Citation: Dan Zhu, Qinfang Qian. Optimal switching time control of the hyperbaric oxygen therapy for a chronic wound[J]. Mathematical Biosciences and Engineering, 2019, 16(6): 8290-8308. doi: 10.3934/mbe.2019419
[1] | R. G. Frykberg and J. Banks, Challenges in the treatment of chronic wounds, Adv. Wound Care, 4 (2015), 560-582. |
[2] | R. Nunan, K. G. Harding and P. Martin, Clinical challenges of chronic wounds: searching for an optimal animal model to recapitulate their complexity, Dis. Model. Mech., 7 (2014), 1205-1213. |
[3] | N. A. Richmond, A. D. Maderal and A. C. Vivas, Evidence-based management of common chronic lower extremity ulcers, Dermatol. Ther., 26 (2013), 187-196. |
[4] | A. Rondas, J. Schols, E. Stobberingh, et al., Prevalence of chronic wounds and structural quality indicators of chronic wound care in dutch nursing homes, Int. Wound J., 12 (2015), 630-635. |
[5] | S. McDougall, J. Dallon, J. Sherratt, et al., Fibroblast migration and collagen deposition during dermal wound healing: mathematical modelling and clinical implications, Philos. Trans. R. Soc. A, 364 (2006), 1385-1405. |
[6] | B. D. Cumming, D. McElwain and Z. Upton, A mathematical model of wound healing and subsequent scarring, J. R. Soc., Interface, 7 (2009), 19-34. |
[7] | E. Gaffney, K. Pugh, P. Maini, et al., Investigating a simple model of cutaneous wound healing angiogenesis, J. Math. Biol., 45 (2002), 337-374. |
[8] | J. A. Thackham, D. McElwain and I. Turner, Computational approaches to solving equations arising from wound healing, Bull. Math. Biol., 71 (2009), 211-246. |
[9] | F. Vermolen, Simplified finite-element model for tissue regeneration with angiogenesis, J. Eng. Mech., 135 (2009), 450-460. |
[10] | J. A. Flegg, Mathematical Modelling of Chronic Wound Healing, Ph.D thesis, Queensland University of Technology, 2009. |
[11] | S. Enoch, J. E. Grey and K. G. Harding, Recent advances and emerging treatments, Br. Med. J., 332 (2006), 962-965. |
[12] | E. A. Ayello and J. E. Cuddigan, Conquer chronic wounds with wound bed preparation, The Nurse Practitioner, 29 (2004), 8-25. |
[13] | A. A. Tandara and T. A. Mustoe, Oxygen in wound healing more than a nutrient, World J. Surg., 28 (2004), 294-300. |
[14] | J. A. Thackham, D. L. S. McElwain and R. J. Long, The use of hyperbaric oxygen therapy to treat chronic wounds: a review, Wound Repair Regen., 16 (2008), 321-330. |
[15] | L. K. Kalliainen, G. M. Gordillo, R. Schlanger, et al., Topical oxygen as an adjunct to wound healing: a clinical case series, Pathophysiology, 9 (2003), 81-87. |
[16] | P. K. Gajendrareddy, C. K. Sen, M. P. Horan, et al., Hyperbaric oxygen therapy ameliorates stressimpaired dermal wound healing, Brain, Behav., Immun., 19 (2005), 217-222. |
[17] | D. E. Eisenbud, Oxygen in wound healing: nutrient, antibiotic, signaling molecule, and therapeutic agent, Clin. Plast. Surg., 39 (2012), 293-310. |
[18] | A. Gill and C. Bell, Hyperbaric oxygen: its uses, mechanisms of action and outcomes, QJM, 97 (2004), 385-395. |
[19] | P. Kranke, M. H. Bennett, M. Martyn-St James, et al., Hyperbaric oxygen therapy for chronic wounds, Cochrane Database Syst Rev., (2015), 1-69. |
[20] | G. Han and R. Ceilley, Chronic wound healing: a review of current management and treatments, Adv. Ther., 34 (2017), 599-610. |
[21] | S. Guffey, Application of a Numerical Method and Optimal Control Theory to a Partial Differential Equation Model for a Bacterial Infection in a Chronic wound, Masters Theses & Specialist Projects. Western Kentucky University, 2015. |
[22] | R. Schugart, A. Friedman, R. Zhao, et al., Wound angiogenesis as a function of tissue oxygen tension: a mathematical model, Proc. Natl. Acad. Sci., 105 (2008), 2628-2633. |
[23] | C. Xue, A. Friedman and C. K. Sen, A mathematical model of ischemic cutaneous wounds, Proc. Natl. Acad. Sci., 106 (2009), 16782-16787. |
[24] | J. A. Flegg, D. L. S. McElwain, H. M. Byrne, et al., A three species model to simulate application of hyperbaric oxygen therapy to chronic wounds, PLoS Comput. Biol., 5 (2009), e1000451. |
[25] | S. Song, J. Hogg, Z. Peng, et al., Ensemble models of neutrophil trafficking in severe sepsis, PLoS Comput. Biol., 8 (2012), e1002422. |
[26] | B. C. Russell, Using Partial Differential Equations to Model and Analyze the Treatment of a Chronic Wound With Oxygen Therapy Techniques, Honors College Capstone Experience/TesisProjects, 2013. |
[27] | D. V. Zhelev, A. M. Alteraifi and D. Chodniewicz, Controlled pseudopod extension of human neutrophils stimulated with different chemoattractants, Biophys. J., 87 (2004), 688-695. |
[28] | W. E. Schiesser, The Numerical Method of Lines: Integration of Partial Differential Equations, Academic Press, London, 2012. |
[29] | R. M. Leach, P. J. Rees and P. Wilmshurst, Hyperbaric oxygen therapy, Br. Med. J., 317 (1998), 1140-1143. |
[30] | Z. Ren, Z. Zhou, C. Xu, et al., Computational bilinear optimal control for a class of onedimensional MHD flow systems, ISA Trans., 85 (2019), 129-140. |
[31] | R. Loxton, K. L. Teo and V. Rehbock, Optimal control problems with multiple characteristic time points in the objective and constraints, Automatica, 44 (2008), 2923-2929. |
[32] | T. Chen and C. Xu, Computational optimal control of the Saint-Venant PDE model using the time-scaling technique, Asia-Pac. J. Chem. Eng., 11 (2016), 70-80. |
[33] | P. T. Boggs and J. W. Tolle, Sequential quadratic programming, Acta Numerica, 4 (1995), 1-51. |
[34] | D. Huang and J. Xu, Steady-state iterative learning control for a class of nonlinear PDE processes, J. Proc. Control., 21 (2011), 1155-1163. |
[35] | T. Chen, C. Xu and Z. Ren, Computational optimal control of 1D colloid transport by solute gradients in dead-end micro-channels, J. Ind. Manag. Optim., 14 (2018), 1251-1269. |
[36] | T. Chen, S. Zhou, Z. Ren, et al., Optimal open-loop control for 2-D colloid transport in the deadend microchannel, IEEE Trans. Control Syst. Technol., (2018), 1-9. |
[37] | Z. Zhao, X. He, Z. Ren, et al., Boundary adaptive robust control of a flexible riser system with input nonlinearities, IEEE Trans. Syst. Man Cybern. A, 49 (2018), 1971-1980. |