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1. Introduction

Stochastic dynamical systems are often depicted by stochastic differential equations (SDEs in short),
which have been widely used in many areas of science and engineering (see, e.g. [2, 16, 23, 31]). In
reality, these stochastic dynamical systems depend not only on the present and past states but also
on derivatives with functionals. For such systems, neutral stochastic functional differential equations
(NSFDEs in short) are used to described them [12, 14]. In the study of stochastic dynamical systems,
stability analysis is a hot topic and has attracted lots of attention, see [1,13] and the references therein.
So far, there are numerous literature on the stability of NSFDEs, we list [11, 15, 17, 22], for instance.

Motivated by describing measuring finance risk and volatility uncertainty, Peng [20] has developed
a theoretical framework of G-expectation. Based on the framework of G-expectation, Peng [20, 21]
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introduced the G-Brownian motion and set up its Itô integral. Hu et al. [8] found that a weakly compact
family of probability measures can be used to represent the G-expectation. Under the G-framework,
many efforts have been made to study the stability of SDEs driven by G-Brownian motion (G-SDEs
in short), see [3, 10, 26, 27, 29] and the references therein. Zhu et al. [30] derived the exponential
stability and quasi sure exponential stability of the solutions to G-NSFDEs by variation-of-constants
formula. Faizullah et al. [5] studied the mean square exponential stability of nonlinear G-NSFDEs.
Pan et al. [18] derived the p-th moment exponential stability and quasi sure exponential stability of
impulsive stochastic functional differential systems driven by G-Brownian motion using G-Lyapunov
functions technique.

As we know, there are many results on the stability (e.g. moment exponential stability, almost
sure exponential stability, almost sure polynomial stability) of SDEs. The concepts of these stability
have been generalized to the stability with general decay rate, please refer to [9, 19, 24, 25, 28] and the
references therein. Therein, Wu et al. [25] studied the almost sure stability of NSFDEs with infinite
delay with general decay rate. Along this line, Hu et al. [9] investigated the stochastic stability of a class
of unbounded delay neutral stochastic differential equations with general decay rate. Shen et al. [24]
investigated the almost sure stability with general decay rate of neutral stochastic functional hybrid
differential equations with Lévy noise. However, few results on the stability with general decay rate
for G-SDEs, not to speak of the results on the stability with general decay rate for G-NSFDEs, which
motivates the present research.

It is also known that the study of the stability is based on the existence and uniqueness of the global
solution. In general, a unique global solution can be guaranteed by the local Lipschitz condition and
the linear growth condition. But, in reality, the linear growth condition is somewhat restrictive. In this
paper, we guarantee the existence and uniqueness of a global solution to the G-NSFDE by the local
Lipschitz condition and a weaker condition. Moreover, a kind of λ-type function is defined in this
paper. By applying G-Lyapunov functions technique, we can acquire a kind of mean square λ-type
stability, including mean square exponential stability and mean square polynomial stability.

The rest of the paper is organized as follows. In Section 2, some preliminaries are presented. In
Section 3, the existence and uniqueness of the global solution and the sufficient conditions for λ-type
stability are shown, respectively. Finally, an example is presented to illustrate the obtained results.

2. Preliminaries

In this section, we briefly recall some preliminaries in G-framework. More relevant details can be
found in [4, 7, 20, 21].

Let R = (−∞,+∞), R+ = [0,+∞). For ∀a ∈ Rn, denote by |a| =
√

aT a. For ∀a, b ∈ R, a ∨ b
and a ∧ b represent the largest and smallest of a and b, respectively. For ∀a ∈ R, a+ = a+|a|

2 and
a− = |a|−a

2 . On a non-empty basic space Ω, one can define a linear space H of real-valued functions.
We suppose thatH satisfies C ∈ H for each constant C and if X ∈ H , |X| ∈ H . If X1, X2, · · · , Xn ∈ H ,
then ϕ(X1, X2, · · · , Xn) ∈ H for each ϕ ∈ Cl,Lip(Rn), where Cl,Lip(Rn) is the space of linear function
ϕ : Rn → R:

Cl,Lip(Rn) = {ϕ| ∃C ∈ R+,m ∈ N s.t. |ϕ(b) − ϕ(c)| ≤ C(1 + |b|m + |c|m)|b − c|},

for ∀b, c ∈ Rn.
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Definition 2.1. [21] A functional Ê : H → R is called a sublinear expectation. If for all X,Y ∈ H ,
C ∈ R and λ ≥ 0, it satisfies the following properties:

(i) Monotonicity: If X ≥ Y, then Ê[X] ≥ Ê[Y].
(ii) Constant preserving: Ê[C] = C.

(iii) Sub-additivity: Ê[X + Y] ≤ Ê[X] + Ê[Y].
(iv) Positive homogeneity: Ê[λX] = λÊ[X].

Also, if Ê[X] = Ê[−X] = 0, then Ê[C + λX + Y] = C + Ê[Y].
The triple (Ω,H , Ê) is called a sublinear expectation space. If (i) and (ii) are satisfied, Ê[·] is called

a nonlinear expectation and the triple (Ω,H , Ê) is relevantly called a nonlinear expectation space.

For the details of G-normal distribution, G-expectation, G-conditional expectation and G-Brownian
motion, please see Chapter 3 and Chapter 4 of Peng [21].

Denote by ΩT = {ω(· ∧ T ) : ω ∈ Ω}, ∀T ≥ 0. For T ∈ R+, a partition µT of [0,T ] is a finite ordered
subset µT = {t0, t1, · · · , tN} such that 0 = t0 < t1 < t2 < · · · < tN = T , π(µT ) = max{|ti+1 − ti| : i =

0, 1, · · · ,N − 1}. Let

Lip(ΩT ) = {ϕ(ω(t1), ω(t2), · · · , ω(tn)) : t1, t2, · · · , tn ∈ [0,T ], ϕ ∈ Cl,Lip(Rn)}

and its countably many union Lip(Ω) =
⋃∞

n=1 Lip(Ωn). Denote by Lp
G(ΩT ) by the completion of Lip(ΩT )

under the norm ||X||p = (Ê(|X|p))1/p, for any p ≥ 1. Besides, the space is defined by

Mp,0
G ([0,T ]) =

ηt =

N−1∑
j=0

ξ jI[t j,t j+1)(t) : ξ j ∈ Lp
G(Ωt j)

 , p ≥ 1,

and its completion Mp
G([0,T ]) equipped with the norm

‖η‖Mp
G([0,T ]) =

(
1
T

∫ T

0
Ê[|ηt|

p]dt
) 1

p

,

where Ê stands for the G-expectation.
We now show the representation lemma of G-expectation as follow.

Lemma 2.1. [6, 8] Let Ê be the G-expectation on (Ω, L1
G(Ω)). Then there is a weakly compact family

of probability measures P on (Ω,B(Ω)) such that Ê[X] = supP∈P EP[X], ∀X ∈ L1
G(Ω). Moreover, P is

called a set that represents the G-expectation Ê.

From Lemma 2.1, the weakly compact family of probabilityP characterizes the degree of Knightian
uncertainty. If P is singleton, that is {P}, then the model has no ambiguity, the G-expectation Ê is the
classical expectation. Then define G-upper capacity V(·) and G-lower capacity v(·) by

V(A) = sup
P∈P

P(A), ∀A ∈ B(Ω),

v(A) = inf
P∈P

P(A), ∀A ∈ B(Ω).

Definition 2.2. A set A ∈ B(Ω) is called polar if V(A) = 0. A property is said to hold quasi-surely (q.s.)
if it is true outside a polar set.
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P-q.s. means that it holds P-almost surely (P-a.s.) for each P ∈ P. If an event A satisfies V(A) = 1,
then we claim that the event A occurs V-a.s.

Let (ω(t))t≥0 be a 1-dimensional G-Brownian motion with G(a) = 1
2 Ê[a2(1)] = 1

2 (σ̄2a+−σ2a−)(∀a ∈
R), where Ê[ω2(1)] = σ̄2, −Ê[−ω2(1)] = σ2, 0 ≤ σ ≤ σ̄ < ∞. AndFt represents a filtration generated
by G-Brownian motion (ω(t))t≥0. In the following, we next carry out the stochastic integral with respect
to the quadratic variation of G-Brownian motion.

Definition 2.3. The stochastic integral with respect to the quadratic variation of G-Brownian motion
(〈ω〉(t))t≥0 is given by∫ t

0
ηtd〈ω〉(t) =

N−1∑
j=0

ξ j

(
〈ω〉(t j+1) − 〈ω〉(t j)

)
,∀ηt ∈ M1,0([0,T ]),

where 〈ω〉(t) = lim
N→∞

N−1∑
j=0

(
〈ω〉(tN

j+1) − 〈ω〉(tN
j )

)2
= ω2(t) − 2

∫ t

0
ω(s)dω(s).

3. Main results

In this section, mean square stability with general decay rate of nonlinear G-NSFDEs is provided.
We further give the following notations. Let τ > 0, denote by C([−τ, 0]; R) the family of continuous
functions φ : [−τ, 0] → R with the norm ‖φ‖ = sup−τ≤θ≤0 |φ(θ)|. For φ ∈ C([−τ, 0]; R), define D(φ) =

sup−τ≤θ≤0 |φ(θ) − φ(0)|. Let U([−τ, 0]; R+) be the family of all Borel measurable bounded nonnegative
functions η(θ) defined on −τ ≤ θ ≤ 0 such that

∫ 0

−τ
η(θ)dθ = 1. Denote by L1(R+; R+) the family of all

continuous nonnegative functions a(·) : R+ → R+ such that
∫ ∞

0
a(s)ds < ∞. Let IB be the indicator

function of a set B. For t ≥ 0, let (Ω,H , {Ωt}t≥0, Ê,V) be a generalized sublinear expectation space.
Let (ω(t))t≥0 be a 1-dimensional G-Brownian motion defined on the sublinear expectation space.

Consider the following G-NSFDE

d[x(t) − N(ρ1(xt, t), t)] = f (x(t), ρ2(xt, t), t)dt + g(x(t), ρ3(xt, t), t)d〈ω〉(t)
+ h(x(t), ρ4(xt, t), t)dω(t), t ≥ 0 (3.1)

with the initial value

x0 = ϕ = {ϕ(θ) : −τ ≤ θ ≤ 0} is F0 − measurable, C([−τ, 0]; R) − valued random variable

such that ϕ ∈ M2
G([−τ, 0]; R). (3.2)

Here, x(t) is the value of stochastic process at time t and xt = {x(t + θ) : −τ ≤ θ ≤ 0}, ρ1, ρ2, ρ3 and
ρ4 : C([−τ, 0]; R) × R+ → R, N : R × R+ → R, f , g, h : R × R × R+ → R are continuous functions.

In the following, the mean square stability with general decay rate is investigated. Next, the
definition of λ-type function is first presented (see [24]).

Definition 3.1. The function λ : R → (0,∞) is said to be λ-type function if the function satisfies the
following three conditions:

• It is continuous and nondecreasing in R and differentiable in R+;
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• λ(0) = 1, λ(∞) = ∞ and λ∗ = supt≥0

[
λ′(t)
λ(t)

]
< ∞;

• λ(t) ≤ λ(s)λ(t − s) for any s, t ≥ 0.

Definition 3.2. The trivial solution of the G-NSFDE (3.1) with the initial value (3.2) is said to be mean
square stable with general decay rate λ(t) of order ε if

lim sup
t→∞

log Ê|x(t)|2

log λ(t)
≤ −ε. (3.3)

Remark 3.1. For any t ∈ R, when λ(t) is et, 1 + t+, respectively, it follows from Definition 3.2 that the
definitions of the mean square exponential stability and the mean square polynomial stability can be
obtained, respectively.

In order to prove the mean square stability with general decay rate of the G-NSFDE (3.1) with any
given initial value (3.2), the following conditions are imposed.

(C1) (Local Lipschitz condition) Assume that for each k = 1, 2, . . . , there exists a positive constant
lk such that for any t ≥ 0,

| f (ϕ(0), ρ2(ϕ, t), t) − f (φ(0), ρ2(φ, t), t)| ∨ |g(ϕ(0), ρ3(ϕ, t), t) − g(φ(0), ρ3(φ, t), t)|
∨ |h(ϕ(0), ρ4(ϕ, t), t) − h(φ(0), ρ4(φ, t), t)| ≤ lk‖ϕ − φ‖,

for all ϕ, φ ∈ C([−τ, 0]; R) and ‖ϕ‖ ∨ ‖φ‖ ≤ k. To discuss the stability, we assume that f (0, 0, t) =

g(0, 0, t) = h(0, 0, t) = 0(∀t ≥ 0).
(C2) Assume that for any t ≥ 0 and each i = 1, 2, 3, 4, ϕ, φ ∈ C([−τ, 0]; R) and ‖ϕ‖ ∨ ‖φ‖ ≤ k,

|ρi(ϕ, t) − ρi(φ, t)| ≤ ‖ϕ − φ‖ and |ρi(ϕ, t) − ϕ(0)| ≤ D(ϕ).

Remark 3.2. From (C2), we can observe that for all t ≥ 0, ρ1(0, t) = ρ2(0, t) = ρ3(0, t) = ρ4(0, t) = 0.

(C3) (Contractility condition) For any t ≥ 0, N(0, t) = 0 and there exists a constant δ ∈ [0, 1) such
that for all φ ∈ C([−τ, 0]; R),

|N(ρ1(φ, t), t)| ≤ δ‖φ‖. (3.4)

Under conditions (C1)–(C3), we cannot ensure that the G-NSFDE (3.1) with any given initial
value (3.2) admits a unique global solution (see [6]). In order to further advance the work, another
condition is also imposed and more notations are given. Define x̃(t) = x(t) − N(ρ1(xt, t), t). Denote by
C2,1(R×R+; R+) the family of all functions V(x, t) on R×R+ which are continuously twice differentiable
in x and once in t. Given any V ∈ C2,1(R × R+; R+), for G-NSFDE (3.1), we define the function
LV : R × R × R+ → R,

LV(x, y, t) = Vt(x̃, t) + Vx(x̃, t) f (x, y, t) + G
(
2g(x, y, t)Vx(x̃, t) + Vxx(x̃, t)h2(x, y, t)

)
,

where

Vt(x, t) =
∂V(x, t)
∂t

, Vx(x, t) =
∂V(x, t)
∂x

, Vxx(x, t) =
∂2V(x, t)
∂x2 .

Another condition can be stated as follow.
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(C4) Assume that there are functions V ∈ C2,1(R × R+; R+), a ∈ L1(R+; R+), W1 ∈ C(R × R+; R+),
W2 ∈ C(R × [−τ,∞); R+), η ∈ U([−τ, 0]; R+) and positive constants γ1, γ2 such that for (ϕ(0), ϕ, t) ∈
R ×C([−τ, 0]; R) × R+,

LV(ϕ(0), ϕ, t) ≤ a(t) − γ1W1(ϕ(0), t) + γ2

∫ 0

−τ

η(θ)W2(ϕ(θ), t + θ)dθ, (3.5)

where γ1 ≥ γ2 and W1(x, t) ≥ W2(x, t). Moreover,

lim
|x̃|→∞

[inf
t∈R+

V(x̃, t)] = ∞. (3.6)

Theorem 3.1. Let conditions (C1)–(C4) hold. Then, there exists a unique global solution x(t) on t ≥ −τ
to the G-NSFDE (3.1) with any given initial value (3.2).

Proof. For any given initial value (3.2), it follows from (C1)–(C3) that the G-NSFDE (3.1) admits a
unique maximal local solution x(t) on t ∈ [−τ, ρe], where ρe is the explosion time. If we can prove
that ρe = ∞ q.s., then we can illustrate that solution x(t) is global. Let m0 be a sufficiently large
integer such that ‖x0‖ = ‖ϕ‖ = sup−τ≤s≤0 x(s) < m0. For each integer m > m0, define the stopping time
ρm = inf{t ∈ [0, ρe) : |x(t)| ≥ m}. As usual we set inf ∅ = ∞ with ∅ is an empty set. Obviously, the
sequence ρm is increasing as m → ∞, and ρ∞ = limm→∞ ρm ≤ ρe. By G-Itô’s formula, we can get that
for ∀t > 0,

V(x(t) − N(ρ1(xt, t), t), t) =V(x(0) − N(ρ1(η(−τ), 0), 0), 0) +

∫ t

0
LV(x(s), xs, s)ds

+

∫ t

0
Vx(x(s) − N(ρ1(xs, s), s), s)h(x(s), ρ4(xs, s), s)dω(s)

+

∫ t

0
Vx(x(s) − N(ρ1(xs, s), s), s)g(x(s), ρ3(xs, s), s)d〈ω〉(s)

+
1
2

∫ t

0
Vxx(x(s) − N(ρ1(xs, s), s), s)h2(x(s), ρ4(xs, s), s)d〈ω〉(s)

−

∫ t

0
G(2g(x(s), ρ3(xs, s), s)Vx(x(s) − N(ρ1(xs, s), s), s)

+ h2(x(s), ρ4(xs, s), s)Vxx(x(s) − N(ρ1(xs, s), s), s))ds

=V(x(0) − N(ρ1(η(−τ), 0), 0), 0) +

∫ t

0
LV(x(s), xs, s)ds + Gt, (3.7)

where

Gt =

∫ t

0
Vx(x(s) − N(ρ1(xs, s), s), s)h(x(s), ρ4(xs, s), s)dω(s)

+

∫ t

0
Vx(x(s) − N(ρ1(xs, s), s), s)g(x(s), ρ3(xs, s), s)d〈ω〉(s)

+
1
2

∫ t

0
Vxx(x(s) − N(ρ1(xs, s), s), s)h2(x(s), ρ4(xs, s), s)d〈ω〉(s)

−

∫ t

0
G(2g(x(s), ρ3(xs, s), s)Vx(x(s) − N(ρ1(xs, s), s), s)
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+ h2(x(s), ρ4(xs, s), s)Vxx(x(s) − N(ρ1(xs, s), s), s))ds

is a G-martingale (see [21]). Taking expectation on the both sides of (3.7), we can get

ÊV(x̃(t ∧ ρm), t ∧ ρm) = ÊV(x̃(0), 0) + Ê
∫ t∧ρm

0
LV(x(s), xs, s)ds. (3.8)

By (3.5) we gain

ÊV(x̃(t ∧ ρm), t ∧ ρm)

≤ÊV(x̃(0), 0) +

∫ t

0
a(s)ds − γ1Ê

∫ t∧ρm

0
W1(x(s), s)ds

+ γ2Ê
∫ t∧ρm

0

∫ 0

−τ

η(θ)W2(x(s + θ), s + θ)dθds. (3.9)

Noting that via
∫ 0

−τ
η(θ)dθ = 1, we obtain∫ t∧ρm

0

∫ 0

−τ

η(θ)W2(x(s + θ), s + θ)dθds

=

∫ t∧ρm

0

∫ s

s−τ
η(u − s)W2(x(u), u)duds

=

∫ t∧ρm

−τ

(∫ (u+τ)∧(t∧ρm)

u∨0
η(u − s)ds

)
W2(x(u), u)du

≤

∫ t∧ρm

−τ

(∫ u+τ

u
η(u − s)ds

)
W2(x(u), u)du

=

∫ t∧ρm

−τ

(∫ 0

−τ

η(θ)dθ
)

W2(x(s), s)ds

=

∫ t∧ρm

−τ

W2(x(s), s)ds. (3.10)

Substituting (3.10) into (3.9), we have

ÊV(x̃(t ∧ ρm), t ∧ ρm) ≤ÊV(x̃(0), 0) +

∫ t∧ρm

0
a(s)ds − γ1Ê

∫ 0

−τ

W1(x(s), s)ds

+ γ2Ê
∫ 0

−τ

W2(x(s), s)ds + γ2Ê
∫ t∧ρm

0
W2(x(s), s)ds. (3.11)

For W1(x(s), s) ≥ W2(x(s), s) and γ1 ≥ γ2, we can further get

ÊV(x̃(t ∧ ρm), t ∧ ρm)

≤ÊV(x̃(0), 0) +

∫ t

0
a(s)ds + γ2Ê

∫ 0

−τ

W2(x(s), s)ds − (γ1 − γ2)Ê
∫ t∧ρm

0
W2(x(s), s)ds

≤ÊV(x̃(0), 0) +

∫ t

0
a(s)ds + γ2Ê

∫ 0

−τ

W2(x(s), s)ds. (3.12)
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Let Vm = inf |x̃|≥m,t∈R+ V(x̃, t) with m ≥ m0. Thus, for each P ∈ P,

P(ρm ≤ t)Vm ≤ ÊV(x̃(ρm ∧ t), ρm ∧ t) ≤ ÊV(x̃(0), 0) +

∫ t

0
a(s)ds + γ2Ê

∫ 0

−τ

W2(x(s), s)ds.

Let m→ ∞, we can obtain

P(ρ∞ ≤ t) = lim
m→∞

P(ρm ≤ t)

= lim
m→∞

ÊV(x̃(0), 0) +
∫ t

0
a(s)ds + γ2Ê

∫ 0

−τ
W2(x(s), s)ds

Vm
= 0.

Namely,
P(ρ∞ > t) = 1.

Then, for the arbitrariness of t, we can obtain V(ρ∞ = ∞) = supP∈P P(ρ∞ = ∞) = 1, which implies that
ρ∞ = ∞ q.s..

Next, we will present the result of the mean square stability with general decay rate.

Theorem 3.2. Let (C1)–(C3) hold. Assume that there are functions V ∈ C2,1(R × R+; R+), W1 ∈

C(R × R+; R+), W2 ∈ C(R × [−τ,∞); R+), η ∈ U([−τ, 0]; R+) and positive constants α1, α2, α3, β1, β2

such that for (ϕ(0), ϕ, t) ∈ R ×C([−τ, 0]; R) × R+,

LV(ϕ(0), ϕ, t) ≤ −β1W1(ϕ(0), t) + β2

∫ 0

−τ

η(θ)W2(ϕ(θ), t + θ)dθ, (3.13)

where β1 ≥ β2 and W1(x, t) ≥ W2(x, t). Moreover,

α1|ϕ(0) − N(ρ1(ϕ, t), t)|2 (3.14)
≤V(ϕ(0) − N(ρ1(ϕ, t), t), t) (3.15)

≤α2W1(ϕ(0), t) + α3

∫ 0

−τ

η(θ)W2(ϕ(θ), t + θ)dθ. (3.16)

Then for any initial value (3.2), the trivial solution of the G-NSFDE (3.1) is said to be mean square
stable with general decay rate.

Proof. Note that (3.13) and (3.14) satisfy (3.5) and (3.6), respectively. So (C4) is true. Together with
conditions (C1)–(C3), then it follows from Theorem 3.1 that we can assert that the G-NSFDE (3.1)
admits a unique global solution with the given initial value (3.2). Set h1(x) = β1−λ

∗α2x−α3λ
∗λx(τ)x−

β2λ
x(τ) and h2(x) = 1− δ2λx(τ) for ∀x ≥ 0, where λ(·) denotes the λ-type function and λx(τ) represents

that λ(τ) raised to the power of x. Obviously, h1(x) and h2(x) are continuous in x. Since h1(0) =

β1 − β2 > 0 and h2(0) = 1 − δ2 > 0, by the local sign preserving property of a continuous function,
there is a sufficiently small positive number ε such that h1(ε) = β1 − ελ

∗α2 − εα3λ
∗λε(τ) − β2λ

ε(τ) > 0
and h2(ε) = 1 − δ2λε(τ) > 0. For ∀t > 0, applying the Itô’s formula to λε(t)V(x̃(t), t), we get

λε(t)V(x̃(t), t) = V(x̃(0), 0) +

∫ t

0
ε
λ′(s)
λ(s)

λε(s)V(x̃(s), s)ds +

∫ t

0
λε(s)LV(x(s), xs, s)ds + Mt, (3.17)
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where

Mt =

∫ t

0
λε(s)Vx(x̃(s), s)h(x(s), ρ4(xs, s), s)dω(s) +

∫ t

0
λε(s)Vx(x̃(s), s)g(x(s), ρ3(xs, s), s)d〈ω〉(s)

+
1
2

∫ t

0
λε(s)Vxx(x̃(s), s)h2(x(s), ρ4(xs, s), s)d〈ω〉(s)

−

∫ t

0
λε(s)G(2g(x(s), ρ3(xs, s), s)Vx(x̃(s), s) + h2(x(s), ρ4(xs, s), s)Vxx(x̃(s), s))ds

is also a G-martingale. By (3.14), we can get∫ t

0
ε
λ′(s)
λ(s)

λε(s)V(x̃(s), s)ds ≤ ελ∗
∫ t

0
λε(s)V(x̃(s), s)ds

≤ ελ∗α2

∫ t

0
λε(s)W1(x(s), s)ds

+ ελ∗α3

∫ t

0
λε(s)

(∫ 0

−τ

η(θ)W2(x(s + θ), s + θ)dθ
)

ds. (3.18)

By the property of λ(t), we can obtain∫ t

0
λε(s)

(∫ 0

−τ

η(θ)W2(x(s + θ), s + θ)dθ
)

ds

=

∫ 0

−τ

η(θ)dθ
∫ t

0
λε(s)W2(x(s + θ), s + θ)ds

=

∫ 0

−τ

η(θ)dθ
∫ t+θ

θ

λε(u − θ)W2(x(u), u)du

≤

∫ 0

−τ

η(θ)dθ
∫ t

−τ

λε(u)λε(−θ)W2(x(u), u)du

≤ λε(τ)
∫ t

−τ

λε(s)W2(x(s), s)ds

≤ λε(τ)
∫ 0

−τ

λε(s)W2(x(s), s)ds + λε(τ)
∫ t

0
λε(s)W2(x(s), s)ds. (3.19)

Substituting (3.19) into (3.18), one can gain∫ t

0
ε
λ′(s)
λ(s)

λε(s)V(x̃(s), s)ds

≤ ελ∗α2

∫ t

0
λε(s)W1(x(s), s)ds

+ ελ∗α3λ
ε(τ)

∫ 0

−τ

λε(s)W2(x(s), s)ds + ελ∗α3λ
ε(τ)

∫ t

0
λε(s)W2(x(s), s)ds. (3.20)

Applying (3.13), one can also compute
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∫ t

0
λε(s)LV(x(s), xs, s)ds

≤ −β1

∫ t

0
λε(s)W1(x(s), s)ds + β2

∫ t

0
λε(s)

(∫ 0

−τ

η(θ)W2(x(s + θ), s + θ)dθ
)

ds. (3.21)

Employing (3.19), we gain∫ t

0
λε(s)LV(x(s), xs, s)ds

≤ −β1

∫ t

0
λε(s)W1(x(s), s)ds + β2λ

ε(τ)
∫ 0

−τ

λε(s)W2(x(s), s)ds

+ β2λ
ε(τ)

∫ t

0
λε(s)W2(x(s), s)ds. (3.22)

Substituting (3.20) and (3.22) into (3.17), and by W1(x, t) ≥ W2(x, t), we have

λε(t)V(x̃(t), t)

≤V(x̃(0), 0) + ελ∗α2

∫ t

0
λε(s)W1(x(s), s)ds

+ ελ∗α3λ
ε(τ)

∫ 0

−τ

λε(s)W2(x(s), s)ds + ελ∗α3λ
ε(τ)

∫ t

0
λε(s)W2(x(s), s)ds

− β1

∫ t

0
λε(s)W1(x(s), s)ds + β2λ

ε(τ)
∫ 0

−τ

λε(s)W2(x(s), s)ds

+ β2λ
ε(τ)

∫ t

0
λε(s)W2(x(s), s)ds + Mt

≤V(x̃(0), 0) + [ελ∗α3λ
ε(τ) + β2λ

ε(τ)]
∫ 0

−τ

λε(s)W2(x(s), s)ds

− [β1 − ελ
∗α2 − ελ

∗α3λ
ε(τ) − β2λ

ε(τ)]
∫ t

0
λε(s)W2(x(s), s)ds + Mt.

Due to h1(ε) = β1 − ελ
∗α2 − ελ

∗α3λ
ε(τ) − β2λ

ε(τ) > 0. Thus,

λε(t)V(x̃(t), t)

≤ V(x̃(0), 0) + [ελ∗α3λ
ε(τ) + β2λ

ε(τ)]
∫ 0

−τ

λε(s)W2(x(s), s)ds + Mt

= C1 + Mt, (3.23)

where C1 = V(x̃(0), 0) + [ελ∗α3λ
ε(τ) +β2λ

ε(τ)]
∫ 0

−τ
λε(s)W2(x(s), s)ds. Further, we can compute for any

constant γ ∈ (0, 1),

λε(t)|x(t)|2 ≤
1

1 − γ
λε(t)|x̃(t)|2 +

δ2

γ
λε(t)‖xt‖

2. (3.24)
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Then, for any T > τ, we obtain

sup
0≤t≤T

λε(t)|x(t)|2

≤
1

1 − γ
sup

0≤t≤T
λε(t)|x̃(t)|2 +

δ2

γ
sup

0≤t≤T
λε(t)|x(t + θ)|2

≤
1

1 − γ
sup

0≤t≤T
λε(t)|x̃(t)|2 +

δ2

γ
λε(−θ)[‖η‖2 + sup

0≤t≤T
λε(t)|x(t)|2]

≤
1

1 − γ
sup

0≤t≤T
λε(t)|x̃(t)|2 +

δ2

γ
λε(τ)‖η‖2 +

δ2

γ
λε(τ) sup

0≤t≤T
λε(t)|x(t)|2.

For h2(ε) > 0, let γ ∈ (δ2λε(τ), 1), we can get(
1 −

δ2

γ
λε(τ)

)
sup

0≤t≤T
λε(t)|x(t)|2 ≤

1
1 − γ

sup
0≤t≤T

λε(t)|x̃(t)|2 +
δ2

γ
λε(τ)‖η‖2.

So

sup
0≤t≤T

λε(t)|x(t)|2 ≤
γ

(1 − γ)(γ − δ2λε(τ))
sup

0≤t≤T
λε(t)|x̃(t)|2 +

δ2λε(τ)‖η‖2

γ − δ2λε(τ)
. (3.25)

For any T > τ, (3.25) is true. Therefore, by (3.14) and (3.23), we have

λε(t)|x(t)|2 ≤
γ

(1 − γ)(γ − δ2λε(τ))
C1 + Mt

α1
+
δ2λε(τ)‖η‖2

γ − δ2λε(τ)
(3.26)

for any t > 0. Taking the expectation of both sides of (3.26), we gain

λε(t)Ê|x(t)|2 ≤
γC1

α1(1 − γ)(γ − δ2λε(τ))
+
δ2λε(τ)‖η‖2

γ − δ2λε(τ)
= C2,

where C2 =
γC1

α1(1−γ)(γ−δ2λε(τ)) +
δ2λε(τ)‖η‖2

γ−δ2λε(τ) . Then it follows that

lim sup
t→∞

log Ê|x(t)|2

log |λ(t)|
≤ −ε. (3.27)

And then according to Definition 3.2, we can obtain the trivial solution of the G-NSFDE (3.1) is mean
square stable with general decay rate λ(t) of order ε. The proof is completed.

Corollary 3.1. Let (C1)–(C3) hold. Denote x̃ = x(t) − N(ρ1(xt, t), t). Assume that there exist constant
δ̃ ∈ [0, 1), positive constants %1, %2, and constants η1, η2 such that for ∀(x, y, t) ∈ R × R × R+,

|N(ρ1(y, t), t)| ≤ δ̃
∫ 0

−τ

|x(t + θ)|dθ (3.28)

with N(0, t) = 0,

x̃ f (x, y, t) ≤ −%1|x(t)|2 + %2

∫ 0

−τ

|x(t + θ)|2dθ (3.29)
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and

2x̃g(x, y, t) + h2(x, y, t) ≤ η1|x(t)|2 + η2

∫ 0

−τ

|x(t + θ)|2dθ. (3.30)

If %1 −
1
2σ̄

2η+
1 > %2 + 1

2σ̄
2η+

2 . Then for any initial value (3.2), the trivial solution of the G-NSFDE (3.1)
is said to be mean square stable with general decay rate.

Proof. Let V(x̃(t), t) = |x̃(t)|2. By (3.28), we can get

|x̃(t)|2 = |x(t) − N(ρ1(xt, t), t)|2 ≤ 2|x(t)|2 + 2|N(ρ1(xt, t), t)|2 ≤ 2|x(t)|2 + 2δ̃2τ

∫ 0

−τ

|x(t + θ)|2dθ. (3.31)

According to the definition of LV and G(a) = 1
2 Ê[aω2(1)] = 1

2 (σ̄2a+ − σ2a−)(∀a ∈ R), we
can compute

LV(x(t), xt, t) =Vt(x̃(t), t) + Vx(x̃(t), t) f (x(t), xt, t)

+ G
(
2g(x(t), xt, t)Vx(x̃(t), t) + Vxx(x̃(t), t)h2(x(t), xt, t)

)
=2x̃(t) f (x(t), xt, t) + G

(
4x̃(t)g(x(t), xt, t) + 2h2(x(t), xt, t)

)
≤ − 2%1|x(t)|2 + 2%2

∫ 0

−τ

|x(t + θ)|2dθ + 2G
(
η1|x(t)|2 + η2

∫ 0

−τ

|x(t + θ)|2dθ
)

≤ − 2%1|x(t)|2 + 2%2

∫ 0

−τ

|x(t + θ)|2dθ + 2 ·
1
2
σ̄2

(
η1|x(t)|2 + η2

∫ 0

−τ

|x(t + θ)|2dθ
)+

− 2 ·
1
2
σ2

(
η1|x(t)|2 + η2

∫ 0

−τ

|x(t + θ)|2dθ
)−

≤ − 2%1|x(t)|2 + 2%2

∫ 0

−τ

|x(t + θ)|2dθ + 2 ·
1
2
σ̄2

(
η+

1 |x(t)|2 + η+
2

∫ 0

−τ

|x(t + θ)|2dθ
)

≤ − 2
(
%1 −

1
2
σ̄2η+

1

)
|x(t)|2 + 2

(
%2 +

1
2
σ̄2η+

2

) ∫ 0

−τ

|x(t + θ)|2dθ. (3.32)

Thus, according to %1 −
1
2σ̄

2η+
1 > %2 + 1

2σ̄
2η+

2 , we can acquire that (3.31) and (3.32) satisfy (3.13)
and (3.14), respectively. Therefore, it follows from Theorem 3.2 that we can get the trivial solution of
the G-NSFDE (3.1) is mean square stable with general decay rate.

4. An example

In this section, an example is given to illustrate the obtained results. Let ω(t) be a 1-dimensional
G-Brownian motion with ω(1) ∼ N (0; [1/2, 1]). Let τ = 1 and η(θ) ≡ 1 for θ ∈ [−1, 0].

Example 4.1. Consider the following scalar nonlinear G-NSFDE:

d
[
x(t) −

1
2

∫ 0

−1
|x(t + θ)|dθ

]
=

(
−2x(t) +

∫ 0

−1
|x(t + θ)|dθ

)
dt

−
1
2

x(t)d〈ω〉(t) + sin(x(t))dω(t), t ≥ 0. (4.1)
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Take V(x, t) = x2, it is easy to check that δ = 1
2 . We also can compute

V(x̃, t) = |x̃|2 =

∣∣∣∣∣∣x(t) −
1
2

∫ 0

−1
|x(t + θ)|dθ

∣∣∣∣∣∣2
≤ 2|x(t)|2 +

1
2

∫ 0

−1
|x(t + θ)|2dθ, (4.2)

Vx(x̃, t) f (x, y, t) = 2
(
x(t) −

1
2

∫ 0

−1
|x(t + θ)|dθ

) (
−2x(t) +

∫ 0

−1
|x(t + θ)|dθ

)
≤ −2x2(t) +

(∫ 0

−1
|x(t + θ)|dθ

)2

≤ −2x2(t) +

∫ 0

−1
|x(t + θ)|2dθ (4.3)

and

2Vx(x̃, t)g(x, y, t) + Vxx(x̃, t)h2(x, y, t)

= 4
(
−

1
2

x(t)
) (

x(t) −
1
2

∫ 0

−1
|x(t + θ)|dθ

)
+ 2 sin2(x(t))

= −2x(t)
(
x(t) −

1
2

∫ 0

−1
|x(t + θ)|dθ

)
+ 2 sin2(x(t))

≤
1
2

x2(t) +
1
2

(∫ 0

−1
|x(t + θ)|dθ

)2

≤
1
2

x2(t) +
1
2

∫ 0

−1
|x(t + θ)|2dθ. (4.4)

It follows from (4.3) and (4.4) that we gain

LV(x(t), xt, t) ≤ −
7
4

x2(t) +
5
4

∫ 0

−1
|x(t + θ)|2dθ. (4.5)

Therefore, W1(x, t) = W2(x, t) = x2, α1 = 1, α2 = 2, α3 = 1/2, β1 = 7
4 and β2 = 5

4 . According
to Theorem 3.2 (or Corollary 3.1), we can assert that the trivial solution of (4.1) is λ-type mean
square stable.

5. Conclusions

As we known, few results seem to be known about the stability with general decay rate of G-
NSFDEs, which motivates this paper to study this problem. This paper first proves that the existence
and uniqueness of the global solution for this kind of equations by the local Lipschitz condition and
a weaker condition. A kind of λ-type function is also given in this paper. By applying G-Lyapunov
function technique, a kind of mean square λ-type stability, including mean square exponential stability
and mean square polynomial stability are obtained. Results in this paper enrich the conclusions on the
stability of G-NSFDEs.
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