By applying exponential type m-convexity, the Hölder inequality and the power mean inequality, this paper is devoted to conclude explicit bounds for the fractional integrals with exponential kernels inequalities, such as right-side Hadamard type, midpoint type, trapezoid type and Dragomir-Agarwal type inequalities. The results of this study are obtained for mappings ω where ω and |ω′| (or |ω′|qwith q≥1) are exponential type m-convex. Also, the results presented in this article provide generalizations of those given in earlier works.
Citation: Hao Wang, Zhijuan Wu, Xiaohong Zhang, Shubo Chen. Certain exponential type m-convexity inequalities for fractional integrals with exponential kernels[J]. AIMS Mathematics, 2022, 7(4): 6311-6330. doi: 10.3934/math.2022351
[1] | Shuhong Yu, Tingsong Du . Certain inequalities in frame of the left-sided fractional integral operators having exponential kernels. AIMS Mathematics, 2022, 7(3): 4094-4114. doi: 10.3934/math.2022226 |
[2] | Miguel Vivas-Cortez, Muhammad Aamir Ali, Artion Kashuri, Hüseyin Budak . Generalizations of fractional Hermite-Hadamard-Mercer like inequalities for convex functions. AIMS Mathematics, 2021, 6(9): 9397-9421. doi: 10.3934/math.2021546 |
[3] | Yu-Pei Lv, Ghulam Farid, Hafsa Yasmeen, Waqas Nazeer, Chahn Yong Jung . Generalization of some fractional versions of Hadamard inequalities via exponentially (α,h−m)-convex functions. AIMS Mathematics, 2021, 6(8): 8978-8999. doi: 10.3934/math.2021521 |
[4] | Hengxiao Qi, Muhammad Yussouf, Sajid Mehmood, Yu-Ming Chu, Ghulam Farid . Fractional integral versions of Hermite-Hadamard type inequality for generalized exponentially convexity. AIMS Mathematics, 2020, 5(6): 6030-6042. doi: 10.3934/math.2020386 |
[5] | Hu Ge-JiLe, Saima Rashid, Muhammad Aslam Noor, Arshiya Suhail, Yu-Ming Chu . Some unified bounds for exponentially tgs-convex functions governed by conformable fractional operators. AIMS Mathematics, 2020, 5(6): 6108-6123. doi: 10.3934/math.2020392 |
[6] | Thongchai Botmart, Soubhagya Kumar Sahoo, Bibhakar Kodamasingh, Muhammad Amer Latif, Fahd Jarad, Artion Kashuri . Certain midpoint-type Fejér and Hermite-Hadamard inclusions involving fractional integrals with an exponential function in kernel. AIMS Mathematics, 2023, 8(3): 5616-5638. doi: 10.3934/math.2023283 |
[7] | Muhammad Imran Asjad, Waqas Ali Faridi, Mohammed M. Al-Shomrani, Abdullahi Yusuf . The generalization of Hermite-Hadamard type Inequality with exp-convexity involving non-singular fractional operator. AIMS Mathematics, 2022, 7(4): 7040-7055. doi: 10.3934/math.2022392 |
[8] | Atiq Ur Rehman, Ghulam Farid, Sidra Bibi, Chahn Yong Jung, Shin Min Kang . k-fractional integral inequalities of Hadamard type for exponentially (s,m)-convex functions. AIMS Mathematics, 2021, 6(1): 882-892. doi: 10.3934/math.2021052 |
[9] | Maryam Saddiqa, Saleem Ullah, Ferdous M. O. Tawfiq, Jong-Suk Ro, Ghulam Farid, Saira Zainab . k-Fractional inequalities associated with a generalized convexity. AIMS Mathematics, 2023, 8(12): 28540-28557. doi: 10.3934/math.20231460 |
[10] | Yanping Yang, Muhammad Shoaib Saleem, Waqas Nazeer, Ahsan Fareed Shah . New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus via exponentially convex fuzzy interval-valued function. AIMS Mathematics, 2021, 6(11): 12260-12278. doi: 10.3934/math.2021710 |
By applying exponential type m-convexity, the Hölder inequality and the power mean inequality, this paper is devoted to conclude explicit bounds for the fractional integrals with exponential kernels inequalities, such as right-side Hadamard type, midpoint type, trapezoid type and Dragomir-Agarwal type inequalities. The results of this study are obtained for mappings ω where ω and |ω′| (or |ω′|qwith q≥1) are exponential type m-convex. Also, the results presented in this article provide generalizations of those given in earlier works.
The concept of h-convexity related to the nonnegative real mapping has been intorduced by Varošanec in [22], a generalization of s-convex mappings in the second sense and non-negative convex mappings and P-convex mappings and Godunova-Levin mappings, as follows.
Definition 1. Let I,J be intervals in R, and let h:(0,1)⊆J→R be a non-negative mapping with h≢0. A non-negative mapping ω:I→R is named h-convex if the inequality
ω(sτ1+(1−s)τ2)≤h(s)ω(τ1)+h(1−s)ω(τ2), | (1.1) |
holds for all τ1,τ2∈I and s∈(0,1).
Many scholars used h-convexity and other special inequalities (Hölder inequality, power mean inequality, and so on) to deflate the equation to obtain various types of inequalities. For example, Bombardelli and Varošanec [4] proved the Hermite-Hadamard-Fejér inequalities for h-convex mappings. Tunç [17] gave some Ostrowski-type inequalities via h-convex mappings. Wang et al. [23] presented certain k-fractional integral trapezium-like inequalities through (h,m)-convex mappings. Delavar and Dargomir [6] established a new trapezoid form of Fejér inequality which the absolute value of considered function is h-convex. For more information associated with h-convex mappings see reference in [2,11,15,23].
Using generalized convexity to construct fractional integral inequalities has become a hot research direction. In [13], Raina defined the following results connected with the general class of fractional integral operators.
Fσρ,λ(x)=Fσ(0),σ(1),⋅⋅⋅ρ,λ(x)=∞∑k=0σ(k)Γ(ρk+λ)xk(ρ,λ;|x|<R), | (1.2) |
where the coefficient σ(k)(k∈N∪0) is a bounded sequence of positive real numbers and R is the set of real numbers.
Raina defined the following left-side and right-sided fractional integral operators, respectively, based on (1.2) in [13].
Jσρ,λ,a+;ωf(x)=∫xa(x−t)λ−1Fσρ,λ[ω(x−t)ρ]f(t)dt,x>a, | (1.3) |
and
Jσρ,λ,b−;ωf(x)=∫bx(t−x)λ−1Fσρ,λ[ω(t−x)ρ]f(t)dt,x<b, | (1.4) |
where λ>0,ρ>0,ω∈R and f(t) is such that the integrals on the right side exists.
Based on the above-mentioned generalized fractional integral operator and s-convexity, Usta et al. [19] gave a number of refinements inequalities for the Hermite-Hadamard's type inequality and conclude explicit bounds for the trapezoid inequalities. Chebyshev type inequalities for the generalized fractional integral operators were studied for two synchronous functions in [21]. In [20], the authors obtained some generalized Montgomery identities via above-mentioned generalized fractional integral operator, and established some inequalities of Ostrowski type for mapping whose derivatives are bounded, based on obtained identities. For more results for fractional order with kernels, please see [10,27,28] and the references cited therein.
Therefore, this paper intends to establish some general fractional integral inequalities.
Recently, Kadakal and İşcan [8] introduced a new generalized convex mapping, which is named exponential type convex mapping, as follows.
Definition 2. The non-negative mapping ω:I→R is called exponential type convex mapping, if the following inequality
ω(sτ1+(1−s)τ2)≤(es−1)ω(τ1)+(e1−s−1)ω(τ2), | (2.1) |
holds for all τ1,τ2∈I and s∈[0,1].
It is obvious that every exponential type convex mapping is an h-convex mapping with h(s)=es−1. In [8], the authors also obtained Hermite-Hadamard type inequality and refinements of the Hermite-Hadamard type inequality for the exponential type convex mappings as follows.
Theorem 1. Let ω:[τ1,τ2]→R be an exponential type convex mapping with τ1≤τ2. If ω∈L1[τ1,τ2], then the following inequalities exist:
12(√e−1)ω(τ1+τ22)≤1τ2−τ1∫τ2τ1ω(s)ds≤(√e−2)[ω(τ1)+ω(τ2)]. | (2.2) |
Theorem 2. Let ω:I⊆R→R be a differentiable mapping on I and τ1,τ2∈I with τ1<τ2, such that ω′∈L1[τ1,τ2]. If |ω′| is exponential type convex, then the following inequality
|ω(τ1)+ω(τ2)2−1τ2−τ1∫τ2τ1ω(s)ds|≤(τ2−τ1)(4√e−e−72)|ω′(τ1)|+|ω′(τ2)|2, | (2.3) |
holds for all s∈[0,1].
This method of constructing generalized convex functions had inspired some researchers. For example, Butt et al. [3] introduced a kind of extension mapping of exponential type convex mapping, which is called n-polynomial (s, m)-exponential-type convex mapping, and proved some Hermite-Hadamard type inequalities for such mappings. Gao et al. [7] gave and studied n-polynomial harmonically exponential type convexity. Kashuri et al. [9] obtained several k-fractional integral inequalities for (s,m)-exponential type convex mappings.
Next, we restate some concepts and known results associated with fractional integral operators with exponential kernels.
In [1], Ahmad et al. defined a new fractional integral operators with an exponential kernel and gave new versions of Hermite-Hadamard inequality based on this fractional integral operators as follows.
Definition 3. [1] Let ω∈L1([τ1,γ2]). The fractional integrals Iμτ+1ω and Iμτ−2ω of order μ∈(0,1) are defined respectively by
Iμτ+1ω(x)=1μ∫xτ1e−1−μμ(x−s)ω(s)ds,x≥τ1, |
and
Iμτ−2ω(x)=1μ∫τ2xe−1−μμ(s−x)ω(s)ds,x≤τ2. |
Note that
limμ→1Iμτ+1ω(x)=∫xτ1ω(s)dsandlimμ→1Iμτ−2ω(x)=∫τ2xω(s)ds. |
Theorem 3. [1]Let ω:[τ1,τ2]→R be a non-negative convex mapping and 0≤τ1<τ2<∞ with ω∈L1([τ1,τ2]), then the following double inequalities for fractional integrals hold:
ω(τ1+τ22)≤1−μ2(1−e−ρ)[Iμτ+1ω(τ2)+Iμτ−2ω(τ1)]≤ω(τ1)+ω(τ2)2, | (2.4) |
where ρ=1−μμ(τ2−τ1).
Taking μ→1 i.e. ρ=1−μμ(τ2−τ1)→0 in Theorem 2.3, we can recapture classical Hermite-Hadamard inequality for a convex function ω on [τ1,τ2]:
ω(τ1+τ22)≤1τ2−τ1∫10ω(s)ds≤ω(τ1)+ω(τ2)2. | (2.5) |
These results attract attention for many authors, some well-known integral inequalities by the approach of this fractional calculus have been carried out by many researchers. For example, Wu et al. [26] constructed three fundamental integral identities to establish some Hermite-Hadamard type inequalities via fractional integrals with exponential kernels. Zhou et al. [29] derived some parameterized fractional integrals with an exponential kernel inequalities for convex mappings. Rashid et al. [14] applied the mappings having the harmonically convexity property and the fractional integral operators with exponential kernels to established several Hermite-Hadamard, Hermite-Hadamard- Fejér and Pachpatte-type integral inequalities. For other works involving fractional integrals with exponential kernels, we refer an interseted reader to [5,12,16,18,24].
Motivated by the above results mentioned, our principal goal is to establish some new fractional integrals with exponential kernels inequalities for exponential type m-convex mappings. For this, we take some different exponential kernels to establish three right-side Hadamard-type inequalities. We suppose that the absolute value of the derivative of the considered mapping is exponential type m-convex to derive some new midpoint-type, trapezoid-type and Dragomir-Agarwal-type inequalities for fractional integrals with exponential kernels.
In this section, we state the definition of exponential type m-convexity and examine how to obtain Hadamard-type inequalities for such mappings.
Definition 4. The mapping ω:[0,β]→R with β>0 is named exponential type m-convex mapping, if
ω(sτ1+m(1−s)τ2)≤(es−1)ω(τ1)+m(e1−s−1)ω(τ2), | (3.1) |
holds for all τ1,τ2∈[0,β] and s∈[0,1] with some fixed m∈[0,1]
It is obvious that exponential type m-convex mappings are special (h,m)-convex mappings with h(s)=es−1.
Remark 1. If we take m=1 in definition 4, then the exponential type m-convexity reduces to exponential type convexity. If we take m=0 in definition 4, we have ω(sτ1)≤(es−1)ω(τ1) for all τ1,τ2∈[0,β] and s∈[0,1]. Here, we call ω is an exponential type starshaped mappings.
Example 1. The mapping ω(s)=112s4−512s3+34s2−512s, s∈(0,∞) is an exponential type 1617-convex mapping.
Theorem 4. Let ω:[0,∞)→R be an exponential type m-convex mapping with m∈(0,1].If ω∈L1[τ1,τ2] and 0≤τ1<mτ2, then we have
μmτ2−τ1[Iμτ+1ω(mτ2)+Iμmτ−2ω(τ1)]≤(e1−δ−11−δ+e−e−δ1+δ−2(1−e−δ)δ)[ω(τ1)+mω(τ2)], | (3.2) |
where δ=1−μμ(mτ2−τ1).
Proof. By means of exponential type m-convexity of ω, we have
ω(sτ1+m(1−s)τ2)≤(es−1)ω(τ1)+m(e1−s−1)ω(τ2) | (3.3) |
and
ω((1−s)τ1+msτ2)≤(e1−s−1)ω(τ1)+m(es−1)ω(τ2). | (3.4) |
By adding inequality (3.3) and inequality (3.4) together, we deduce
ω(sτ1+m(1−s)τ2)+ω((1−s)τ1+msτ2)≤[es+e1−s−2](ω(τ1)+mω(τ2)). | (3.5) |
We can obtain the desired inequality by multiplying (3.5) with e−δs and then integrating over [0,1] with respect to ds. Since
∫10e−δs[ω(sτ1+m(1−s)τ2)+ω((1−s)τ1+msτ2)]ds=∫10e−δsω(sτ1+m(1−s)τ2)ds+∫10e−δsω((1−s)τ1+msτ2)ds=1mτ2−τ1∫mτ2τ1e−1−μμ(mτ2−τ1)mτ2−xmτ2−τ1ω(x)dx+1mτ2−τ1∫mτ2τ1e−1−μμ(mτ2−τ1)x−τ1mτ2−τ1ω(x)dx=μmτ2−τ1[Iμτ+1ω(mτ2)+Iμmτ−2ω(τ1)] |
and
∫10e−δs[es+e1−s−2](ω(τ1)+mω(τ2))ds=(e1−δ−11−δ+e−e−δ1+δ−2(1−e−δ)δ)[ω(τ1)+mω(τ2)]. |
This ends the proof.
Corollary 1. If we consider μ→1 i.e. δ=1−μμ(mτ2−τ1)→0 in Theorem 4, then we have
1mτ2−τ1∫τ2τ1ω(τ)dτ≤(e−2)[ω(τ1)+mω(τ2)]. | (3.6) |
Theorem 5. Let ω:[0,∞)→R be an exponential type m-convex mapping with m∈(0,1].If ω∈L1[τ1,τ2] and 0≤τ1<τ2, then the resulting expression holds:
μτ2−τ1[Iμτ−2ω(τ1)+Iμτ+1ω(τ2)]≤[e1−κ−11−κ+e−κ−1κ](ω(τ1)+ω(τ2))+m[e−e−κ1+κ+e−κ−1κ](ω(τ2m)+ω(τ1m)), | (3.7) |
where κ=μ1−μ(τ2−τ1).
Proof. Since ω is exponential type m-convexity, we deduce
ω(sτ1+(1−s)τ2)≤(es−1)ω(τ1)+m(e1−s−1)ω(τ2m) |
and
ω(sτ2+(1−s)τ1)≤(es−1)ω(τ2)+m(e1−s−1)ω(τ1m). |
Multiplying above-mentioned inequalities with e−κs and then integrating over [0,1] with respect to ds, we get
∫10e−κsω(sτ1+(1−s)τ2)ds=1τ2−τ1∫τ2τ1e−1−μμ(τ2−x)ω(x)dx=μτ2−τ1Iμτ−2ω(τ1)≤∫10e−κs[(es−1)ω(τ1)+m(e1−s−1)ω(τ2m)]ds=[e1−κ−11−κ+e−κ−1κ]ω(τ1)+m[e−e−κ1+κ+e−κ−1κ]ω(τ2m) | (3.8) |
and
∫10e−κsω(sτ2+(1−s)τ1)ds=1τ2−τ1∫τ2τ1e−1−μμ(x−τ1)ω(x)dx=μτ2−τ1Iμτ+1ω(τ2)≤∫10e−κs[(es−1)ω(τ2)+m(e1−s−1)ω(τ1m)]ds=[e1−κ−11−κ+e−κ−1κ]ω(τ2)+m[e−e−κ1+κ+e−κ−1κ]ω(τ1m). | (3.9) |
By adding inequality (3.8) and inequality (3.9) together, we can get desired inequality (3.7). This ends the proof.
Corollary 2. If we consider μ→1 i.e. κ=1−μμ(τ2−τ1)→0 in Theorem 5, then we have
2τ2−τ1∫τ2τ1ω(s)ds≤(e−2)[ω(τ1)+ω(τ2)+m(ω(τ1m)+ω(τ2m))]. | (3.10) |
Theorem 6. Under the assumptions of Theorem 5, if we take θ=1−μμτ2−τ12, then the following inequality exists:
2μτ2−τ1[Iμτ+1ω(τ1+τ22)+Iμτ−2ω(τ1+τ22)]≤[2√e−2e1−θ2θ−1−1−e−θθ](ω(τ1)+ω(τ2))+m[2√e−2e−θ2θ+1−1−e−θθ](ω(τ1m)+ω(τ2m)). | (3.11) |
Proof. Using the exponential type m-convexity of ω, we obtain
ω(1+s2τ1+1−s2τ2)≤(e1+s2−1)ω(τ1)+m(e1−s2−1)ω(τ2m) | (3.12) |
and
ω(1+s2τ2+1−s2τ1)≤(e1+s2−1)ω(τ2)+m(e1−s2−1)ω(τ1m). | (3.13) |
Adding inequality(3.12) and inequality(3.13) together and then multiplying by e−θs, we have
e−θs[ω(1+s2τ2+1−s2τ1)+ω(1+s2τ1+1−s2τ2)]≤e−θs((e1+s2−1)[ω(τ1)+ω(τ2)]+m(e1−s2−1)[ω(τ1m)+ω(τ2m)]). | (3.14) |
Integrating on both sides of inequality (3.14) respect to s over [0,1], we have completed the proof. Since
∫10e−θs[ω(1+s2τ2+1−s2τ1)+ω(1+s2τ1+1−s2τ2)]ds=∫10e−θsω(1+s2τ2+1−s2τ1)ds+∫10e−θsω(1+s2τ1+1−s2τ2)ds=2τ2−τ1∫τ1+τ22τ1e−1−μμτ2−τ12(τ1+τ2)−2xτ2−τ1ω(x)dx+2τ2−τ1∫τ2τ2+τ12e−1−μμτ2−τ122x−(τ1+τ2)τ2−τ1ω(x)dx=2μτ2−τ1[Iμτ+1ω(τ1+τ22)+Iμτ−2ω(τ1+τ22)] |
and
∫10e−θs((e1+s2−1)[ω(τ1)+ω(τ2)]+m(e1−s2−1)[ω(τ1m)+ω(τ2m)])=[2√e−2e1−θ2θ−1−1−e−θθ](ω(τ1)+ω(τ2))+m[2√e−2e−θ2θ+1−1−e−θθ](ω(τ1m)+ω(τ2m)). |
Corollary 3. If we consider μ→1 i.e. θ=1−μμτ2−τ12→0 in Theorem 6, then we have
2τ2−τ1∫τ2τ1ω(s)ds≤(2e−2√e−1)[ω(τ1)+ω(τ2)]+m(2√e−3)[(ω(τ1m)+ω(τ2m))]. | (3.15) |
In this section, we investigate how to establish mid-point type inequalities and trapezoid type inequalities for exponential type m-convex mappings.
Lemma 1. Assuming ω:[τ1,mτ2]→R is a differentiable mapping, such that ω′∈L1([τ1,mτ2]) with 0≤τ1<mτ2<∞, then the following identity holds:
Ψ(τ1,mτ2,μ,δ)=mτ2−τ14(1−e−δ){∫10[e−δs−1]ω′(s2τ1+2−s2mτ2)ds−∫10[e−δs−1]ω′(2−s2τ1+s2mτ2)ds}, | (4.1) |
where 0<m≤1, δ=1−μμ(mτ2−τ1) and
Ψ(τ1,τ2,μ,δ):=−1−μ2(1−e−δ)[Iμmτ2+τ12−ω(τ1)+Iμmτ2+τ12+ω(mτ2)]+ω(τ1+mτ22). | (4.2) |
Proof. It suffices to note that
ξ=∫10[e−δs−1]ω′(s2τ1+2−s2mτ2)ds−∫10[e−δs−1]ω′(2−s2τ1+s2mτ2)ds=[∫10[e−δs−1]ω′(s2τ1+2−s2mτ2)ds]−[∫10[e−δs−1]ω′(2−s2τ1+s2mτ2)ds]=ξ1−ξ2. |
Integrating by parts, we have
ξ1:=∫10[e−δs−1]ω′(s2τ1+2−s2mτ2)ds=∫10e−δsω′(s2τ1+2−s2mτ2)ds−∫10ω′(s2τ1+2−s2mτ2)ds=−2mτ2−τ1∫10e−δsd(ω(s2τ1+2−s2mτ2))+2mτ2−τ1[ω(mτ2+τ12)−ω(mτ2)]=−2mτ2−τ1[e−δsω(s2τ1+2−s2mτ2)|10−∫10ω(s2τ1+2−s2mτ2)d(e−δs)−ω(mτ2+τ12)+ω(mτ2)]=−2mτ2−τ1[e−δω(τ1+mτ22)−ω(mτ2)+δ∫10e−δsω(s2τ1+2−s2mτ2)ds−ω(mτ2+τ12)+ω(mτ2)]=2mτ2−τ1[(1−e−δ)ω(τ1+mτ22)−2μδmτ2−τ1Iμmτ2+τ12+ω(mτ2)]=2mτ2−τ1[(1−e−δ)ω(τ1+mτ22)−(1−μ)Iμmτ2+τ12+ω(mτ2)], | (4.3) |
and
ξ2:=∫10[e−δs−1]ω′(2−s2τ1+s2mτ2)ds=∫10e−δsω′(2−s2τ1+s2mτ2)ds−∫10ω′(2−s2τ1+s2mτ2)ds=2mτ2−τ1∫10e−δsd(2−s2τ1+s2mτ2)−[ω(mτ2+τ12)−ω(τ1)]=2mτ2−τ1[e−δsω(2−s2τ1+s2mτ2)|10−∫10ω(2−τ2τ1+τ2mτ2)d(e−δs)−ω(mτ2+τ12)+ω(τ1)]=2mτ2−τ1[e−δω(τ1+mτ22)−ω(τ1)−ω(mτ2+τ12)+ω(τ1)+δ∫10e−δsω(2−s2τ1+s2mτ2)ds]=2mτ2−τ1[e−δω(τ1+mτ22)−ω(mτ2+τ12)+2μδmτ2+τ1Iμmτ2+τ12−ω(τ1)]=2mτ2−τ1[(e−δ−1)ω(τ1+mτ22)+(1−μ)Iμmτ2+τ12−ω(τ1)]. | (4.4) |
From ξ1 and ξ2, we deduce
mτ2−τ14(1−e−δ)[ξ1−ξ2]=−1−μ2(1−e−δ)[Iμmτ2+τ12−ω(τ1)+Iμmτ2+τ12+ω(mτ2)]+ω(τ1+mτ22), |
which completes the proof.
Corollary 4. If we take m=1 in Lemma 1, then we have Lemma 2.1 in [25].
Theorem 7. Let ω be defined as in Lemma 1. If the function |ω′|q for q>1 with 1p+1q=1 is an exponential type m-convex mapping on [τ1,τ2], then the following inequality exists:
|Ψ(τ1,mτ2,μ,δ)|≤mτ2−τ14(1−e−δ)[δp+e−δp−1δp]1p[((2√e−3)|ω′(τ1)|q+m(2e−2√e−1)|ω′(τ2)|q)1q+((2e−2√e−1)|ω′(τ1)|q+m(2√e−3)|ω′(τ2)|q)1q], | (4.5) |
where m∈(0,1], δ=1−μμ(mτ2−τ1) and
Ψ(τ1,τ2,μ,δ):=−1−μ2(1−e−δ)[Iμmτ2+τ12−ω(τ1)+Iμmτ2+τ12+ω(mτ2)]+ω(τ1+mτ22). |
Proof. Applying Lemma 1, Hölder inequality and the exponential type m-convexity of |ω′|q, we deduce
|Ψ(τ1,mτ2,μ,δ)|≤mτ2−τ14(1−e−δ){∫10|e−δs−1||ω′(s2τ1+2−s2mτ2)|ds+∫10|e−δs−1||ω′(2−s2τ1+s2mτ2)|ds}≤mτ2−τ14(1−e−δ){(∫10|e−δs−1|pds)1p(∫10|ω′(s2τ1+2−s2mτ2)|qds)1q+(∫10|e−δs−1|pds)1p(∫10|ω′(2−s2τ1+s2mτ2)|qds)1q}≤mτ2−τ14(1−e−δ)[(∫10|e−δs−1|pds)1p(∫10(es2−1)|ω′(τ1)|q+m(e2−s2−1)|ω′(τ2)|qds)1q+(∫10|e−δs−1|pds)1p(∫10(e2−s2−1)|ω′(τ1)|q+m(es2−1)|ω′(τ2)|qds)1q]≤mτ2−τ14(1−e−δ)[(∫101−e−pδsds)1p(∫10(es2−1)|ω′(τ1)|q+m(e2−s2−1)|ω′(τ2)|qds)1q+(∫101−e−pδsds)1p(∫10(e2−s2−1)|ω′(τ1)|q+m(es2−1)|ω′(τ2)|qds)1q]=mτ2−τ14(1−e−δ)[δp+e−δp−1δp]1p[((2√e−3)|ω′(τ1)|q+m(2e−2√e−1)|ω′(τ2)|q)1q+((2e−2√e−1)|ω′(τ1)|q+m(2√e−3)|ω′(τ2)|q)1q]. |
Here, we use the fact that (x−y)q≤xq−yq for any x≥y≥0 and q≥1. This ends the proof.
Theorem 8. Let ω be defined as in Lemma 1.If the function |ω′|q for q≥1 is exponential type m-convex on [τ1,τ2] with some fixed m∈(0,1], then the following inequality for fractional integrals with exponential kernels holds:
|Ψ(τ1,mτ2,μ,δ)|≤mτ2−τ14(1−e−δ)[δ+e−δ−1δ]1−1q{(Δ1|ω′(τ1)|q+mΔ2|ω′(τ2)|q)1q+(Δ2|ω′(τ1)|q+mΔ2|ω′(τ2)|q)1q} | (4.6) |
where δ=1−μμ(mτ2−τ1), Δ1:=2−2e12−δ1−2δ+1−e−δδ+2√e−3,Δ2:=−2e−2e12−δ1+2δ+1−e−δδ+2e−2√e−1
and
Ψ(τ1,τ2,μ,δ):=−1−μ2(1−e−δ)[Iμmτ2+τ12−ω(τ1)+Iμmτ2+τ12+ω(mτ2)]+ω(τ1+mτ22). |
Proof. Applying Lemma 1, power-mean inequality and the exponential type m-convexity of |ω′|q, we deduce
|Ψ(τ1,mτ2,μ,δ)|≤mτ2−τ14(1−e−δ){∫10|e−δs−1||ω′(s2τ1+2−s2mτ2)|ds+∫10|e−δs−1||ω′(2−s2τ1+s2mτ2)|ds}≤mτ2−τ14(1−e−δ){(∫10|e−δs−1|ds)1−1q(∫10|e−δs−1||ω′(s2τ1+2−s2mτ2)|qds)1q+(∫10|e−δs−1|ds)1−1q(∫10|e−δs−1||ω′(2−s2τ1+s2mτ2)|qds)1q}≤mτ2−τ14(1−e−δ)[δ+e−δ−1δ]1−1q{(∫10|e−δs−1|[(es2−1)|ω′(τ1)|q+m(e2−s2−1)|ω′(τ2)|q]ds)1q+(∫10|e−δs−1|[(e2−s2−1)|ω′(τ1)|q+m(es2−1)|ω′(τ2)|q]ds)1q}. |
By calculation, we have
Δ1:=∫10(es2−1)(1−e−δs)ds=2−2e12−δ1−2δ+1−e−δδ+2√e−3 |
and
Δ2:=∫10(e2−s2−1)(1−e−δs)ds=−2e−2e12−δ1+2δ+1−e−δδ+2e−2√e−1. |
After suitable arrangements, we obtain
|Ψ(τ1,mτ2,μ,δ)|≤mτ2−τ14(1−e−δ)[δ+e−δ−1δ]1−1q{(Δ1|ω′(τ1)|q+mΔ2|ω′(τ2)|q)1q+(Δ2|ω′(τ1)|q+mΔ2|ω′(τ2)|q)1q}. |
The proof is completed.
The following lemma is used to prove the trapezoid type inequalities for generalized fractional integral operators.
Lemma 2. Assuming ω:[τ1,mτ2]→R is a differentiable mapping, such that ω∈L1([τ1,mτ2]) with 0≤τ1<mτ2<∞, then the following identity exists:
χ(τ1,mτ2,μ,η)=mτ2−τ14(e−η−1){∫10[e−ηs−1]ω′(1−s2τ1+1+s2mτ2)ds−∫10[e−ηs−1]ω′(1+s2τ1+1−s2mτ2)ds}, | (4.7) |
where m∈(0,1], η=1−μμmτ2−τ12 and
χ(τ1,mτ2,μ,η):=ω(τ1)+ω(mτ2)2−1−μ2(1−e−η)[Iμτ−2ω(τ1+mτ22)+Iμτ+1ω(τ1+mτ22)]. | (4.8) |
Proof. It suffices to note that
ζ=∫10[e−ηs−1]ω′(1−s2τ1+1+s2mτ2)ds−∫10[e−ηs−1]ω′(1+s2τ1+1−s2mτ2)ds=[∫10[e−ηs−1]ω′(1−s2τ1+1+s2mτ2)ds]+[−∫10[e−ηs−1]ω′(1+s2τ1+1−s2mτ2)ds]:=ζ1+ζ2. |
Integrating by parts, we have
ζ1:=∫10[e−ηs−1]ω′(1−s2τ1+1+s2mτ2)ds=2mτ2−τ1∫10[e−ηs−1]d(ω(1−s2τ1+1+s2mτ2))=2mτ2−τ1[∫10e−ηsd(ω(1−s2τ1+1+s2mτ2))−ω(1−s2τ1+1+s2mτ2)|10]=2mτ2−τ1[e−ητω(1−s2τ1+1+s2mτ2)|10−∫10ω(1−s2τ1+1+s2mτ2)d(e−ηs)−ω(mτ2)+ω(τ1+mτ22)]=2mτ2−τ1[(e−η−1)ω(mτ2)+η∫10e−ηsω(1−s2τ1+1+s2mτ2)ds]=2mτ2−τ1[(e−η−1)ω(mτ2)+2mτ2−τ11−μμmτ2−τ12∫mτ2τ1+mτ22e−1−μμmτ2−τ122x−(τ1+mτ2)mτ2−τ1ω(x)dx]=2mτ2−τ1[(e−η−1)ω(mτ2)+(1−μ)Iμmτ−2ω(τ1+mτ22)], |
and
ζ2:=∫10−[e−ηs−1]ω′(1+s2τ1+1−s2τ2)ds=2mτ2−τ1∫10[e−ηs−1]d(ω(1+s2τ1+1−s2mτ2))=2mτ2−τ1[∫10e−ηsd(ω(1+s2τ1+1−s2mτ2))−ω(1+s2τ1+1−s2mτ2)|10]=2mτ2−τ1[e−ηsω(1+s2τ1+1−s2mτ2)|10−∫10ω(1+s2τ1+1−s2mτ2)d(e−ηs)−ω(τ1)+ω(τ1+mτ22)]=2mτ2−τ1[(e−η−1)ω(τ1)+η∫10e−ηsω(1+s2τ1+1−s2mτ2)ds]=2mτ2−τ1[(e−η−1)ω(τ1)+2mτ2−τ11−μμmτ2−τ12∫τ1+mτ22τ1e−1−μμmτ2−τ12(τ1+mτ2)−2xmτ2−τ1ω(x)dx]=2mτ2−τ1[(e−η−1)ω(τ1)+(1−μ)Iμτ+1ω(τ1+mτ22)]. |
From ζ1 and ζ2, we deduce
mτ2−τ14(e−η−1)[ζ1+ζ2]=ω(τ1)+ω(mτ2)2−1−μ2(1−e−η)[Iμτ−2ω(τ1+mτ22)+Iμτ+1ω(τ1+mτ22)], |
which completes the proof.
Corollary 5. If we take m=1 in Lemma 2, then we have Lemma 3.1 in [25].
Theorem 9. Let ω be defined as in Lemma 2.If the function |ω′|q for q>1 with 1p+1q=1 is an exponential type m-convex mapping on [τ1,τ2], then the following inequality exists:
|χ(τ1,τ2,μ,η)|≤mτ2−τ14(1−e−δ)[ηp+e−ηp−1ηp]1p[((2e12−3)|ω′(τ1)|q+m(2e−2e12−1)|ω′(τ2)|q)1q+((2e−2e12−1)|ω′(τ1)|q+m(2e12−3)|ω′(τ2)|q)1q], | (4.9) |
where m∈(0,1], η=1−μμmτ2−τ12 and
χ(τ1,mτ2,μ,η):=ω(τ1)+ω(mτ2)2−1−μ2(1−e−η)[Iμτ−2ω(τ1+mτ22)+Iμτ+1ω(τ1+mτ22)]. |
Proof. Applying Lemma 2, Hölder inequality and the exponential type m-convexity of |ω′|q, we deduce
|χ(τ1,τ2,μ,η)|≤mτ2−τ14(1−e−η)[∫10|e−ηs−1||ω′(1−s2τ1+1+s2mτ2)|ds+∫10|e−ηs−1||ω′(1+s2τ1+1−s2mτ2)|ds]≤mτ2−τ14(1−e−η)[(∫10|e−ηs−1|pds)1p(∫10|ω′(1−s2τ1+1+s2mτ2)|qds)1q+(∫10|e−ηs−1|pds)1p(∫10|ω′(1+s2τ1+1−s2mτ2)|qds)1q]≤mτ2−τ14(1−e−η)[(∫10(1−e−pηs)ds)1p(∫10(e1−s2−1)|ω′(τ1)|q+m(e1+s2−1)|ω′(τ2)|qds)1q+(∫10(1−e−pηs)ds)1p(∫10(e1+s2−1)|ω′(τ1)|q+m(e1−s2−1)|ω′(τ2)|qds)1q]=mτ2−τ14(1−e−δ)[ηp+e−ηp−1ηp]1p[((2e12−3)|ω′(τ1)|q+m(2e−2e12−1)|ω′(τ2)|q)1q+((2e−2e12−1)|ω′(τ1)|q+m(2e12−3)|ω′(τ2)|q)1q]. |
Here, we use the fact that (x−y)q≤xq−yq for any x≥y≥0 and q≥1. The proof is completed.
Theorem 10. Let ω be defined as in Lemma 2.If the function |ω′|q for q≥1 is exponential type m-convex on [τ1,τ2], then the following inequality for fractional integrals with exponential kernels holds:
|χ(τ1,τ2,μ,η)|≤mτ2−τ14(1−e−η)[η+e−η−1η]1−1q{(Υ1|ω′(τ1)|q+mΥ2|ω′(τ2)|q)1q+(Υ2|ω′(τ1)|q+mΥ1|ω′(τ2)|q)1q}, |
where m∈(0,1], η=1−μμmτ2−τ12 and
χ(τ1,mτ2,μ,η):=ω(τ1)+ω(mτ2)2−1−μ2(1−e−η)[Iμτ−2ω(τ1+mτ22)+Iμτ+1ω(τ1+mτ22)]. |
Proof. Applying Lemma 2, power-mean inequality and the exponential type m-convex of |ω′|q, we deduce
|χ(τ1,τ2,μ,η)|≤mτ2−τ14(1−e−η)[∫10|e−ηs−1||ω′(1−s2τ1+1+s2mτ2)|ds+∫10|e−ηs−1||ω′(1+s2τ1+1−s2mτ2)|ds]≤mτ2−τ14(1−e−η)[(∫10|e−ηs−1|ds)1−1q(∫10|e−ηs−1||ω′(1−s2τ1+1+s2mτ2)|qds)1q+(∫10|e−ητ−1|ds)1−1q(∫10|e−ηs−1||ω′(1+s2τ1+1−s2mτ2)|qds)1q]≤mτ2−τ14(1−e−η)[η+e−η−1η]1−1q{(∫10|1−e−ηs|[(e1−s2−1)|ω′(τ1)|q+m(e1+s2−1)|ω′(τ2)|q]ds)1q+(∫10|1−e−ηs|[(e1+s2−1)|ω′(τ1)|q+m(e1−s2−1)|ω′(τ2)|q]ds)1q}. |
By calculation, we have
Υ1:=∫10(e1−s2−1)(1−e−ηs)ds=−4η2√e+2η2+η+e−η−1η−2η2 |
and
Υ2:=∫10(e1+s2−1)(1−e−ηs)ds=4√eη1−2η+2e1−η2η−1−e−ηη+1η+2e−1. |
After suitable arrangements, we obtain
|χ(τ1,τ2,μ,η)|≤mτ2−τ14(1−e−η)[η+e−η−1η]1−1q{(Υ1|ω′(τ1)|q+mΥ2|ω′(τ2)|q)1q+(Υ2|ω′(τ1)|q+mΥ1|ω′(τ2)|q)1q}. |
The proof is completed.
We now use the following lemma, which is presented in [24], to obtain some Dragomir-Agarwal type inequalities for exponential type m-convex mappings.
Lemma 3. Assuming ω:[τ1,mτ2]→R is a differentiable mapping with 0≤τ1<mτ2<∞ and 0<m≤1. If ω′∈L1([τ1,mτ2]), then the following identity holds:
Ω(τ1,τ2,δ,m)=mτ2−τ12(1−e−δ)[∫10e−δsω′(sτ1+m(1−s)τ2)ds−∫10e−δ(1−s)ω′(sτ1+m(1−τ)τ2)ds], | (5.1) |
where δ=1−μμ(mτ2−τ1) and
Ω(τ1,τ2,δ,m):=ω(τ1)+ω(mτ2)2−(1−μ)2(1−e−δ)[Iμτ+1ω(mτ2)+Iμmτ−2ω(τ1)]. | (5.2) |
Theorem 11. Let ω be defined as in Lemma 5.1.If the function |ω′|q for q≥1 is exponential type m-convex on [τ1,τ2] with some fixed m∈(0,1], then the following inequality for fractional integrals with exponential kernels holds:
|Ω(γ1,γ2,η,m)|≤mτ2−τ12(1−e−δ)[e−δ(eδ2−1)2δ]1−1q[(11+δ[e+e−δ−2e1−δ2]+2δ[2e−δ2−(1+e−δ)]+11−δ[2e1−δ2−(1+e1−δ)])[|ω′(τ1)|q+m|ω′(τ2)|q]]1q, | (5.3) |
where δ=1−μμ(mτ2−τ1) and
Ω(τ1,τ2,δ,m):=ω(τ1)+ω(mτ2)2−(1−μ)2(1−e−δ)[Iμτ+1ω(mτ2)+Iμmτ−2ω(τ1)]. | (5.4) |
Proof. Applying Lemma 1, power-mean inequality and the exponential type m-convexity of |ω′|q, we deduce
|Ω(γ1,γ2,δ,m)|≤mτ2−τ12(1−e−δ)[∫10|e−δsω′(sτ1+m(1−s)τ2)−e−δ(1−s)ω′(sτ1+m(1−s)τ2)|ds]≤mτ2−τ12(1−e−δ)[∫10|e−δs−e−δ(1−s)||ω′(sτ1+m(1−s)τ2)|ds]≤mτ2−τ12(1−e−δ)[∫10|e−δs−e−δ(1−s)|ds]1−1q[∫10|e−δs−e−δ(1−s)||ω′(sτ1+m(1−s)τ2)|qds]1q≤mτ2−τ12(1−e−δ)[e−δ(eδ2−1)2δ]1−1q[∫10|e−δs−e−δ(1−s)|((es−1)|ω′(τ1)|q+m(e1−s−1)|ω′(τ2)|q)ds]1q. |
By calculation, we have
∫10(es−1)|e−δs−e−δ(1−s)|ds=11−δ[2e1−δ2−(1+e1−δ)]+2δ[2e−δ2−(1+e−δ)]+11+δ[e+e−δ−2e1−δ2] |
and
∫10m(e1−s−1)|e−δs−e−δ(1−s)|ds=m(11+δ[e+e−δ−2e1−δ2]+2δ[2e−δ2−(1+e−δ)]+11−δ[2e1−δ2−(1+e1−δ)]). |
After suitable arrangements, we obtain
|Ω(γ1,γ2,δ,m)|≤mτ2−τ12(1−e−δ)[e−δ(eδ2−1)2δ]1−1q[(11+δ[e+e−δ−2e1−δ2]+2δ[2e−δ2−(1+e−δ)]+11−δ[2e1−δ2−(1+e1−δ)])[|ω′(τ1)|q+m|ω′(τ2)|q]]1q. |
The proof is completed.
Theorem 5.2. Let ω be defined as in Lemma 5.1.If the function |ω′|q for q>1 with 1p+1q=1 is exponential type m-convex on [τ1,τ2] for some fixed m∈(0,1], then we have the following inequality:
|Ω(γ1,γ2,δ,m)|≤mτ2−τ12(1−e−δ)[e−δp(eδp2−1)2δp]1p((e−2)|ω′(τ1)|q+m(e−2)|ω′(τ2)|q)ds)1q, | (5.5) |
where δ=1−μμ(mτ2−τ1) and
Ω(τ1,τ2,δ,m):=ω(τ1)+ω(mτ2)2−(1−μ)2(1−e−δ)[Iμτ+1ω(mτ2)+Iμmτ−2ω(τ1)]. | (5.6) |
Proof. Applying Lemma 1, Hölder inequality and the exponential type m-convexity of |ω′|q, we deduce
|Ω(γ1,γ2,δ,m)|≤mτ2−τ12(1−e−δ)[∫10|e−δsω′(sτ1+m(1−s)τ2)−e−δ(1−s)ω′(sτ1+m(1−s)τ2)|ds]≤mτ2−τ12(1−e−δ)[∫10|e−δs−e−δ(1−s)||ω′(sτ1+m(1−s)τ2)|ds]≤mτ2−τ12(1−e−δ)[(∫10|e−δs−e−δ(1−s)|pds)1p(∫10|ω′(sτ1+m(1−s)τ2)|qds)1q]≤mτ2−τ12(1−e−δ)[(∫10|e−δs−e−δ(1−s)|pds)1p(∫10((es−1)|ω′(τ1)|q+m(e1−s−1)|ω′(τ2)|q)ds)1q]≤mτ2−τ12(1−e−δ)[(∫120(e−δs−e−δ(1−s))pds+∫112(e−δ(1−s)−e−δs)pds)1p×((e−2)|ω′(τ1)|q+m(e−2)|ω′(τ2)|q)ds)1q]≤mτ2−τ12(1−e−δ)[(∫120(e−δs−e−δ(1−s))pds+∫112(e−δ(1−s)−e−δs)pds)1p×((e−2)|ω′(τ1)|q+m(e−2)|ω′(τ2)|q)ds)1q]≤mτ2−τ12(1−e−δ)[(∫120(e−pδs−e−pδ(1−s))ds+∫112(e−pδ(1−s)−e−pδs)ds)1p×((e−2)|ω′(τ1)|q+m(e−2)|ω′(τ2)|q)ds)1q]=mτ2−τ12(1−e−δ)[e−δp(eδp2−1)2δp]1p((e−2)|ω′(τ1)|q+m(e−2)|ω′(τ2)|q)ds)1q. |
Here, we use the fact that (x−y)q≤xq−yq for any x≥y≥0 and q≥1. The proof is completed.
In this paper, some new fractional integrals with exponential kernels inequalities of Hadamard type, midpoint type, trapezoid type and Dragomir-Agarwal type for exponential type m-convex mappings are obtained. In view of this, we first present three right-side Hadamard inequalities for exponential type m-convex mappings by choosing different parameters in fractional integrals with exponential kernels. Then, we scale the three established equations by using the exponential type m-convexity and other deflation methods to obtain the boundary estimates of the midpoint-type, trapezoid-type and Dragomir-Agarwal-type inequalities separately. The results presented in this paper would provide generalizations of those given in earlier works. We hope that the equation we have established can help other scholars build new inequality and we will find out the application of our established inequality in other disciplines.
The authors were supported in General Project of Education Department of Hunan Province (No. 19C0359, No. 19C0377, No. 20C0364).
The authors declare no conflict of interest.
[1] |
B. Ahmad, A. Alsaedi, M. Kirane, B. T. Torebek, Hermite-Hadamard, Hermite-Hadamard-Fejér, Dragomir-Agarwal and Pachpatte type inequalities for convex functions via new fractional integrals, J. Comput. Appl. Math., 353 (2019), 120–129. https://doi.org/10.1016/j.cam.2018.12.030 doi: 10.1016/j.cam.2018.12.030
![]() |
[2] |
M. U. Awan, M. A. Noor, M. V. Mihai, K. I. Noor, N. Akhatr, On approximately harmonic h-convex functions depending on a given function, Filomat, 33 (2019), 3783–3793. https://doi.org/10.2298/FIL1912783A doi: 10.2298/FIL1912783A
![]() |
[3] |
S. I. Butt, A. Kashuri, M. Tariq, J. Nasir, A. Aslam, W. Gao, Hermite-Hadamard-type inequalities via n-polynomial exponential-type convexity and their applications, Adv. Differ. Equ., 2020 (2020), 508. https://doi.org/10.1186/s13662-020-02967-5 doi: 10.1186/s13662-020-02967-5
![]() |
[4] |
M. Bombardelli, S. Varošanec, Properties of h-convex functions related to the Hermite-Hadamard-Fejér inequalities, Comput. Math. Appl., 58 (2009), 1869–1877. https://doi.org/10.1016/j.camwa.2009.07.073 doi: 10.1016/j.camwa.2009.07.073
![]() |
[5] |
S. S. Dragomir, B. T. Torebek, Some Hermite-Hadamard type inequalities in the class of hyperbolic p-convex functions, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 113 (2019), 3413–3423. https://doi.org/10.1007/s13398-019-00708-2 doi: 10.1007/s13398-019-00708-2
![]() |
[6] | M. R. Delavar, S. S. Dargomir, Trapezoidal type inequalities related to h-convex functions with applications, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math., 113 (2019), 1487–1498. https://doi.org/10.1007/s13398-018-0563-3 |
[7] |
W. Gao, A. Kashuri, S. I. Butt, M. Tariq, A. Aslam, M. Nadeem, New inequalities via n-polynomial harmonically exponential type convex functions, AIMS Math., 5 (2020), 6856–6873. https://doi.org/10.3934/math.2020440 doi: 10.3934/math.2020440
![]() |
[8] |
M. Kadakal, İ. İ. şcan, Exponential type convexity and some related inequalities, J. Ineq. Appl., 2020 (2020), 82. https://doi.org/10.1186/s13660-020-02349-1 doi: 10.1186/s13660-020-02349-1
![]() |
[9] |
A. Kashuri, S. Iqbal, S. I. Butt, J. Nasir, K. S. Nisar, T. Abdeljawad, Trapezium-type inequalities for k-fractional integral via exponential type convexity and their applications, J. Math., 2020 (2020), 8672710. https://doi.org/10.1155/2020/8672710 doi: 10.1155/2020/8672710
![]() |
[10] |
A. Keten, M. Yavuz, D. Baleanu, Nonlocal cauchy problem via a fractional operator involving power kernel in banach spaces, Fractal Fractional, 3 (2019), 1–8. https://doi.org/10.3390/fractalfract3020027 doi: 10.3390/fractalfract3020027
![]() |
[11] |
C. Y. Luo, H. Wang, T. S. Du, Fejér-Hermite-Hadamard type inequalities involving generalized h-convexity on fractal sets and their applications, Chaos Solitons Fractals, 131 (2020), 109547. https://doi.org/10.1016/j.chaos.2019.109547 doi: 10.1016/j.chaos.2019.109547
![]() |
[12] |
P. O. Mohammed, M. Z. Sarikaya, On generalized fractional integral inequalities for twice differentiable convex functions, J. Comput. Appl. Math., 372 (2020), 1–12. https://doi.org/10.1016/j.cam.2020.112740 doi: 10.1016/j.cam.2020.112740
![]() |
[13] | R. K. Raina, On generalized wright's hypergometric functions and fractional calculus operators, East Asian Math. J., 21 (2005), 191–203. |
[14] |
S. Rashid, D. Baleanu, Y. M. Chu, Some new extensions for fractional integral operator having exponential in the kernel and their applications in physical systems, Open Phys., 18 (2020), 478–491. https://doi.org/10.1515/phys-2020-0114 doi: 10.1515/phys-2020-0114
![]() |
[15] |
M. Z. Sarikaya, A. Saglam, H. Yildirm, On some Hadamard-type inequalities for h-convex functions, J. Math. Ineq., 2 (2008), 335–341. https://doi.org/10.7153/jmi-02-30 doi: 10.7153/jmi-02-30
![]() |
[16] |
L. Tirtirau, Several new Hermite-Hadamard type inequalities for expenential type convex functions, Int. J. Math. Anal., 14 (2020), 267–279. https://doi.org/10.12988/ijma.2020.912108 doi: 10.12988/ijma.2020.912108
![]() |
[17] |
M. Tunç, Ostrowski-type inequalities via h-convex functions with applications to special means, J. Ineq. Appl., 2013 (2013), 326. https://doi.org/10.1186/1029-242X-2013-326 doi: 10.1186/1029-242X-2013-326
![]() |
[18] |
F. Usta, H. Budak, M. Z. Sarikaya, H. Yildirm, Some Hermite-Hadamard and Ostrowski type inequalities for fractional integral operators with exponential kernel, Acta et Commen. Univ. Tart. de Math., 23 (2019), 25–36. https://doi.org/10.12697/ACUTM.2019.23.03 doi: 10.12697/ACUTM.2019.23.03
![]() |
[19] |
F. Usta, H. Budak, M. Z. Sarikaya, E. Zet, On generalization of trapezoid type inequalities for s-convex functions with generalized fractional integral operators, Filomat, 32 (2018), 2153–2171. https://doi.org/10.2298/FIL1806153U doi: 10.2298/FIL1806153U
![]() |
[20] | F. Usta, H. Budak, M. Z. Sarikaya, Montgomery identities and ostrowski type inequalities for fractional integral operators, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticias, 113 (2019), 1059–1080. https://doi.org/10.1007/s13398-018-0534-8 |
[21] |
F. Usta, H. Budak, M. Z. Sarikaya, Some new chebyshew type inequalities utilizing generalized fractional integral operators, AIMS Math., 5 (2020), 1147–1161. https://doi.org/10.3934/math.2020079 doi: 10.3934/math.2020079
![]() |
[22] |
S. Varošanec, On h-convexity, J. Math. Anal. Appl., 326 (2007), 303–311. https://doi.org/10.1016/j.jmaa.2006.02.086 doi: 10.1016/j.jmaa.2006.02.086
![]() |
[23] |
H. Wang, T. S. Du, Y. Zhang, k-fractional integral trapezium-like inequalities throught (h,m)-convex and (α,m)-convex mappings, J. Ineq. Appl., 2017 (2017), 311. https://doi.org/10.1186/s13660-017-1586-6 doi: 10.1186/s13660-017-1586-6
![]() |
[24] |
H. Wang, Z. J. Wu, Certain m-convexity inequalities related to fractional integrals with exponentional kernels, Open Access Lib. J., 5 (2021), 1–10. https://doi.org/10.4236/oalib.1107388 doi: 10.4236/oalib.1107388
![]() |
[25] | H, Wang, X. H. Zhang, Z. J. Wu, {Certain fractional integrals with exponential kernels inequalities related to Hermite-Hadamard type} (Submitted). |
[26] |
X. Wu, J. R. Wang, J. Zhang, Hermite-Hadamard-type inequalities for convex functions via the fractional integrals with exponential kernel, Mathematics, 7 (2019), 1–12. https://doi.org/10.3390/math7090845 doi: 10.3390/math7090845
![]() |
[27] |
A. Yokus, Construction of different types of traveling wave solutions of the relativistic wave equation associated with the schrödinger equation, Math. Mode. Num. Sim., 1 (2021), 24–31. https://doi.org/10.53391/mmnsa.2021.01.003 doi: 10.53391/mmnsa.2021.01.003
![]() |
[28] |
M. Yavuz, N. Sene, Fundamental calculus of the fractional derivative defined with Rabotnov exponential kernel and application to nonlinear dispersive wave model, J. Ocean Eng. Sci., 6 (2021), 196–205. https://doi.org/10.1016/j.joes.2020.10.004 doi: 10.1016/j.joes.2020.10.004
![]() |
[29] |
T. C. Zhou, Z. R. Yuan, H. Y. Yang, T. S. Du, Some parameterized inequalities by means of fractional integrals with exponential kernels and their applications, J. Ineq. Appl., 2020 (2020), 163. https://doi.org/10.1186/s13660-020-02430-9 doi: 10.1186/s13660-020-02430-9
![]() |