Research article

Mean square stability with general decay rate of nonlinear neutral stochastic function differential equations in the $ G $-framework

  • Received: 08 October 2021 Revised: 06 December 2021 Accepted: 27 December 2021 Published: 11 January 2022
  • MSC : 34K20, 60H10, 34K50

  • Few results seem to be known about the stability with general decay rate of nonlinear neutral stochastic function differential equations driven by $ G $-Brownain motion ($ G $-NSFDEs in short). This paper focuses on the $ G $-NSFDEs, and the coefficients of these considered $ G $-NSFDEs can be allowed to be nonlinear. It is first proved the existence and uniqueness of the global solution of a $ G $-NSFDE. It is then obtained the trivial solution of the $ G $-NSFDE is mean square stable with general decay rate (including the trivial solution of the $ G $-NSFDE is mean square exponentially stable and the trivial solution of the $ G $-NSFDE is mean square polynomially stable) by $ G $-Lyapunov functions technique. In this paper, auxiliary functions are used to dominate the Lyapunov function and the diffusion operator. Finally, an example is presented to illustrate the obtained theory.

    Citation: Guangjie Li. Mean square stability with general decay rate of nonlinear neutral stochastic function differential equations in the $ G $-framework[J]. AIMS Mathematics, 2022, 7(4): 5752-5767. doi: 10.3934/math.2022318

    Related Papers:

  • Few results seem to be known about the stability with general decay rate of nonlinear neutral stochastic function differential equations driven by $ G $-Brownain motion ($ G $-NSFDEs in short). This paper focuses on the $ G $-NSFDEs, and the coefficients of these considered $ G $-NSFDEs can be allowed to be nonlinear. It is first proved the existence and uniqueness of the global solution of a $ G $-NSFDE. It is then obtained the trivial solution of the $ G $-NSFDE is mean square stable with general decay rate (including the trivial solution of the $ G $-NSFDE is mean square exponentially stable and the trivial solution of the $ G $-NSFDE is mean square polynomially stable) by $ G $-Lyapunov functions technique. In this paper, auxiliary functions are used to dominate the Lyapunov function and the diffusion operator. Finally, an example is presented to illustrate the obtained theory.



    加载中


    [1] N. Abourashchi, Stability of stochastic differential equations, University of Leeds, 2009.
    [2] E. Allen, Modeling with Itô stochastic differential equations, Dordrecht: Springer, 2007.
    [3] E. H. Chalabi, S. Mesbahi, On the existence and satbility of solutions of stochastic differential systems driven by the $G$-Brownian motion, Mem. Differ. Equ. Math. Phys., 82 (2021), 57–74.
    [4] L. Denis, M. S. Hu, S. G. Peng, Function spaces and capacity related to a sublinear expectation: Application to $G$-Brownian motion paths, Potential Anal., 34 (2011), 139–161. https://doi.org/10.1007/s11118-010-9185-x doi: 10.1007/s11118-010-9185-x
    [5] F. Faizullah, M. Bux, M. A. Rana, G. U. Rahman, Existence and stability of solutions to non-linear neutral stochastic functional differential equations in the framework of $G$-Brownian motion, Adv. Differ. Equ., 2017 (2017), 1–14. https://doi.org/10.1186/s13662-017-1400-2 doi: 10.1186/s13662-017-1400-2
    [6] C. Fei, W. Y. Fei, L. T. Yan, Existence and stability of solutions to highly nonlinear stochastic differential delay equations driven by $G$-Brownian motion, Appl. Math. J. Chinese Univ., 34 (2019), 184–204. https://doi.org/10.1007/s11766-019-3619-x doi: 10.1007/s11766-019-3619-x
    [7] F. Q. Gao, Pathwise properties and homeomorphic flows for stochastic differential equations driven by $G$-Brownian motion, Stoch. Proc. Appl., 119 (2009), 3356–3382. https://doi.org/10.1016/j.spa.2009.05.010 doi: 10.1016/j.spa.2009.05.010
    [8] M. S. Hu, S. G. Peng, On representation theorem of $G$-expectations and paths of $G$-Brownian motion, Acta Math. Appl. Sin. Engl. Ser., 25 (2009), 539–546. https://doi.org/10.1007/s10255-008-8831-1 doi: 10.1007/s10255-008-8831-1
    [9] Y. Z. Hu, F. K. Wu, C. M. Huang, Stochastic stability of a class of unbounded delay neutral stochastic differential equations with general decay rate, Int. J. Syst. Sci., 43 (2012), 308–318. https://doi.org/10.1080/00207721.2010.495188 doi: 10.1080/00207721.2010.495188
    [10] L. Y. Hu, Y. Ren, T. B. Xu, $P$-moment stability of solutions to stochastic differential equations driven by $G$-Brownian motion, Appl. Math. Comput., 230 (2014), 231–237. https://doi.org/10.1016/j.amc.2013.12.111 doi: 10.1016/j.amc.2013.12.111
    [11] S. Janković, J. Randjelović, M. Jovanović, Razumikhin-type exponential stability criteria of neutral stochastic functional differential equations, J. Math. Anal. Appl., 355 (2009), 811–820. https://doi.org/10.1016/j.jmaa.2009.02.011 doi: 10.1016/j.jmaa.2009.02.011
    [12] V. B. Kolmanoskii, V. R. Nosov, Stability and periodic modes of control systems with aftereffect, Moscow: Nauka, 1981.
    [13] R. Khasminskii, Stochastic stability of differential equations, 2 Eds., Berlin, Heidelberg: Springer, 2012. https://doi.org/10.1007/978-3-642-23280-0
    [14] V. B. Kolmanovskii, V. R. Nosov, Stability of functional differential equations, London: Academic Press, 1986.
    [15] X. R. Mao, Exponential stability in mean square of neutral stochastic differential functional equations, Syst. Control Lett., 26 (1995), 245–251. https://doi.org/10.1016/0167-6911(95)00018-5 doi: 10.1016/0167-6911(95)00018-5
    [16] X. R. Mao, Stochastic differential equations and applications, 2 Eds., Chichester: Horwood, 2007.
    [17] P. H. A. Ngoc, On exponential stability in mean square of neutral stochastic functional differential equations, Syst. Control Lett., 154 (2021), 104965. https://doi.org/10.1016/j.sysconle.2021.104965 doi: 10.1016/j.sysconle.2021.104965
    [18] L. J. Pan, J. D. Cao, Y. Ren, Impulsive stability of stochastic functional differential systems driven by $G$-Brownian motion, Mathematics, 8 (2020), 1–16. https://doi.org/10.3390/math8020227 doi: 10.3390/math8020227
    [19] G. Pavlović, S. Janković, Razumikhin-type theorems on general decay stability of stochastic functional differential equations with infinite delay, J. Comput. Appl. Math., 236 (2012), 1679–1690. https://doi.org/10.1016/j.cam.2011.09.045 doi: 10.1016/j.cam.2011.09.045
    [20] S. G. Peng, $G$-expectation, $G$-Brownian motion and related stochastic calculus of Itô type, In: F. E. Benth, G. Di Nunno, T. Lindstrøm, B. Øksendal, T. Zhang, Stochastic analysis and applications, Abel Symposia, Vol. 2, Berlin, Heidelberg: Springer, 2007,541–567. https://doi.org/10.1007/978-3-540-70847-6_25
    [21] S. G. Peng, Nonlinear expectations and stochastic calculus under uncertainty, arXiv preprint, arXiv: 1002.4546, 2010.
    [22] Y. Ren, N. M. Xia, Existence, uniqueness and stability of the solutions to neutral stochastic functional differential equations with infinite delay, Appl. Math. Comput., 210 (2009), 72–79. https://doi.org/10.1016/j.amc.2008.11.009 doi: 10.1016/j.amc.2008.11.009
    [23] L. Shaikhet, Lyapunov functionals and stability of stochastic functional differential equations, Heidelberg: Springer, 2013. https://doi.org/10.1007/978-3-319-00101-2
    [24] G. J. Shen, W. T. Xu, D. J. Zhu, The stability with general decay rate of neutral stochastic functional hybrid differential equations with Lévy noise, Syst. Control Lett., 143 (2020), 104742. https://doi.org/10.1016/j.sysconle.2020.104742 doi: 10.1016/j.sysconle.2020.104742
    [25] F. K. Wu, S. G. Hu, C. M. Huang, Robustness of general decay stability of nonlinear neutral stochastic functional differential equations with infinite delay, Syst. Control Lett., 59 (2010), 195–202. https://doi.org/10.1016/j.sysconle.2010.01.004 doi: 10.1016/j.sysconle.2010.01.004
    [26] Q. G. Yang, G. J. Li, Exponential stability of $\theta$-method for stochastic differential equations in the $G$-framework, J. Comput. Appl. Math., 350 (2019), 195–211. https://doi.org/10.1016/j.cam.2018.10.020 doi: 10.1016/j.cam.2018.10.020
    [27] S. H. Yao, X. F. Zong, Delay-dependent stability of a class of stochastic delay systems driven by $G$-Brownian motion, IET Control Theory Appl., 14 (2020), 834–842. https://doi.org/10.1049/iet-cta.2019.1146 doi: 10.1049/iet-cta.2019.1146
    [28] T. Zhang, H. B. Chen, The stability with a general decay of stochastic delay differential equations with Markovian switching, Appl. Math. Comput., 359 (2019), 294–307. https://doi.org/10.1016/j.amc.2019.04.057 doi: 10.1016/j.amc.2019.04.057
    [29] D. F. Zhang, Z. J. Chen, Exponential stability for stochastic differential equation driven by $G$-Brownian motion, Appl. Math. Lett., 25 (2012), 1906–1910. https://doi.org/10.1016/j.aml.2012.02.063 doi: 10.1016/j.aml.2012.02.063
    [30] M. Zhu, J. P. Li, Y. X. Zhu, Exponential stability of neutral stochastic functional differential equations driven by $G$-Brownian motion, J. Nonlinear Sci. Appl., 10 (2017), 1830–1841.
    [31] X. F. Zong, T. Li, G. Yin, J. F. Zhang, Delay tolerance for stable stochastic systems and extensions, IEEE Trans. Automat. Control, 66 (2021), 2604–2619. https://doi.org/10.1109/TAC.2020.3012525 doi: 10.1109/TAC.2020.3012525
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1556) PDF downloads(52) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog