Few results seem to be known about the stability with general decay rate of nonlinear neutral stochastic function differential equations driven by $ G $-Brownain motion ($ G $-NSFDEs in short). This paper focuses on the $ G $-NSFDEs, and the coefficients of these considered $ G $-NSFDEs can be allowed to be nonlinear. It is first proved the existence and uniqueness of the global solution of a $ G $-NSFDE. It is then obtained the trivial solution of the $ G $-NSFDE is mean square stable with general decay rate (including the trivial solution of the $ G $-NSFDE is mean square exponentially stable and the trivial solution of the $ G $-NSFDE is mean square polynomially stable) by $ G $-Lyapunov functions technique. In this paper, auxiliary functions are used to dominate the Lyapunov function and the diffusion operator. Finally, an example is presented to illustrate the obtained theory.
Citation: Guangjie Li. Mean square stability with general decay rate of nonlinear neutral stochastic function differential equations in the $ G $-framework[J]. AIMS Mathematics, 2022, 7(4): 5752-5767. doi: 10.3934/math.2022318
Few results seem to be known about the stability with general decay rate of nonlinear neutral stochastic function differential equations driven by $ G $-Brownain motion ($ G $-NSFDEs in short). This paper focuses on the $ G $-NSFDEs, and the coefficients of these considered $ G $-NSFDEs can be allowed to be nonlinear. It is first proved the existence and uniqueness of the global solution of a $ G $-NSFDE. It is then obtained the trivial solution of the $ G $-NSFDE is mean square stable with general decay rate (including the trivial solution of the $ G $-NSFDE is mean square exponentially stable and the trivial solution of the $ G $-NSFDE is mean square polynomially stable) by $ G $-Lyapunov functions technique. In this paper, auxiliary functions are used to dominate the Lyapunov function and the diffusion operator. Finally, an example is presented to illustrate the obtained theory.
[1] | N. Abourashchi, Stability of stochastic differential equations, University of Leeds, 2009. |
[2] | E. Allen, Modeling with Itô stochastic differential equations, Dordrecht: Springer, 2007. |
[3] | E. H. Chalabi, S. Mesbahi, On the existence and satbility of solutions of stochastic differential systems driven by the $G$-Brownian motion, Mem. Differ. Equ. Math. Phys., 82 (2021), 57–74. |
[4] | L. Denis, M. S. Hu, S. G. Peng, Function spaces and capacity related to a sublinear expectation: Application to $G$-Brownian motion paths, Potential Anal., 34 (2011), 139–161. https://doi.org/10.1007/s11118-010-9185-x doi: 10.1007/s11118-010-9185-x |
[5] | F. Faizullah, M. Bux, M. A. Rana, G. U. Rahman, Existence and stability of solutions to non-linear neutral stochastic functional differential equations in the framework of $G$-Brownian motion, Adv. Differ. Equ., 2017 (2017), 1–14. https://doi.org/10.1186/s13662-017-1400-2 doi: 10.1186/s13662-017-1400-2 |
[6] | C. Fei, W. Y. Fei, L. T. Yan, Existence and stability of solutions to highly nonlinear stochastic differential delay equations driven by $G$-Brownian motion, Appl. Math. J. Chinese Univ., 34 (2019), 184–204. https://doi.org/10.1007/s11766-019-3619-x doi: 10.1007/s11766-019-3619-x |
[7] | F. Q. Gao, Pathwise properties and homeomorphic flows for stochastic differential equations driven by $G$-Brownian motion, Stoch. Proc. Appl., 119 (2009), 3356–3382. https://doi.org/10.1016/j.spa.2009.05.010 doi: 10.1016/j.spa.2009.05.010 |
[8] | M. S. Hu, S. G. Peng, On representation theorem of $G$-expectations and paths of $G$-Brownian motion, Acta Math. Appl. Sin. Engl. Ser., 25 (2009), 539–546. https://doi.org/10.1007/s10255-008-8831-1 doi: 10.1007/s10255-008-8831-1 |
[9] | Y. Z. Hu, F. K. Wu, C. M. Huang, Stochastic stability of a class of unbounded delay neutral stochastic differential equations with general decay rate, Int. J. Syst. Sci., 43 (2012), 308–318. https://doi.org/10.1080/00207721.2010.495188 doi: 10.1080/00207721.2010.495188 |
[10] | L. Y. Hu, Y. Ren, T. B. Xu, $P$-moment stability of solutions to stochastic differential equations driven by $G$-Brownian motion, Appl. Math. Comput., 230 (2014), 231–237. https://doi.org/10.1016/j.amc.2013.12.111 doi: 10.1016/j.amc.2013.12.111 |
[11] | S. Janković, J. Randjelović, M. Jovanović, Razumikhin-type exponential stability criteria of neutral stochastic functional differential equations, J. Math. Anal. Appl., 355 (2009), 811–820. https://doi.org/10.1016/j.jmaa.2009.02.011 doi: 10.1016/j.jmaa.2009.02.011 |
[12] | V. B. Kolmanoskii, V. R. Nosov, Stability and periodic modes of control systems with aftereffect, Moscow: Nauka, 1981. |
[13] | R. Khasminskii, Stochastic stability of differential equations, 2 Eds., Berlin, Heidelberg: Springer, 2012. https://doi.org/10.1007/978-3-642-23280-0 |
[14] | V. B. Kolmanovskii, V. R. Nosov, Stability of functional differential equations, London: Academic Press, 1986. |
[15] | X. R. Mao, Exponential stability in mean square of neutral stochastic differential functional equations, Syst. Control Lett., 26 (1995), 245–251. https://doi.org/10.1016/0167-6911(95)00018-5 doi: 10.1016/0167-6911(95)00018-5 |
[16] | X. R. Mao, Stochastic differential equations and applications, 2 Eds., Chichester: Horwood, 2007. |
[17] | P. H. A. Ngoc, On exponential stability in mean square of neutral stochastic functional differential equations, Syst. Control Lett., 154 (2021), 104965. https://doi.org/10.1016/j.sysconle.2021.104965 doi: 10.1016/j.sysconle.2021.104965 |
[18] | L. J. Pan, J. D. Cao, Y. Ren, Impulsive stability of stochastic functional differential systems driven by $G$-Brownian motion, Mathematics, 8 (2020), 1–16. https://doi.org/10.3390/math8020227 doi: 10.3390/math8020227 |
[19] | G. Pavlović, S. Janković, Razumikhin-type theorems on general decay stability of stochastic functional differential equations with infinite delay, J. Comput. Appl. Math., 236 (2012), 1679–1690. https://doi.org/10.1016/j.cam.2011.09.045 doi: 10.1016/j.cam.2011.09.045 |
[20] | S. G. Peng, $G$-expectation, $G$-Brownian motion and related stochastic calculus of Itô type, In: F. E. Benth, G. Di Nunno, T. Lindstrøm, B. Øksendal, T. Zhang, Stochastic analysis and applications, Abel Symposia, Vol. 2, Berlin, Heidelberg: Springer, 2007,541–567. https://doi.org/10.1007/978-3-540-70847-6_25 |
[21] | S. G. Peng, Nonlinear expectations and stochastic calculus under uncertainty, arXiv preprint, arXiv: 1002.4546, 2010. |
[22] | Y. Ren, N. M. Xia, Existence, uniqueness and stability of the solutions to neutral stochastic functional differential equations with infinite delay, Appl. Math. Comput., 210 (2009), 72–79. https://doi.org/10.1016/j.amc.2008.11.009 doi: 10.1016/j.amc.2008.11.009 |
[23] | L. Shaikhet, Lyapunov functionals and stability of stochastic functional differential equations, Heidelberg: Springer, 2013. https://doi.org/10.1007/978-3-319-00101-2 |
[24] | G. J. Shen, W. T. Xu, D. J. Zhu, The stability with general decay rate of neutral stochastic functional hybrid differential equations with Lévy noise, Syst. Control Lett., 143 (2020), 104742. https://doi.org/10.1016/j.sysconle.2020.104742 doi: 10.1016/j.sysconle.2020.104742 |
[25] | F. K. Wu, S. G. Hu, C. M. Huang, Robustness of general decay stability of nonlinear neutral stochastic functional differential equations with infinite delay, Syst. Control Lett., 59 (2010), 195–202. https://doi.org/10.1016/j.sysconle.2010.01.004 doi: 10.1016/j.sysconle.2010.01.004 |
[26] | Q. G. Yang, G. J. Li, Exponential stability of $\theta$-method for stochastic differential equations in the $G$-framework, J. Comput. Appl. Math., 350 (2019), 195–211. https://doi.org/10.1016/j.cam.2018.10.020 doi: 10.1016/j.cam.2018.10.020 |
[27] | S. H. Yao, X. F. Zong, Delay-dependent stability of a class of stochastic delay systems driven by $G$-Brownian motion, IET Control Theory Appl., 14 (2020), 834–842. https://doi.org/10.1049/iet-cta.2019.1146 doi: 10.1049/iet-cta.2019.1146 |
[28] | T. Zhang, H. B. Chen, The stability with a general decay of stochastic delay differential equations with Markovian switching, Appl. Math. Comput., 359 (2019), 294–307. https://doi.org/10.1016/j.amc.2019.04.057 doi: 10.1016/j.amc.2019.04.057 |
[29] | D. F. Zhang, Z. J. Chen, Exponential stability for stochastic differential equation driven by $G$-Brownian motion, Appl. Math. Lett., 25 (2012), 1906–1910. https://doi.org/10.1016/j.aml.2012.02.063 doi: 10.1016/j.aml.2012.02.063 |
[30] | M. Zhu, J. P. Li, Y. X. Zhu, Exponential stability of neutral stochastic functional differential equations driven by $G$-Brownian motion, J. Nonlinear Sci. Appl., 10 (2017), 1830–1841. |
[31] | X. F. Zong, T. Li, G. Yin, J. F. Zhang, Delay tolerance for stable stochastic systems and extensions, IEEE Trans. Automat. Control, 66 (2021), 2604–2619. https://doi.org/10.1109/TAC.2020.3012525 doi: 10.1109/TAC.2020.3012525 |