Research article

On Simpson type inequalities for generalized strongly preinvex functions via $ (p, q) $-calculus and applications

  • Received: 28 April 2021 Accepted: 15 June 2021 Published: 22 June 2021
  • MSC : 05A30, 26A51, 26D10, 26D15

  • In this paper, we establish a new $ (p, q) $-integral identity. Then, the obtained result is employed to derive $ (p, q) $-integral Simpson type inequalities involving generalized strongly preinvex functions. Moreover, our results are also used to study some special cases and some examples are given to illustrate the investigated results.

    Citation: Waewta Luangboon, Kamsing Nonlaopon, Jessada Tariboon, Sortiris K. Ntouyas. On Simpson type inequalities for generalized strongly preinvex functions via $ (p, q) $-calculus and applications[J]. AIMS Mathematics, 2021, 6(9): 9236-9261. doi: 10.3934/math.2021537

    Related Papers:

  • In this paper, we establish a new $ (p, q) $-integral identity. Then, the obtained result is employed to derive $ (p, q) $-integral Simpson type inequalities involving generalized strongly preinvex functions. Moreover, our results are also used to study some special cases and some examples are given to illustrate the investigated results.



    加载中


    [1] F. H. Jackson, On a $q$-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193–203.
    [2] H. Exton, $q$-Hypergeometric functions and applications, New York: Halstead Press, 1983.
    [3] P. P. Raychev, R. P. Roussev, Yu. F. Smirnov, The quantum algebra $SU_q(2)$ and rotational spectra of deformed nuclei, J. Phys. G: Nucl. Part. Phys., 16 (1990), 137–141. doi: 10.1088/0954-3899/16/8/006
    [4] D. N. Page, Information in black hole radiation, Phys. Rev. Lett., 71 (1993), 3743–3746. doi: 10.1103/PhysRevLett.71.3743
    [5] A. M. Gavrilik, $q$-Serre relations in $U_q(u_n)$ and $q$-deformed meson mass sum rules, J. Phys. A: Math. Gen., 27 (1994), L91–L94. doi: 10.1088/0305-4470/27/3/006
    [6] H. Gauchman, Integral inequalities in $q$-calculus, J. Comput. Appl. Math., 47 (2002), 281–300.
    [7] T. Ernst, A method for $q$-calculus, J. Nonlinear Math. Phys., 10 (2003), 487–525. doi: 10.2991/jnmp.2003.10.4.5
    [8] G. Bangerezako, Variational $q$-calculus, J. Math. Anal. Appl., 289 (2004), 650–665.
    [9] B. Ahmad, S. K. Ntouyas, I. K. Purnaras, Existence results for nonlocal boundary value problems of nonlinear fractional $q$-difference equations, Adv. Differ. Equations, 2012 (2012), 140. doi: 10.1186/1687-1847-2012-140
    [10] A. Dobrogowska, A. Odzijewicz, Second order $q$-difference equation solvable by factorization method, J. Comput. Appl. Math., 193 (2006), 319–346. doi: 10.1016/j.cam.2005.06.009
    [11] M. E. H. Ismail, P. Simeonov, $q$-difference operators for orthogonal polynomials, J. Comput. Appl. Math., 233 (2009), 749–761. doi: 10.1016/j.cam.2009.02.044
    [12] Y. Miao, F. Qi, Several $q$-integral inequalities, J. Math. Inequal., 3 (2009), 115–121.
    [13] M. El-Shahed, H. A. Hassan, Positive solutions of $q$-difference equation, Proc. Am. Math. Soc., 138 (2010), 1733–1738.
    [14] B. Ahmad, Boundary-value problems for nonlinear third-order $q$-difference equations, Electron. J. Differ. Equations, 2011 (2011), 1–7.
    [15] T. Ernst, A Comprehensive treatment of $q$-Calculus, Springer: Basel, 2012.
    [16] A. Aral, V. Gupta, R. P. Agarwal, Applications of $q$-calculus in operator theory, Springer: Science+Business Media, 2013.
    [17] V. Kac, P. Cheung, Quantum calculus, Springer: New York, 2002.
    [18] J. Tariboon, S. K. Ntouyas, Quantum calculus on finite intervals and applications to impulsive difference equations, Adv. Differ. Equations, 2013 (2013), 282. doi: 10.1186/1687-1847-2013-282
    [19] H. Kalsoom, J. D. Wu, S. Hussain, M. A. Latif, Simpson's type inequalities for co-ordinated convex functions on quantum calculus, Symmetry, 11 (2019), 768. doi: 10.3390/sym11060768
    [20] M. Vivas-Cortez, M. Aamir Ali, A. Kashuri, I. Bashir Sial, Z. Zhang, Some new Newton's type Integral inequalities for co-ordinated convex functions in quantum calculus, Symmetry, 12 (2020), 1476. doi: 10.3390/sym12091476
    [21] S. Jhanthanam, J. Tariboon, S. K. Ntouyas, K. Nonlaopon, On $q$-Hermite-Hadamard inequalities for differentiable convex functions, Mathematics, 7 (2019), 632. doi: 10.3390/math7070632
    [22] J. Prabseang, K. Nonlaopon, S. K. Ntouyas, On the refinement of quantum Hermite-Hadamard inequalities for convex functions, J. Math. Inequal., 14 (2020), 875–885.
    [23] J. Prabseang, K. Nonlaopon, J. Tariboon, Quantum Hermite-Hadamard inequalities for double integral and $q$-differentiable convex functions, J. Math. Inequal., 13 (2019), 675–686.
    [24] M. A. Noor, M. U. Awan, K. I. Noor, Quantum Ostrowski inequalities for $q$-differentiabble convex functions, J. Math. Inequal., 10 (2016), 1013–1018.
    [25] W. Yang, Some new Fejér type inequalities via quantum calculus on finite intervals, ScienceAsia, 43 (2017), 123–134. doi: 10.2306/scienceasia1513-1874.2017.43.123
    [26] R. Chakrabarti, R. Jagannathan, A $(p, q)$-oscillator realization of two-paramenter quantum algebras, J. Phys. A: Math. Gen., 24 (1991), L711–L718. doi: 10.1088/0305-4470/24/13/002
    [27] M. Tunç, E. Göv, $(p, q)$-Integral inequalities, RGMIA Res. Rep. Coll., 19 (2016), 1–13.
    [28] M. Tunç, E. Göv, Some integral inequalities via $(p, q)$-calculus on finite intervals, RGMIA Res. Rep. Coll., 19 (2016), 1–12.
    [29] M. Kunt, Î. Îșcan, N. Alp, M. Z. Sarakaya, $(p, q)$-Hermite-Hadamard inequalities and $(p, q)$-estimates for midpoint type inequalities via convex and quasi-convex functions, Rev. R. Acad. Cienc., 112 (2018), 969–992.
    [30] U. Duran, M. Acikgoz, A. Esi, S. Araci, A note on the $(p, q)$-Hermite polynomials, Appl. Math. Inf. Sci., 12 (2018), 227–231.
    [31] H. Kalsoom, M. Amer, M.-u.-D. Junjua, S. Hussain, G. Shahzadi, Some $(p, q)$-estimates of Hermite-Hadamard-type inequalities for coordinated convex and quasi-convex functions, Mathematics, 7 (2019), 683. doi: 10.3390/math7080683
    [32] S. Araci, U. Duran, M. Acikgoz, H. M. Srivastava, A certain $(p, q)$-derivative operator and associated divided differences, J. Inequal. Appl., 2016 (2016), 301. doi: 10.1186/s13660-016-1240-8
    [33] P. N. Sadjang, On the fundamental theorem of $(p, q)$-calculus and some $(p, q)$-Taylor formulas, Results Math., 73 (2018), 1–21. doi: 10.1007/s00025-018-0773-1
    [34] M. Nasiruzzaman, A. Mukheimer, M. Mursaleen, Some opial-type integral inequalities via $(p, q)$-calculus, J. Inequal. Appl., 2019 (2019), 295. doi: 10.1186/s13660-019-2247-8
    [35] J. Prabseang, K. Nonlaopon, J. Tariboon, $(p, q)$-Hermite-Hadamard inequalities for double integral and $(p, q)$-differentiable convex functions, Axioms, 8 (2019), 68. doi: 10.3390/axioms8020068
    [36] M. A. Latif, M. Kunt, S. S. Dragomir, Î. Îșcan, Post-quantum trapezoid type inequalities, AIMS Math., 5 (2020), 4011–4026. doi: 10.3934/math.2020258
    [37] J. Soontharanon, T. Sitthiwirattham, On fractional $(p, q)$-calculus, Adv. Differ. Equations, 2020 (2020), 35.
    [38] S. Thongjob, K. Nonlaopon, S. K. Ntouyas, Some $(p, q)$-Hardy type inequalities for $(p, q)$-integrable functions, AIMS Math., 6 (2020), 77–89.
    [39] F. Wannalookkhee, K. Nonlaopon, J. Tariboon, S. K. Ntouyas, On Hermite-Hadamard type inequalities for coordinated convex functions via $(p, q)$-calculus, Mathematics, 9 (2021), 698. doi: 10.3390/math9070698
    [40] M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl., 80 (1981), 545–550. doi: 10.1016/0022-247X(81)90123-2
    [41] J. Lee, G. E. Vîlcu, Inequalities for generalized normalized $\delta$-Casorati curvatures of slant submanifolds in quaternionic space forms, Taiwan J. Math., 19 (2015), 691–702.
    [42] G. E. Vîlcu, An optimal inequality for lagrangian submanifolds in complex space forms involving casorati curvature, J. Math. Anal. Appl., 465 (2018), 1209–1222. doi: 10.1016/j.jmaa.2018.05.060
    [43] M. Aquib, J. E. Lee, G. E. Vîlcu, D. W. Yoon, Classification of casorati ideal lagrangian submanifolds in complex space forms, Differ. Geom. Appl., 63 (2019), 30–49. doi: 10.1016/j.difgeo.2018.12.006
    [44] A. D. Vîlcu, G. E. Vîlcu, On quasi-homogeneous production functions, Symmetry, 11 (2019), 976. doi: 10.3390/sym11080976
    [45] A. Ben-Israel, B. Mond, What is invexity? J. Aust. Math. Soc. Ser. B., 28 (1986), 1–9.
    [46] T. Weir, B. Mond, Preinvex functions in multiobjective optimization, J. Math. Anal. Appl., 136 (1988), 29–38. doi: 10.1016/0022-247X(88)90113-8
    [47] M. A. Noor, Generalized convex functions, Pan-Am. Math. J., 4 (1994), 73–89.
    [48] S. R. Mohan, S. K. Neogy, On invex sets and preinvex functions, J. Math. Anal. Appl., 189 (1995), 901–908. doi: 10.1006/jmaa.1995.1057
    [49] X. J. Long, J. W. Peng, Semi-B-preinvex functions, J. Optim. Theory Appl., 131 (2006), 301–305.
    [50] G. Cristescu, M. A. Noor, M. U. Awan, Bounds of the second degree cumulative frontier gaps of functions with generalized convexity, Carpath. J. Math., 31 (2015), 173–180. doi: 10.37193/CJM.2015.02.04
    [51] A. Kiliçman, W. Saleh, Generalized preinvex functions and their applications, Symmetry, 10 (2018), 493. doi: 10.3390/sym10100493
    [52] M. A. Noor, K. I. Noor, M. U. Awan, Some quantum integral inequalities via preinvex functions, Appl. Math. Comput., 269 (2015), 242–251.
    [53] M. U. Awan, G. Cristescu, M. A. Noor, L. Riahi, Upper and lower bounds for Riemann type quantum integrals of preinvex and preinvex dominated functions, UPB Sci. Bull. Ser. A., 79 (2017), 33–44.
    [54] M. U. Awan, M. A. Noor, K. I. Noor, Some integral inequalities using quantum calculus approach, Int. J. Anal. Appl., 15 (2017), 125–137.
    [55] M. A. Noor, G. Cristescu, M. U. Awan, Bounds having Riemann type quantum integrals via strongly convex functions, Studia Sci. Math. Hung., 54 (2017), 221–240.
    [56] M. Vivas-Cortez, A. Kashuri, R. Liko, J. E. H. Hernández, Some new $q$-integral Inequalities using generalized quantum montgomery identity via preinvex functions, Symmetry, 12 (2020), 553. doi: 10.3390/sym12040553
    [57] T. S. Du, C. Y. Luo, B. Yu, Certain quantum estimates on the parameterized integral inequalities and their applications, J. Math. Inequal., 15 (2021), 201–228.
    [58] M. A. Noor, K. I. Noor, Some characterizations of strongly preinvex functions, J. Math. Anal. Appl., 316 (2006), 697–706. doi: 10.1016/j.jmaa.2005.05.014
    [59] Y. Deng, M. U. Awan, S. Wu, Quantum integral inequalities of Simpson-type for strongly preinvex functions, Mathematics, 7 (2019), 751. doi: 10.3390/math7080751
    [60] L. Akin, New principles of non-linear integral inequalities on time scales, Appl. Math. Nonlinear Sci., 6 (2021), 535–555.
    [61] S. Kabra, H. Nagar, K. S. Nisar, D. L. Suthar, The Marichev-Saigo-Maeda fractional calculus operators pertaining to the generalized $K$-Struve function, Appl. Math. Nonlinear Sci., 5 (2020), 593–602. doi: 10.2478/amns.2020.2.00064
    [62] D. Kaur, P. Agarwal, M. Rakshit, M. Chand, Fractional calculus involving $(p, q)$-Mathieu type series, Appl. Math. Nonlinear Sci., 5 (2020), 15–34. doi: 10.2478/amns.2020.2.00011
    [63] M. Alomari, M. Darus, S. S. Dragomir, New inequalities of Simpson's type for $s$-convex functions with applications, RGMIA Res. Rep. Coll., 12 (2009).
    [64] S. Hussain, J. Khalid, Y. M. Chu, Some generalized fractional integral Simpson's type inequalities with applications, AIMS Math., 5 (2020), 5859–5883. doi: 10.3934/math.2020375
    [65] M. Z. Sarikaya, E. Set, M. E. Ozdemir, On new inequalities of Simpson's type for $s$-convex functions, Comput. Math. Appl., 60 (2010), 2191–2199. doi: 10.1016/j.camwa.2010.07.033
    [66] J. Park, Hermite and Simpson-like type inequalities for functions whose second derivatives in absolute values at certain power are $s$-convex, Int. J. Pure Appl. Math., 78 (2012), 587–604.
    [67] A. Kashuri, P. O. Mohammed, T. Abdeljawad, F. Hamasalh, Y. Chu, New Simpson type integral inequalities for $s$-convex functions and their applications, Math. Probl. Eng., 2020 (2020), 1–12.
    [68] M. Z. Sarıkaya, S. Bardak, Generalized Simpson type integral inequalities, Konuralp J. Math., 7 (2019), 186–191.
    [69] Y. Li, T. Du, Some Simpson type integral inequalities for functions whose third derivatives are $(\alpha, m)$-GA-convex functions, J. Egyptian Math. Soc., 24 (2016), 175–180. doi: 10.1016/j.joems.2015.05.009
    [70] M. A. Ali, H. Budak, Z. Zhang, H. Yildirim, Some new Simpson's type inequalities for coordinated convex functions in quantum calculus, Math. Math. Appl. Sci., 44 (2020), 4515–4540.
    [71] M. A. Ali, M. Abbas, H. Buda, P. Agarwal, G. Murtaza, Y. M. Chu, New quantum boundaries for quantum Simpson's and quantum Newton's type inequalities for preinvex functions. Adv. Differ. Equations, 2021 (2021), 64.
    [72] S. S. Dragomir, R. P. Agarwal, P. Cerone, On Simpson's inequality and applications, J. Inequal. Appl., 5 (2000), 533–579.
    [73] M. Adil Khan, M. Hanif, Z. A. Khan, K. Ahmad, Y. M. Chu, Association of Jensen's inequality for $s$-convex function with Csiszár divergence, J. Inequal. Appl., 2019 (2019), 162. doi: 10.1186/s13660-019-2112-9
    [74] S. Zaheer Ullah, M. Adil Khan, Y. M. Chu, A note on generalized convex functions, J. Inequal. Appl., 2019 (2019), 291. doi: 10.1186/s13660-019-2242-0
    [75] W. Liu, H. Zhuang, Some quantum estimates of Hermite-Hadamard inequalities for convex functions, J. Appl. Anal. Comput., 7 (2017), 501–522.
    [76] M. A. Noor, K. I. Noor, S. Iftikhar, Newton's inequalities for $p$-harmonic convex functions, Honam Math. J., 40 (2018), 239–250.
    [77] M. A. Noor, K. I. Noor, M. U. Awan, Some quantum estimates for Hermite-Hadamard inequalities, Appl. Math. Comput., 251 (2015), 675–679.
    [78] W. Sudsutad, S. K. Ntouyas, J. Tariboon, Quantum integral inequalities for convex functions, J. Math. Inequal., 9 (2015), 781–793.
    [79] J. Tariboon, S. K. Ntouyas, Quantum integral inequalities on finite intervals, J. Inequal. Appl., 2014 (2014), 121. doi: 10.1186/1029-242X-2014-121
    [80] Y. Zhang, T. S. Du, H. Wang, Y. J. Shen, Different types of quantum integral inequalities via $\alpha, m$-convexity, J. Inequal. Appl., 2018 (2018), 264. doi: 10.1186/s13660-018-1860-2
    [81] M. Tunç, E. Göv, S. Balgeçti, Simpson type quantum integral inequalities for convex functions, Miskolc Math. Notes, 19 (2018), 649–664. doi: 10.18514/MMN.2018.1661
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2250) PDF downloads(144) Cited by(3)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog