t,q)={qt−16,for0≤t<12;qt−56,for12≤t≤1, |
which appeared in [59].
Theorem 3.1. Let f:[a,a+η(b,a)]→R be a (p,q)-differentiable function on (a,a+η(b,a)) with η(b,a)>0. If |aDp,qf| is a (p,q)-integrable function and a generalized strongly preinvex function with modulus μ≥0, then
|16[f(a)+4f(2a+η(b,a)2)+f(a+η(b,a))]−1pη(b,a)∫a+pη(b,a)af(t)adp,qt|≤η(b,a)[[A1(p,q)+A4(p,q)]|aDp,qf(a)|+[A2(p,q)+A5(p,q)]|aDp,qf(b)|−μ(A3(p,q)+A6(p,q))η2(b,a)], | (3.6) |
where Ai(p,q),i=1,2,3,…,6 are defined by
A1(p,q)=∫120(1−t)|qt−16|dp,qt={2p3−p2+2pq−2p2q+2q2−2pq2−4q324(p+q)(p2+pq+q2),for0<q<13;[36q5+18pq4−6q4+18p2q3+6pq3−12q3+33p2q2−18p3q2−12pq2−2q2−2pq+2q−2p2+2p]216q2(p+q)(p2+pq+q2),for13≤q<1,A2(p,q)=∫120t|qt−16|dp,qt={p2−2pq−2q224(p+q)(p2+pq+q2),for0<q<13;18q4+18pq3−9p2q2+2q2+2pq−2q+2p2−2p216q2(p+q)(p2+pq+q2),for13≤q<1,A3(p,q)=∫120t(1−t)|qt−16|dp,qt={2p4−p3−4p3q+2p2q−2p2q2+2pq2−4pq3+2q3−4q448(p+q)(p2+q2)(p2+pq+q2),for0<q<13;[108q7+108pq6−54q6+54p2q5−54pq5+12q5+108p3q4−54p2q4+12pq4−12q4−54p4q3+27p3q3+24p2q3−12pq3−2q3+12p3q2−12p2q2−2pq2+2q2+12p4q−12p3q−2p2q+2pq−2p3+2p2]1296q3(p+q)(p2+q2)(p2+pq+q2),for13≤q<1,A4(p,q)=∫112(1−t)|qt−56|adp,qt={10p3−15p2+2p2q+6pq+2pq2+6q2−8q324(p+q)(p2+pq+q2),for0<q<56;[−270pq4+282q4−270p2q3+582pq3−300q3−270p3q2+825p2q2−300pq2−250q2−250p2+250p]216q2(p+q)(p2+pq+q2),for56≤q<1,A5(p,q)=∫112t|qt−56|adp,qt={5p2−2pq−2q28(p+q)(p2+pq+q2),for0<q<56;18q4+18pq3−225p2q2+250q2+250pq−250q+250p2−250p216q2(p+q)(p2+pq+q2),for56≤q<1,A6(p,q)=∫112t(1−t)|qt−56|adp,qt={[30p4−35p3−12p3q+10p2q+18p2q2+10pq2−12pq3+10q3−12q4]48(p+q)(p2+q2)(p2+pq+q2),for0<q<56;[108q7+108pq6−162q6−1242p2q5−162pq5+1500q5−1500q4+108p3q4−162p2q4+1500pq4−1350p4q3+1215p3q3+3000p2q3−1500pq3−1250q3+1500p3q2−1500p2q2−1250pq2+1250q2+1500p4q−1500p3q−1250p2q+1250pq−1250p3+1250p2]1296q3(p+q)(p2+q2)(p2+pq+q2),for56≤q<1. |
Proof. Using Lemma 3.1 and Definition 2.4, we have
|16[f(a)+4f(2a+η(b,a)2)+f(a+η(b,a))]−1pη(b,a)∫a+pη(b,a)af(t)adp,qt|=|η(b,a)∫10Ψ(t,q)aDp,qf(a+tη(b,a))dp,qt,|=η(b,a)|∫120(qt−16)aDp,qf(a+tη(b,a))dp,qt+∫112(qt−56)aDp,qf(a+tη(b,a))adp,qt|≤η(b,a)[∫120|qt−16||aDp,qf(a+tη(b,a))|dp,qt+∫112|qt−56||aDp,qf(a+tη(b,a))|adp,qt]≤η(b,a)[∫120|qt−16|((1−t)|aDp,qf(a)|+t|aDp,qf(b)|−μt(1−t)η2(b,a))dp,qt+∫112|qt−56|((1−t)|aDp,qf(a)|+t|aDp,qf(b)|−μt(1−t)η2(b,a))adp,qt]=η(b,a)[|aDp,qf(a)|(∫120(1−t)|qt−16|dp,qt+∫112(1−t)|qt−56|adp,qt)+|aDp,qf(b)|(∫120t|qt−16|dp,qt+∫112t|qt−56|adp,qt)−μη2(b,a)(∫120t(1−t)|qt−16|dp,qt+∫112t(1−t)|qt−56|adp,qt)]. |
Using Definition 2.6, Theorem 2.1 and Lemma 2.1, we obtain the required result. Therefore, the proof is completed.
Remark 3.2. If p=1, then (3.6) reduces to
|16[f(a)+4f(2a+η(b,a)2)+f(a+η(b,a))]−1η(b,a)∫a+η(b,a)af(t)adqt|≤η(b,a)[[A1(q)+A4(q)]|aDqf(a)|+[A2(q)+A5(q)]|aDqf(b)|−μA3(q)+A6(q)η2(b,a)], |
where Ai(q),i=1,2,3,…,6 are defined by
A1(q)=∫120(1−t)|qt−16|dqt={1−4q324(1+q)(1+q+q2),for0<q<13;36q3+12q2+12q+1216(1+q)(1+q+q2),for13≤q<1, |
A2(q)=∫120t|qt−16|dqt={1−2q−2q224(1+q)(1+q+q2),for0<q<13;18q2+18q−7216(1+q)(1+q+q2),for13≤q<1,A3(q)=∫120t(1−t)|qt−16|dqt={1−2q−2q3−4q448(1+q)(1+q2)(1+q+q2),for0≤q<13108q4+54q3+12q2+54q−171296(1+q)(1+q2)(1+q+q2),for13≤q<1,A4(q)=∫112(1−t)|qt−56|adqt={−5+8q+8q2−8q324(1+q)(1+pq+q2),for0<q<56;12q2+12q+5216(1+q)(1+q+q2),for56≤q<1,A5(q)=∫112t|qt−56|adqt={5−2q−2q28(1+q)(1+q+q2),for0<q<56;18q2+18q+25216(1+q)(1+q+q2),for56≤q<1,A6(q)=∫112t(1−t)|qt−56|adqt={−5−2q+28q2−2q3−12q448(1+q)(1+q2)(1+q+q2),for0≤q<56108q4−54q3+96q2−54q+1151296(1+q)(1+q2)(1+q+q2),for56≤q<1, |
which appeared in [59].
Theorem 3.2. Let f:[a,a+η(b,a)]→R be a (p,q)-differentiable function on (a,a+η(b,a)) with η(b,a)>0. If |aDp,qf|r is a (p,q)-integrable function and a generalized strongly preinvex function with modulus μ≥0 and r>1, then
|16[f(a)+4f(2a+η(b,a)2)+f(a+η(b,a))]−1pη(b,a)∫a+pη(b,a)af(t)adp,qt|≤η(b,a)[(B1(p,q)1−1/r)(A1(p,q)|aDp,qf(a)|r+A2(p,q)|aDp,qf(b)|r−μA3(p,q)η2(b,a))1/r+(B2(p,q)1−1/r)(A4(p,q)|aDp,qf(a)|r+A5(p,q)|aDp,qf(b)|r−μA6(p,q)η2(b,a))1/r], | (3.7) |
where Ai(p,q),i=1,2,3,…,6 are given in Theorem 3.1 and Bj(p,q),j=1,2 are defined by
B1(p,q)=∫120|qt−16|dp,qt={p−2q12(p+q),for0<q<13;6q2−3pq+2q+2p−236q(p+q),for13≤q<1, |
and
B2(p,q)=∫112|qt−56|adp,qt={5p−4q12(p+q),for0<q<56;−45pq+50q+50p−5036q(p+q),for56≤q<1. |
Proof. Using Lemma 3.1, Definition 2.4 and the Hölder inequality, we have
|16[f(a)+4f(2a+η(b,a)2)+f(a+η(b,a))]−1pη(b,a)∫a+pη(b,a)af(t)adp,qt|=|η(b,a)∫10Ψ(t,q)aDp,qf(a+tη(b,a))dp,qt,|=η(b,a)|∫120(qt−16)aDp,qf(a+tη(b,a))dp,qt+∫112(qt−56)aDp,qf(a+tη(b,a))adp,qt|≤η(b,a)[∫120|qt−16||aDp,qf(a+tη(b,a))|dp,qt+∫112|qt−56||aDp,qf(a+tη(b,a))|adp,qt]≤η(b,a)[(∫120|qt−16|dp,qt)1−1/r(∫120|qt−16||aDp,qf(a+tη(b,a))|rdp,qt)1/r+(∫112|qt−56|adp,qt)1−1/r(∫112|qt−56||aDp,qf(a+tη(b,a))|radp,qt)1/r]≤η(b,a)[(∫120|qt−16|dp,qt)1−1/r×(∫120|qt−16|((1−t)|aDp,qf(a)|r+t|aDp,qf(b)|r−μt(1−t)η2(b,a))dp,qt)1/r+(∫112|qt−56|adp,qt)1−1/r×(∫112|qt−56|((1−t)|aDp,qf(a)|r+t|aDp,qf(b)|r−μt(1−t)η2(b,a))adp,qt)1/r]=η(b,a)[(∫120|qt−16|dp,qt)1−1/r×(|aDp,qf(a)|r∫120(1−t)|qt−16|dp,qt+|aDp,qf(b)|r∫120t|qt−16|dp,qt−μη2(b,a)∫120t(1−t)|qt−16|dp,qt)1/r+(∫112|qt−56|adp,qt)1−1/r×(|aDp,qf(a)|r∫112(1−t)|qt−56|adp,qt+|aDp,qf(b)|r∫112t|qt−56|adp,qt−μη2(b,a)∫112t(1−t)|qt−56|adp,qt)1/r]. |
Using Definition 2.6, Theorem 2.1 and Lemma 2.1, we obtain the required result. Therefore, the proof is completed.
Remark 3.3. If p=1, then (3.7) reduces to
|16[f(a)+4f(2a+η(b,a)2)+f(a+η(b,a))]−1η(b,a)∫a+η(b,a)af(t)adqt|≤η(b,a)[(B1(q)1−1/r)(A1(q)|aDqf(a)|r+A2(q)|aDqf(b)|r−μA3(q)η2(b,a))1/r+(B2(q)1−1/r)(A4(q)|aDqf(a)|r+A5(q)|aDqf(b)|r−μA6(q)η2(b,a))1/r], |
where Ai(q),i=1,2,3,…,6 are given in Remark (3.2) and Bj(q),j=1,2 are defined by
B1(q)=∫120|qt−16|dqt={1−2q12(1+q),for0<q<13;6q−136(1+q),for13≤q<1, |
and
B2(q)=∫112|qt−56|adqt={5−4q12(1+q),for0<q<56;536(1+q),for56≤q<1, |
which appeared in [59].
It is worth noting that if μ=0 in Definition 2.4, then the generalized strongly preinvex functions reduce to the preinvex functions. Moreover, if η(x,y)=x−y, then the preinvex functions reduce to the convex functions. Here, we give some examples to illustrate the applications of our main results.
In the following, we show a new result of the preinvex function, which can be obtained directly by taking μ=0 in Theorem 3.1.
Corollary 4.1. Let f:[a,a+η(b,a)]→R be a (p,q)-differentiable function on (a,a+η(b,a)) with η(b,a)>0. If |aDp,qf| is a (p,q)-integrable function and a preinvex function, then
|13[f(a)+f(a+η(b,a))2+2f(2a+η(b,a)2)]−1pη(b,a)∫a+pη(b,a)af(t)adp,qt|≤η(b,a)[[A1(p,q)+A4(p,q)]|aDp,qf(a)|+[A2(p,q)+A5(p,q)]|aDp,qf(b)|], | (4.1) |
where A1(p,q),A2(p,q),A4(p,q), and A5(p,q) are given in Theorem 3.1.
Remark 4.1. If p=1, then (4.1) reduces to
|13[f(a)+f(a+η(b,a))2+2f(2a+η(b,a)2)]−1η(b,a)∫a+η(b,a)af(t)adqt|≤η(b,a)[[A1(q)+A4(q)]|aDqf(a)|+[A2(q)+A5(q)]|aDqf(b)|], | (4.2) |
where A1(q),A2(q),A4(q), and A5(q) are given in Remark 3.2, which appeared in [59].
If η(b,a)=b−a, then from (4.1) we have the following Corollary.
Corollary 4.2. Let f:[a,b]→R be a (p,q)-differentiable function. If |aDp,qf| is a (p,q)-integrable function and a convex function, then
|13[f(a)+f(b)2+2f(a+b2)]−1p(b−a)∫pb+(1−p)aaf(t)adp,qt|≤(b−a)[[A1(p,q)+A4(p,q)]|aDp,qf(a)|+[A2(p,q)+A5(p,q)]|aDp,qf(b)|], | (4.3) |
where A1(p,q),A2(p,q),A4(p,q), and A5(p,q) are given in Theorem 3.1.
Remark 4.2. If p=1, then (4.3) reduces to
|13[f(a)+f(b)2+2f(a+b2)]−1b−a∫baf(t)adp,qt|≤(b−a)[[A1(q)+A4(q)]|aDqf(a)|+[A2(q)+A5(q)]|aDqf(b)|], | (4.4) |
where A1(q),A2(q),A4(q), and A5(q) are given in Remark 3.2, which appeared in [59].
In addition, if q→1− in (4.4) and we use the basic properties of q-derivative and q-integral (see [17,48])
limq→1aDqf(t)=f′(t),limq→1∫baf(t)adqt=∫baf(t)adt, |
with the equalities
limq→1(A1(q)+A4(q))=limq→1(1+12q+12q2+36q3216(1+q)(1+q+q2)+12q2+12q+5216(1+q)(1+q+q2))=572, |
and
limq→1(A2(q)+A5(q))=limq→1(18q2+18q−7216(1+q)(1+q+q2)+18q2+18q+25216(1+q)(1+q+q2))=572, |
then we obtain the inequality
|13[f(a)+f(b)2+2f(a+b2)]−1b−a∫baf(x)dx|≤5(b−a)72[|f′(a)|+|f′(b)|], |
which appeared in [80].
Theorem 4.1. ([81], Theorem 1) Let f:[a,b]→R be a continuous function. If |aDqf| is a convex function and a q-integrable function with 0<q<1, then
|16[f(a)+4f(a+b2)+f(b)]−1b−a∫baf(t)adqt|≤(b−a)12[2q2+2q+1q3+2q2+2q+1|aDp,qf(b)|+13⋅6q3+4q2+4q+1q3+2q2+2q+1|aDp,qf(a)|]. | (4.5) |
Now, we give the following example to assert that the left side of (4.5) is correct, but the right side of (4.5) is not correct.
Example 4.1. Define function f:[0,1]→R by f(x)=1−x. Then |aDqf(x)|=|aDq(1−x)|=1 is a convex function and a q-integrable function on [0,1]. Then f satisfies the conditions of Theorem 4.1 with q=12, so the left side of (4.5) becomes
|16[f(a)+4f(a+b2)+f(b)]−1b−a∫baf(x)adqx|=|16[f(0)+4f(0+12)+f(1)]−11−0∫10(1−x)0d12x|=|16[1+2+0]−∫10(1−x)0d12x|=|12−13|=16 |
and the right side of (4.5) becomes
(b−a)12[2q2+2q+1q3+2q2+2q+1|aDp,qf(b)|+13⋅6q3+4q2+4q+1q3+2q2+2q+1|aDp,qf(a)|]=(1−0)12[2⋅14+2⋅12+118+2⋅14+2⋅12+1⋅|1|+13⋅6⋅18+4⋅14+4⋅12+118+2⋅14+2⋅12+1⋅|1|]=754. |
This implies that
16≰754. |
Therefore, inequality (4.5) is not correct.
Remark 4.3. ([81], Lemmas 4 and 5) The established inequality (4.5) gives the results involving q-integrals, 0<q<1, as follows
∫120(1−t)|qt−16|dqt=36q3+12q2+12q+1216(q3+2q+2q+1), | (4.6) |
and
∫112(1−t)|qt−56|dqt=5+12q+12q2216(q3+2q+2q+1). | (4.7) |
However, the equality (4.6) is not correct for the case of 0<q<13, but is correct for 13≤q<1. Equality (4.7) is not correct for the case of 0<q<56, but is correct for 56≤q<1.
Deng et al. [59] modified the equalities (4.6) and (4.7) to be valid for 0<q<13 and 0<q<56, respectively, as follows
∫120(1−t)|qt−16|dqt=1−4q324(q3+2q2+2q+1), | (4.8) |
and
∫112(1−t)|qt−56|dqt=−5+8q+8q2−8q3216(q3+2q2+2q+1). | (4.9) |
In the following, we show a new result involving (p,q)-integrals of equalities (4.8) and (4.9) for 0<q<13 and 0<q<56, respectively. If p=1, then we give the correct results of quantum integral inequalities.
Lemma 4.1. If 0<q<p≤1 are constants, then
∫120(1−t)|qt−16|dp,qt=2p3−p2+2pq−2p2q+2q2−2pq2−4q324(q3+2pq2+2p2q+p3) | (4.10) |
holds for all 0<q<13, and
∫112(1−t)|qt−56|dp,qt=10p3−15p2+2p2q+6pq+2pq2+6q2−8q324(q3+2pq2+2p2q+p3) | (4.11) |
holds for all 0<q<56.
Proof. Using Definition 2.6, Theorem 2.1 and Lemma 2.1, we have
∫120(1−t)|qt−16|dp,qt=∫120|qt−16|dp,qt−∫120t|qt−16|dp,qt=∫120(16−qt)dp,qt−∫120t(16−qt)dp,qt=p−2q12(p+q)−p2−2pq−2q224(p+q)(p2+pq+q2)=2p3−p2+2pq−2p2q+2q2−2pq2−4q324(q3+2pq2+2p2q+p3). |
Similarly, we obtain
∫112(1−t)|qt−56|dp,qt=∫112|qt−56|dp,qt−∫112t|qt−56|dp,qt=∫112(56−qt)dp,qt−∫112t(56−qt)dp,qt=(∫10(56−qt)dp,qt−∫120(56−qt)dp,qt)−(∫10t(56−qt)dp,qt−∫120t(56−qt)dp,qt)=5p−4q12(p+q)−15p2−6pq−6q224(p+q)(p2+pq+q2)=10p3−15p2+2p2q+6pq+2pq2+6q2−8q324(q3+2pq2+2p2q+p3). |
Therefore, the proof is completed.
Next, we show a new result involving (p,q)-integrals of equalities (4.6) and (4.7) for 13≤q<1 and 56≤q<1, respectively. If p=1, then we give the correct results of quantum inteqral inequalities.
Lemma 4.2. If 0<q<p≤1 are constants, then
∫120(1−t)|qt−16|dp,qt=1216(q5+2pq4+2p2q3+p3q2)⋅[36q5+18pq4−6q4+18p2q3+6pq3−12q3+33p2q2−18p3q2−12pq2−2q2−2pq+2q−2p2+2p] | (4.12) |
holds for all 13≤q<1, and
∫112(1−t)|qt−56|dp,qt=1216(q5+2pq4+2p2q3+p3q2)⋅[−270pq4+282q4−270p2q3+582pq3−300q3−270p3q2+825p2q2−300pq2−250q2−250p2+250p] | (4.13) |
holds for all 56≤q<1.
Proof. Using Definition 2.6, Theorem 2.1 and Lemma 2.1, we have
∫120(1−t)|qt−16|dp,qt=∫120|qt−16|dp,qt−∫120t|qt−16|dp,qt=(∫16q0(16−qt)dp,qt+∫1216q(qt−16)adp,qt)−(∫16q0t(16−qt)dp,qt+∫1216qt(qt−16)adp,qt)=(∫16q0(16−qt)dp,qt+∫120(qt−16)dp,qt−∫16q0(qt−16)dp,qt)−(∫16q0t(16−qt)dp,qt+∫120t(qt−16)dp,qt)−∫16q0t(qt−16)dp,qt=6q2−3pq+2q+2p−236q(p+q)−18q4+18pq3−9p2q2+2q2+2pq−2q+2p2−2p216q2(p+q)(p2+pq+q2)=1216(q5+2pq4+2p2q3+p3q2)⋅[36q5+18pq4−6q4+18p2q3+6pq3−12q3+33p2q2−18p3q2−12pq2−2q2−2pq+2q−2p2+2p]. |
Similarly, we obtain
∫112(1−t)|qt−56|adp,qt=∫112|qt−56|adp,qt−∫112t|qt−56|adp,qt=(∫56q12(56−qt)adp,qt+∫156q(qt−56)adp,qt)−(∫56q12t(56−qt)adp,qt+∫156qt(qt−56)adp,qt)=−45pq+50q+50p−5036q(p+q)−18q4+18pq3−225p2q2+250q2+250pq−250q+250p2−250p216q2(p+q)(p2+pq+q2)=1216(q5+2pq4+2p2q3+p3q2)⋅[−270pq4+282q4−270p2q3+582pq3−300q3−270p3q2+825p2q2−300pq2−250q2−250p2+250p]. |
Therefore, the proof is completed.
In the following, we provide a modified version involving (p,q)-integral of inequality (4.5).
Corollary 4.3. Let f:[a,b]→R be a (p,q)-differentiable function. If |aDp,qf| is a (p,q)-integrable function and a convex function, then
|13[f(a)+f(b)2+2f(a+b2)]−1p(b−a)∫pb+(1−p)aaf(t)adp,qt|≤(b−a)[[C1(p,q)]|aDp,qf(a)|+[C2(p,q)]|aDp,qf(b)|], | (4.14) |
where C1(p,q) and C2(p,q) are defined by
C1(p,q)={−3q3+2q2+2pq+3p3−4p26(q3+2pq2+2p2q+p3),for0<q<13;[−36q5+36pq4+48q4+36p2q3+60pq3−12q3+72p3q2−102p2q2−12pq2−2q2−2pq+2q+2p−2p2]216(q5+2pq4+2p2q3+p3q2),for13≤q<56;[36q5−252pq4+276q4−252p2q3+588pq3−312q3−288p3q2+858p2q2−312pq2−252q2−2pq+2q−252p2+252p]216(q5+2pq4+2p2q3+p3q2),for56≤q<1, |
and
C2(p,q)={−q2−pq+2p23(q3+2pq2+2p2q+p3),for0<q<13;−36q4−36pq3+126p2q2+2q2+2pq−2q+2p2−2p216(q5+2pq4+2p2q3+p3q2),for13≤q<56;2q4+2pq3−13p2q2+14q2+14pq−14q+14p2−14p12(q5+2pq4+2p2q3+p3q2),for56≤q<1. |
Proof. Using Corollary 4.2 to show a simple calculation in the expressions C1(p,q)=A1(p,q)+A4(p,q) and C2(p,q)=A2(p,q)+A5(p,q), where A1(p,q),A2(p,q),A4(p,q), and A5(p,q) are given in Theorem 3.1, we obtain the inequality (4.14). Therefore, the proof is completed.
Remark 4.4. If p=1, then (4.14) reduces to
|13[f(a)+f(b)2+2f(a+b2)]−1b−a∫baf(t)adp,qt|≤(b−a)[[C1(p,q)]|aDp,qf(a)|+[C2(p,q)]|aDp,qf(b)|], | (4.15) |
where C1(p,q) and C2(p,q) are defined by
C1(q)={−3q3+2q2+2q−16(q3+2q2+2q+1),for0<q<13;−9q3+21q2+21q−1154(q3+2q2+2q+1),for13≤q<56;6q3+4q2+4q+136(q3+2q2+2q+1),for56≤q<1, |
and
C2(q)={−q2−q+23(q3+2q2+2q+1),for0<q<13;−9q2−9q+3254(q3+2q2+2q+1),for13≤q<56;2q2+2q+112(q3+2q2+2q+1),for56≤q<1, |
which appeared in [59].
Example 4.2. Define function f:[0,1]→R by f(x)=1−x. Then |aDp,qf(x)|=|aDp,q(1−x)|=1 is a convex function and a (p,q)-integrable function on [0,1]. Then f satisfies the conditions of Corollary 4.4 with p=1 and q=12, so the left side of (4.14) becomes
|13[f(a)+f(b)2+2f(a+b2)]−1p(b−a)∫pb+(1−p)aaf(x)adp,qx|=|13[f(0)+f(1)2+2f(0+12)]−11⋅(1−0)∫1⋅1+(1−1)00f(t)d1,12x|=|13[12+1]−∫10(1−x)d1,12x|=|12−13|=16, |
and the right side of (4.14) becomes
(b−a)[[C1(p,q)]|aDp,qf(a)|+[C2(p,q)]|aDp,qf(b)|]=(1−0)[[C1(1,12)]|0D1,12f(0)|+[C2(1,12)]|0D1,12f(1)|]=[[291134]⋅|1|+[101567]⋅|1|]=1154. |
This implies that
16≤1154, |
which demonstrates the result described in Corollary 4.3.
Corollary 4.4. Let f:[a,a+η(b,a)]→R be a (p,q)-differentiable function on (a,a+η(b,a)) with η(b,a)>0. If |aDp,qf| is a (p,q)-integrable function and a generalized strongly preinvex function with modulus μ≥0, then
|∫a+pη(b,a)af(t)adp,qt|≤pη(b,a)|16[f(a)+4f(2a+η(b,a)2)+f(a+η(b,a))]|+pη2(b,a)[[A1(p,q)+A4(p,q)]|aDp,qf(a)|+[A2(p,q)+A5(p,q)]|aDp,qf(b)|−μ(A3(p,q)+A6(p,q))η2(b,a)], | (4.16) |
where Ai(p,q),i=1,2,…,6 are given in Theorem 3.1.
Proof. We have
|1pη(b,a)∫a+pη(b,a)af(t)adp,qt|≤|16[f(a)+4f(2a+η(b,a)2)+f(a+η(b,a))]|+|1pη(b,a)∫a+pη(b,a)af(t)adp,qt−16[f(a)+4f(2a+η(b,a)2)+f(a+η(b,a))]|. |
Using Theorem 3.1, we obtain
1pη(b,a)|∫a+pη(b,a)af(t)adp,qt|≤|16[f(a)+4f(2a+η(b,a)2)+f(a+η(b,a))]|+η(b,a)[[A1(p,q)+A4(p,q)]|aDp,qf(a)|+[A2(p,q)+A5(p,q)]|aDp,qf(b)|−μ(A3(p,q)+A6(p,q))η2(b,a)] |
Multiplying the above equality with pη(b,a), we obtain the required result. Therefore, the proof is completed.
Remark 4.5. If p=1, then (4.16) reduces to
|∫a+η(b,a)af(t)adqt|≤η(b,a)|16[f(a)+4f(2a+η(b,a)2)+f(a+η(b,a))]|+η2(b,a)[[A1(q)+A4(q)]|aDqf(a)|+[A2(q)+A5(q)]|aDqf(b)|−μ(A3(q)+A6(q))η2(b,a)], |
where Ai(q),i=1,2,3,…,6 are given in Remark 3.2, which appeared in [59].
In this work, we established new Simpson type inequalities via (p,q)-integrals. The presented results in this study generalize and extend some previous inequalities in the literature of Simpson type inequalities. Moreover, the obtained results were used to study some special cases, namely preinvex function and convex function, and some examples were given to illustrate the investigated results.
All authors contributed equally to this article. They read and approved the final manuscript.
This work is supported by the Program Management Unit for Human Resources & Institutional Development, Research and Innovation [grant number B05F630104]. The first author is supported by Development and Promotion of Science and Technology talents project (DPST), Thailand.
The authors declare that they have no competing interest.
[1] | F. H. Jackson, On a q-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193–203. |
[2] | H. Exton, q-Hypergeometric functions and applications, New York: Halstead Press, 1983. |
[3] |
P. P. Raychev, R. P. Roussev, Yu. F. Smirnov, The quantum algebra SUq(2) and rotational spectra of deformed nuclei, J. Phys. G: Nucl. Part. Phys., 16 (1990), 137–141. doi: 10.1088/0954-3899/16/8/006
![]() |
[4] |
D. N. Page, Information in black hole radiation, Phys. Rev. Lett., 71 (1993), 3743–3746. doi: 10.1103/PhysRevLett.71.3743
![]() |
[5] |
A. M. Gavrilik, q-Serre relations in Uq(un) and q-deformed meson mass sum rules, J. Phys. A: Math. Gen., 27 (1994), L91–L94. doi: 10.1088/0305-4470/27/3/006
![]() |
[6] | H. Gauchman, Integral inequalities in q-calculus, J. Comput. Appl. Math., 47 (2002), 281–300. |
[7] |
T. Ernst, A method for q-calculus, J. Nonlinear Math. Phys., 10 (2003), 487–525. doi: 10.2991/jnmp.2003.10.4.5
![]() |
[8] | G. Bangerezako, Variational q-calculus, J. Math. Anal. Appl., 289 (2004), 650–665. |
[9] |
B. Ahmad, S. K. Ntouyas, I. K. Purnaras, Existence results for nonlocal boundary value problems of nonlinear fractional q-difference equations, Adv. Differ. Equations, 2012 (2012), 140. doi: 10.1186/1687-1847-2012-140
![]() |
[10] |
A. Dobrogowska, A. Odzijewicz, Second order q-difference equation solvable by factorization method, J. Comput. Appl. Math., 193 (2006), 319–346. doi: 10.1016/j.cam.2005.06.009
![]() |
[11] |
M. E. H. Ismail, P. Simeonov, q-difference operators for orthogonal polynomials, J. Comput. Appl. Math., 233 (2009), 749–761. doi: 10.1016/j.cam.2009.02.044
![]() |
[12] | Y. Miao, F. Qi, Several q-integral inequalities, J. Math. Inequal., 3 (2009), 115–121. |
[13] | M. El-Shahed, H. A. Hassan, Positive solutions of q-difference equation, Proc. Am. Math. Soc., 138 (2010), 1733–1738. |
[14] | B. Ahmad, Boundary-value problems for nonlinear third-order q-difference equations, Electron. J. Differ. Equations, 2011 (2011), 1–7. |
[15] | T. Ernst, A Comprehensive treatment of q-Calculus, Springer: Basel, 2012. |
[16] | A. Aral, V. Gupta, R. P. Agarwal, Applications of q-calculus in operator theory, Springer: Science+Business Media, 2013. |
[17] | V. Kac, P. Cheung, Quantum calculus, Springer: New York, 2002. |
[18] |
J. Tariboon, S. K. Ntouyas, Quantum calculus on finite intervals and applications to impulsive difference equations, Adv. Differ. Equations, 2013 (2013), 282. doi: 10.1186/1687-1847-2013-282
![]() |
[19] |
H. Kalsoom, J. D. Wu, S. Hussain, M. A. Latif, Simpson's type inequalities for co-ordinated convex functions on quantum calculus, Symmetry, 11 (2019), 768. doi: 10.3390/sym11060768
![]() |
[20] |
M. Vivas-Cortez, M. Aamir Ali, A. Kashuri, I. Bashir Sial, Z. Zhang, Some new Newton's type Integral inequalities for co-ordinated convex functions in quantum calculus, Symmetry, 12 (2020), 1476. doi: 10.3390/sym12091476
![]() |
[21] |
S. Jhanthanam, J. Tariboon, S. K. Ntouyas, K. Nonlaopon, On q-Hermite-Hadamard inequalities for differentiable convex functions, Mathematics, 7 (2019), 632. doi: 10.3390/math7070632
![]() |
[22] | J. Prabseang, K. Nonlaopon, S. K. Ntouyas, On the refinement of quantum Hermite-Hadamard inequalities for convex functions, J. Math. Inequal., 14 (2020), 875–885. |
[23] | J. Prabseang, K. Nonlaopon, J. Tariboon, Quantum Hermite-Hadamard inequalities for double integral and q-differentiable convex functions, J. Math. Inequal., 13 (2019), 675–686. |
[24] | M. A. Noor, M. U. Awan, K. I. Noor, Quantum Ostrowski inequalities for q-differentiabble convex functions, J. Math. Inequal., 10 (2016), 1013–1018. |
[25] |
W. Yang, Some new Fejér type inequalities via quantum calculus on finite intervals, ScienceAsia, 43 (2017), 123–134. doi: 10.2306/scienceasia1513-1874.2017.43.123
![]() |
[26] |
R. Chakrabarti, R. Jagannathan, A (p,q)-oscillator realization of two-paramenter quantum algebras, J. Phys. A: Math. Gen., 24 (1991), L711–L718. doi: 10.1088/0305-4470/24/13/002
![]() |
[27] | M. Tunç, E. Göv, (p,q)-Integral inequalities, RGMIA Res. Rep. Coll., 19 (2016), 1–13. |
[28] | M. Tunç, E. Göv, Some integral inequalities via (p,q)-calculus on finite intervals, RGMIA Res. Rep. Coll., 19 (2016), 1–12. |
[29] | M. Kunt, Î. Îșcan, N. Alp, M. Z. Sarakaya, (p,q)-Hermite-Hadamard inequalities and (p,q)-estimates for midpoint type inequalities via convex and quasi-convex functions, Rev. R. Acad. Cienc., 112 (2018), 969–992. |
[30] | U. Duran, M. Acikgoz, A. Esi, S. Araci, A note on the (p,q)-Hermite polynomials, Appl. Math. Inf. Sci., 12 (2018), 227–231. |
[31] |
H. Kalsoom, M. Amer, M.-u.-D. Junjua, S. Hussain, G. Shahzadi, Some (p,q)-estimates of Hermite-Hadamard-type inequalities for coordinated convex and quasi-convex functions, Mathematics, 7 (2019), 683. doi: 10.3390/math7080683
![]() |
[32] |
S. Araci, U. Duran, M. Acikgoz, H. M. Srivastava, A certain (p,q)-derivative operator and associated divided differences, J. Inequal. Appl., 2016 (2016), 301. doi: 10.1186/s13660-016-1240-8
![]() |
[33] |
P. N. Sadjang, On the fundamental theorem of (p,q)-calculus and some (p,q)-Taylor formulas, Results Math., 73 (2018), 1–21. doi: 10.1007/s00025-018-0773-1
![]() |
[34] |
M. Nasiruzzaman, A. Mukheimer, M. Mursaleen, Some opial-type integral inequalities via (p,q)-calculus, J. Inequal. Appl., 2019 (2019), 295. doi: 10.1186/s13660-019-2247-8
![]() |
[35] |
J. Prabseang, K. Nonlaopon, J. Tariboon, (p,q)-Hermite-Hadamard inequalities for double integral and (p,q)-differentiable convex functions, Axioms, 8 (2019), 68. doi: 10.3390/axioms8020068
![]() |
[36] |
M. A. Latif, M. Kunt, S. S. Dragomir, Î. Îșcan, Post-quantum trapezoid type inequalities, AIMS Math., 5 (2020), 4011–4026. doi: 10.3934/math.2020258
![]() |
[37] | J. Soontharanon, T. Sitthiwirattham, On fractional (p,q)-calculus, Adv. Differ. Equations, 2020 (2020), 35. |
[38] | S. Thongjob, K. Nonlaopon, S. K. Ntouyas, Some (p,q)-Hardy type inequalities for (p,q)-integrable functions, AIMS Math., 6 (2020), 77–89. |
[39] |
F. Wannalookkhee, K. Nonlaopon, J. Tariboon, S. K. Ntouyas, On Hermite-Hadamard type inequalities for coordinated convex functions via (p,q)-calculus, Mathematics, 9 (2021), 698. doi: 10.3390/math9070698
![]() |
[40] |
M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl., 80 (1981), 545–550. doi: 10.1016/0022-247X(81)90123-2
![]() |
[41] | J. Lee, G. E. Vîlcu, Inequalities for generalized normalized δ-Casorati curvatures of slant submanifolds in quaternionic space forms, Taiwan J. Math., 19 (2015), 691–702. |
[42] |
G. E. Vîlcu, An optimal inequality for lagrangian submanifolds in complex space forms involving casorati curvature, J. Math. Anal. Appl., 465 (2018), 1209–1222. doi: 10.1016/j.jmaa.2018.05.060
![]() |
[43] |
M. Aquib, J. E. Lee, G. E. Vîlcu, D. W. Yoon, Classification of casorati ideal lagrangian submanifolds in complex space forms, Differ. Geom. Appl., 63 (2019), 30–49. doi: 10.1016/j.difgeo.2018.12.006
![]() |
[44] |
A. D. Vîlcu, G. E. Vîlcu, On quasi-homogeneous production functions, Symmetry, 11 (2019), 976. doi: 10.3390/sym11080976
![]() |
[45] | A. Ben-Israel, B. Mond, What is invexity? J. Aust. Math. Soc. Ser. B., 28 (1986), 1–9. |
[46] |
T. Weir, B. Mond, Preinvex functions in multiobjective optimization, J. Math. Anal. Appl., 136 (1988), 29–38. doi: 10.1016/0022-247X(88)90113-8
![]() |
[47] | M. A. Noor, Generalized convex functions, Pan-Am. Math. J., 4 (1994), 73–89. |
[48] |
S. R. Mohan, S. K. Neogy, On invex sets and preinvex functions, J. Math. Anal. Appl., 189 (1995), 901–908. doi: 10.1006/jmaa.1995.1057
![]() |
[49] | X. J. Long, J. W. Peng, Semi-B-preinvex functions, J. Optim. Theory Appl., 131 (2006), 301–305. |
[50] |
G. Cristescu, M. A. Noor, M. U. Awan, Bounds of the second degree cumulative frontier gaps of functions with generalized convexity, Carpath. J. Math., 31 (2015), 173–180. doi: 10.37193/CJM.2015.02.04
![]() |
[51] |
A. Kiliçman, W. Saleh, Generalized preinvex functions and their applications, Symmetry, 10 (2018), 493. doi: 10.3390/sym10100493
![]() |
[52] | M. A. Noor, K. I. Noor, M. U. Awan, Some quantum integral inequalities via preinvex functions, Appl. Math. Comput., 269 (2015), 242–251. |
[53] | M. U. Awan, G. Cristescu, M. A. Noor, L. Riahi, Upper and lower bounds for Riemann type quantum integrals of preinvex and preinvex dominated functions, UPB Sci. Bull. Ser. A., 79 (2017), 33–44. |
[54] | M. U. Awan, M. A. Noor, K. I. Noor, Some integral inequalities using quantum calculus approach, Int. J. Anal. Appl., 15 (2017), 125–137. |
[55] | M. A. Noor, G. Cristescu, M. U. Awan, Bounds having Riemann type quantum integrals via strongly convex functions, Studia Sci. Math. Hung., 54 (2017), 221–240. |
[56] |
M. Vivas-Cortez, A. Kashuri, R. Liko, J. E. H. Hernández, Some new q-integral Inequalities using generalized quantum montgomery identity via preinvex functions, Symmetry, 12 (2020), 553. doi: 10.3390/sym12040553
![]() |
[57] | T. S. Du, C. Y. Luo, B. Yu, Certain quantum estimates on the parameterized integral inequalities and their applications, J. Math. Inequal., 15 (2021), 201–228. |
[58] |
M. A. Noor, K. I. Noor, Some characterizations of strongly preinvex functions, J. Math. Anal. Appl., 316 (2006), 697–706. doi: 10.1016/j.jmaa.2005.05.014
![]() |
[59] |
Y. Deng, M. U. Awan, S. Wu, Quantum integral inequalities of Simpson-type for strongly preinvex functions, Mathematics, 7 (2019), 751. doi: 10.3390/math7080751
![]() |
[60] | L. Akin, New principles of non-linear integral inequalities on time scales, Appl. Math. Nonlinear Sci., 6 (2021), 535–555. |
[61] |
S. Kabra, H. Nagar, K. S. Nisar, D. L. Suthar, The Marichev-Saigo-Maeda fractional calculus operators pertaining to the generalized K-Struve function, Appl. Math. Nonlinear Sci., 5 (2020), 593–602. doi: 10.2478/amns.2020.2.00064
![]() |
[62] |
D. Kaur, P. Agarwal, M. Rakshit, M. Chand, Fractional calculus involving (p,q)-Mathieu type series, Appl. Math. Nonlinear Sci., 5 (2020), 15–34. doi: 10.2478/amns.2020.2.00011
![]() |
[63] | M. Alomari, M. Darus, S. S. Dragomir, New inequalities of Simpson's type for s-convex functions with applications, RGMIA Res. Rep. Coll., 12 (2009). |
[64] |
S. Hussain, J. Khalid, Y. M. Chu, Some generalized fractional integral Simpson's type inequalities with applications, AIMS Math., 5 (2020), 5859–5883. doi: 10.3934/math.2020375
![]() |
[65] |
M. Z. Sarikaya, E. Set, M. E. Ozdemir, On new inequalities of Simpson's type for s-convex functions, Comput. Math. Appl., 60 (2010), 2191–2199. doi: 10.1016/j.camwa.2010.07.033
![]() |
[66] | J. Park, Hermite and Simpson-like type inequalities for functions whose second derivatives in absolute values at certain power are s-convex, Int. J. Pure Appl. Math., 78 (2012), 587–604. |
[67] | A. Kashuri, P. O. Mohammed, T. Abdeljawad, F. Hamasalh, Y. Chu, New Simpson type integral inequalities for s-convex functions and their applications, Math. Probl. Eng., 2020 (2020), 1–12. |
[68] | M. Z. Sarıkaya, S. Bardak, Generalized Simpson type integral inequalities, Konuralp J. Math., 7 (2019), 186–191. |
[69] |
Y. Li, T. Du, Some Simpson type integral inequalities for functions whose third derivatives are (α,m)-GA-convex functions, J. Egyptian Math. Soc., 24 (2016), 175–180. doi: 10.1016/j.joems.2015.05.009
![]() |
[70] | M. A. Ali, H. Budak, Z. Zhang, H. Yildirim, Some new Simpson's type inequalities for coordinated convex functions in quantum calculus, Math. Math. Appl. Sci., 44 (2020), 4515–4540. |
[71] | M. A. Ali, M. Abbas, H. Buda, P. Agarwal, G. Murtaza, Y. M. Chu, New quantum boundaries for quantum Simpson's and quantum Newton's type inequalities for preinvex functions. Adv. Differ. Equations, 2021 (2021), 64. |
[72] | S. S. Dragomir, R. P. Agarwal, P. Cerone, On Simpson's inequality and applications, J. Inequal. Appl., 5 (2000), 533–579. |
[73] |
M. Adil Khan, M. Hanif, Z. A. Khan, K. Ahmad, Y. M. Chu, Association of Jensen's inequality for s-convex function with Csiszár divergence, J. Inequal. Appl., 2019 (2019), 162. doi: 10.1186/s13660-019-2112-9
![]() |
[74] |
S. Zaheer Ullah, M. Adil Khan, Y. M. Chu, A note on generalized convex functions, J. Inequal. Appl., 2019 (2019), 291. doi: 10.1186/s13660-019-2242-0
![]() |
[75] | W. Liu, H. Zhuang, Some quantum estimates of Hermite-Hadamard inequalities for convex functions, J. Appl. Anal. Comput., 7 (2017), 501–522. |
[76] | M. A. Noor, K. I. Noor, S. Iftikhar, Newton's inequalities for p-harmonic convex functions, Honam Math. J., 40 (2018), 239–250. |
[77] | M. A. Noor, K. I. Noor, M. U. Awan, Some quantum estimates for Hermite-Hadamard inequalities, Appl. Math. Comput., 251 (2015), 675–679. |
[78] | W. Sudsutad, S. K. Ntouyas, J. Tariboon, Quantum integral inequalities for convex functions, J. Math. Inequal., 9 (2015), 781–793. |
[79] |
J. Tariboon, S. K. Ntouyas, Quantum integral inequalities on finite intervals, J. Inequal. Appl., 2014 (2014), 121. doi: 10.1186/1029-242X-2014-121
![]() |
[80] |
Y. Zhang, T. S. Du, H. Wang, Y. J. Shen, Different types of quantum integral inequalities via α,m-convexity, J. Inequal. Appl., 2018 (2018), 264. doi: 10.1186/s13660-018-1860-2
![]() |
[81] |
M. Tunç, E. Göv, S. Balgeçti, Simpson type quantum integral inequalities for convex functions, Miskolc Math. Notes, 19 (2018), 649–664. doi: 10.18514/MMN.2018.1661
![]() |
1. | Thanin Sitthiwirattham, Muhammad Aamir Ali, Hüseyin Budak, Sina Etemad, Shahram Rezapour, A new version of $( p,q ) $-Hermite–Hadamard’s midpoint and trapezoidal inequalities via special operators in $( p,q ) $-calculus, 2022, 2022, 1687-2770, 10.1186/s13661-022-01665-3 | |
2. | Waewta Luangboon, Kamsing Nonlaopon, Jessada Tariboon, Sotiris K. Ntouyas, Hüseyin Budak, Some (p, q)-Integral Inequalities of Hermite–Hadamard Inequalities for (p, q)-Differentiable Convex Functions, 2022, 10, 2227-7390, 826, 10.3390/math10050826 | |
3. | Yonghong Liu, Ghulam Farid, Dina Abuzaid, Kamsing Nonlaopon, On q-Hermite-Hadamard Inequalities via q − h-Integrals, 2022, 14, 2073-8994, 2648, 10.3390/sym14122648 |