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Abstract: Chronic wounds, defined as those wounds which fail to heal through the normally orderly
process of stages and remain in a chronic inflammatory state, are a significant socioeconomic problem.
This paper considers an optimal switching time control problem of the hyperbaric oxygen therapy for
a chronic wound. First, we model the spatiotemporal evolution of a chronic wound by introducing
oxygen, neutrophils, invasive bacteria, and chemoattractant. Then, we apply the method of lines to
reduce the partial differential equations (PDEs) into ordinary differential equations (ODEs), which
lead to an ODE optimization problem with the changed time switching points. The time-scaling
transformation approach is applied to further transform the control problem with changed switching
time into another new problem with fixed switching time. The gradient formulas of the cost functional
corresponding to the time intervals are derived based on the sensitivity analysis. Finally, computational
numerical analysis demonstrates the effectiveness of the proposed control strategy to inhibit the growth
of bacterial concentration.
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1. Introduction

Chronic wounds, which fail to heal through the normally orderly process of stages and remain in a
chronic inflammatory state, are a major burden for health care systems and a significant socioeconomic
problem worldwide [1, 2]. For example, 2.4–4.5 million people are believed to suffer from the chronic
lower extremity ulcers (a typical chronic wound disease) per year in the United States [3]. These
ulcers last on average 12 months and recur up to 60% to 70% of patients. In a Dutch nursing-home
population, a recent study shows a 4.2% prevalence rate of chronic wounds [4]. Chronic wounds lead
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to loss of basic functions of human body and decrease quality of life tremendously. Along with other
diseases such as diabetes, 24% of these wounds will ultimately result in amputation of the lower limb.
Thus, effective treatment for chronic wounds is urgently needed.

The dynamic evolution process of the chronic wound mainly consists the oxygen, neutrophils,
invasive bacteria, and chemoattractant (a chemical that attracts neutrophils to the bacteria). There are
many useful mathematical models that address these four physical and chemical phenomenon.
McDougall et al. model the dermal wound healing by a weighted average of cells’ previous motion
direction [5]. Cumming et al. use a cell-based discrete approach to describe the delicate interaction
between elements that vary widely in nature and size scales [6]. Gaffney et al. use standard form of
the conservation equation for the tip concentration and the endothelial cell density [7]. Thackham et
al. consider advection-dominated wound healing models with a source term and obtain an analytic
solution under some simplification [8]. Vermolen has developed a system of two dimensional
nonlinear reaction-diffusion equations, in which oxygen, growth factors, epidermal cells are
considered [9]. Essentially, the dynamic evolution process of the chronic wound is spatiotemporal
evolution, which is generally modeled by coupled partial differential equations (PDEs). For example,
continuum reaction-diffusion models, one of typical PDEs, are the most commonly theoretical
approach to study the angiogenesis process [10].

Wound healing is a highly regulated and undeniably complex process, which can be divided into
four interconnected and overlapping stages: haemostasis, inflammation, proliferation and
remodelling [11, 12]. Among these processes, hyperbaric oxygen therapy is a critical means for
healing the wound and has been shown to improve the healing of chronic wounds in clinical
trials [13]. Hyperbaric oxygen therapy is breathing 100% oxygen under increased atmospheric
pressure. The primary mechanism behind the use of this therapy for wound healing is to correct the
amount of oxygen delivered to the wound site. The positive effects stem from increased tissue oxygen
tension and pressure within the wound site, such as increased collagen synthesis, modulation of the
immune system response, inhibition of bacterial propagation, prevention of leukocyte activation and
so on [14]. Kalliainen et al. conclude that topical oxygen has no bad effects on chronic wounds and
show the beneficial indications in promoting wound healing [15]. Gajendrareddy et al. demonstrate
that systemic oxygen therapy ameliorates stress-impaired dermal wound healing [16]. Eisenbud gives
the correction of wound hypoxia and clarifies that oxygen is beneficial to many aspects of healing but
it does not necessarily follow that the more is better [17]. These work described above greatly
promotes the hyperbaric oxygen therapy and provides guidance for the medical staff. However, these
results are from a large number of repeated experiments and feel weak for individual difference
treatment. Moreover, Gill et al. discuss the application, mechanisms and outcomes of the hyperbaric
oxygen therapy but also mention that the therapy is expensive [18]. Thus, this paper considers the
hyperbaric oxygen therapy for a chronic wound from the perspective of control synthesis and
economic cost.

To our best knowledge, there are few literature studies in the control of the hyperbaric oxygen
therapy for a chronic wound. The time and amount of oxygenation applied during the hyperbaric
oxygen therapy provide the regulatory mechanism for the advanced control strategy study to improve
wound healing [19, 20]. Recently, Guffey demonstrates the existence of the state solutions for a
bacterial infection model with modified boundary conditions [21] and establishes some theoretical
foundations of optimal control in a chronic wound. However, the convergence of the state system
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forward and the adjoint system backward is not solved and the implementation of optimal control is
blocked. In this paper, we complement the optimal switching time control of the hyperbaric oxygen
therapy for a chronic wound based on the sensitivity analysis and have a great prospect in the
application and guidance of the hyperbaric oxygen therapy.

The paper is organized as follows. In Section 2, the dimensionless oxygen concentration,
dimensionless neutrophil concentration, dimensionless bacterial concentration and dimensionless
chemoattractant concentration with corresponding boundary conditions and initial conditions in a
chronic wound are modeled. Then, the optimal control problem for inhibiting the growth of bacterial
concentration through the hyperbaric oxygen therapy is proposed. In Section 3, The method of lines,
which only discretizes the space while keeps the time continuous, is used to reduce the PDE
optimization problem into an ODE optimization problem. In Section 4, the control design problem of
the hyperbaric oxygen therapy is the parameter selection problem of the optimal time switching points
essentially. However, the switching time problem is difficult to solve. Thus, the time-scaling
transformation approach which turns the original problem into a new problem with fixed switching
time is applied and the gradient of the cost functional corresponding to the time intervals is derived
based on the sensitivity analysis. In Section 5, computational numerical analysis is carried out to
show the effectiveness of the optimal switching time control for bacterial concentration suppression
under different discretization numbers of the time intervals. Finally, Section 6 concludes the paper
with comments and suggestions for future research.

2. Problem formulation

We consider the situation, where the chronic wound is considered to be one-dimensional with the
spatial distance x = 0 located at the center of the radial wound site and x = 1 located at the edge
of the chronic wound nearest healthy dermis. This paper mainly uses oxygen, neutrophils, bacteria
and chemoattractants to describe the dynamic evolution process of a chronic wound. Moreover, the
relationship of these variables’ interaction is shown in Figure 1.

2.1. Dimensionless oxygen concentration model

The movement process of the dimensionless oxygen concentration O(x, t) in a chronic wound is
governed by the following PDE model [22, 23]

∂O(x, t)
∂t

=
∂2O(x, t)
∂x2 + η + κu(t) − λNON(x, t)O(x, t) − λBOB(x, t)O(x, t)

− λOO(x, t), t ∈ [0,T ], x ∈ [0, 1],
(2.1)

where t is the time variable; η is a constant input of external oxygen; κ is the oxygen coefficient
of the hyperbaric oxygen therapy; λNO is per unit neutrophil; λBO is per unit bacteria; N(x, t) is the
dimensionless neutrophil concentration; B(x, t) is the dimensionless bacterial concentration; λO is the
natural decay rate of oxygen. Oxygen lost in any other way, unrelated to the neutrophils and bacteria,
occurs at a constant rate of λO. For example, other leukocytes need to consume oxygen. Oxygen
naturally decay is also described in [24]. Moreover, during the hyperbaric oxygen therapy, we can only
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Figure 1. The relationship and interaction of oxygen, neutrophils, bacteria and
chemoattractants.

choose the oxygen tank on or off. Thus, u(t), a time-dependent oxygen therapy, is given as

u(t) =

1, if oxygen is imposed,
0, otherwise.

(2.2)

Since the oxygen concentration satisfies the natural boundary condition at the center of the chronic
wound and is enough at the edge of the chronic wound nearest healthy dermis, the boundary conditions
for (2.1) are:

∂O(0, t)
∂x

= 0, O(1, t) = 1, t ∈ [0,T ]. (2.3)

We assume the initial state of the oxygen concentration is enough and then obtain the following initial
condition for (2.1)

O(x, 0) = 1, x ∈ [0, 1]. (2.4)

2.2. Dimensionless neutrophil concentration model

The movement process of the dimensionless neutrophil concentration in a chronic wound is
governed by [25, 26]

∂N(x, t)
∂t

= DN
∂2N(x, t)
∂x2 − κN

∂
(
∂N(x, t)∂C(x,t)

∂x

)
∂x

+ αBN B(x, t)N(x, t)GN(O(x, t))(1 − N(x, t))

− λN
N(x, t)

(
1 + HN(O(x, t))

)
1 + eB(x, t)

, t ∈ [0,T ], x ∈ [0, 1],
(2.5)

where DN is the diffusion coefficient of neutrophils; κN is the attraction coefficient of neutrophils via
chemoattractant gradient released by the bacteria; C(x, t) is the dimensionless chemoattractant
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concentration; αBN is the proliferation coefficient of neutrophils corresponding to the bacteria and
oxygen; λN is the decay coefficient of neutrophils dependent on the presence of bacteria and oxygen, e
is the relative coefficient of neutrophils corresponding to the bacteria. As bacteria proliferate in the
wound, neutrophils are recruited into the chronic wound site to destroy the bacteria. This direct
correlation between the amount of bacteria in the wound and the neutrophil concentration also affects
the reduction of neutrophils from the chronic wound. The fraction (the last item on the right side of
(2.5)), which is also mentioned in [26], describes this process. Moreover, two bounded smooth
functions GN(O(x, t)) and HN(O(x, t)) are defined as

GN(O(x, t)) =

2O3(x, t) − 3O2(x, t) + 2, 0 ≤ O(x, t) < 1,
1, O(x, t) > 1,

(2.6)

and

HN(O(x, t)) =



2, 0 ≤ O(x, t) < 0.15,
4000O3(x, t) − 2400O2(x, t) + 450O(x, t) − 25, 0.15 ≤ O(x, t) < 0.25,
0, 0.25 ≤ O(x, t) < 2.95,
−4000O3(x, t) + 36000O2(x, t) − 107970O(x, t) − 107911, 2.95 ≤ O(x, t) < 3.05,
2, O(x, t) > 3.05.

(2.7)
In according with (2.3), the boundary conditions for (2.5) are

∂N(0, t)
∂x

= 0, N(1, t) = 1, t ∈ [0,T ]. (2.8)

The neutrophils are assumed to be originally concentrated heavily near the edge of the chronic wound,
the initial condition for (2.5) is

N(x, 0) = x2e−( 1−x
ε )2
, x ∈ [0, 1], (2.9)

where ε is the distribution coefficient.

2.3. Dimensionless bacterial concentration model

The movement process of the dimensionless bacterial concentration in a chronic wound is governed
by the following PDE model [26]

∂B(x, t)
∂t

= DB
∂2B(x, t)
∂x2 + αBB(x, t)(1 − B(x, t)) − B(x, t)

O(x, t)
KO + O(x, t)

θ + KNRN(x, t)
λRBB(x, t) + 1

− λBB(x, t), t ∈ [0,T ], x ∈ [0, 1],
(2.10)

where DB is the diffusion coefficient of bacteria; αB is the proliferation coefficient of bacteria; KO is
the influence coefficient of oxygen; θ is the influence coefficient of other leukocytes; KNR is the
influence coefficient of neutrophils; λRB is the attenuation coefficient of neutrophils’ influence; λB is
the natural death rate of bacteria. Bacteria are removed by neutrophils. An increase in the neutrophil
concentration within the wound site will lead to the destruction of bacteria. Thus, KNR denotes the
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influence coefficient of neutrophils for bacterial destruction while λRB denotes the attenuation
coefficient of neutrophils’ influence caused by bacteria. Since the bacterial concentration satisfies the
natural boundary condition (a zero flux condition) at x = 0 and x = 1, the boundary conditions for
(2.10) are

∂B(0, t)
∂x

= 0,
∂B(1, t)
∂x

= 0, t ∈ [0,T ]. (2.11)

Meanwhile, the bacteria are assumed to be initially concentrated densely in the center of the chronic
wound within [0, ε] and nonexistent elsewhere. It is corresponding to the neutrophils, which are
assumed to be initially concentrated heavily near the edge of the chronic wound. Then, neutrophils
are chemically attracted by the chemoattractant to destroy bacteria. Moreover, the assumption that
bacteria are initially concentrated in the center of the chronic wound is mentioned in [26]. In practice,
the process of bacteria slowly moving from a central area of a wound to the outer edge is reasonable.
Thus, the initial condition for (2.10) is

B(x, 0) = (1 − x)2e−( x
ε )2
, x ∈ [0, 1]. (2.12)

where ε is the distribution coefficient like in (2.9).

2.4. Dimensionless chemoattractant concentration model

The movement process of the dimensionless chemoattractant concentration in a chronic wound is
governed by [27]

∂C(x, t)
∂t

= DC
∂2C(x, t)
∂x2 + αC B(x, t) − λCC(x, t), t ∈ [0,T ], x ∈ [0, 1], (2.13)

where DC is the diffusion coefficient of chemoattractant; αC is the proliferation coefficient of
chemoattractant produced by the bacteria; λC is natural death rate of chemoattractant. In accordance
with (2.11), the boundary conditions for (2.13) are

∂C(0, t)
∂x

= 0,
∂C(1, t)
∂x

= 0, t ∈ [0,T ]. (2.14)

In accordance with (2.12), the initial condition for (2.13) is

C(x, 0) = (1 − x)2e−( x
ε )2
, x ∈ [0, 1]. (2.15)

where ε is the distribution coefficient like in (2.9).

2.5. The optimal control problem

Since bacterial concentration causes a serious threat to health cure, the hyperbaric oxygen therapy
u(t) must be manipulated carefully to inhibit the growth of bacterial concentration and even eliminate
bacteria at fixed treatment time t = T . Gill et al. mention that hyperbaric oxygen therapy is expensive.
The cost of this therapy depends on the amount of time it takes to use oxygen. We hope to achieve
better therapeutic results at a lower economic cost, which has important socioeconomic significance.

Mathematical Biosciences and Engineering Volume 16, Issue 6, 8290–8308.



8296

The cost functional is designed to minimize the bacterial infection as well as the amount of time spent
in the hyperbaric oxygen therapy. To this end, we consider the following cost functional

J(u(t)) =

∫ 1

0
B(x,T )dx + ω

∫ T

0
u2(t)dt, (2.16)

where ω is the weight coefficient, which depends on the treatment cost. The first term of cost
functional (2.16) denotes the bacterial concentration at fixed treatment time t = T and the second term
denotes the economic cost by hyperbaric oxygen therapy. This paper considers the inhibition of
bacterial propagation and even completes the elimination of bacteria to achieve a smooth healing of a
chronic wound through the hyperbaric oxygen therapy. Thus, bacterial concentration is the most
direct variable and an objective evaluation criterion for therapeutic effects. Other variables, including
oxygen, neutrophils and chemoattractants, are coupled with bacteria through PDEs. It is difficult to
obtain the direct quantitative relationship between bacteria and indirect variables and then hard to
include these indirect variables in the cost functional to obtain an objective evaluation criterion. For
example, chemoattractant attracts neutrophils to destroy bacteria while chemoattractant is produced
by bacteria. Thus, the chemoattractant concentration is difficult to be quantified in the cost functional.
Moreover, the proposed objective function is also used in [21].

Thus, we obtain the following PDE optimization problem: given the dimensionless oxygen
concentration model (2.1), dimensionless neutrophil concentration model (2.5), dimensionless
bacterial concentration model (2.10) and dimensionless chemoattractant concentration model (2.13)
with corresponding boundary conditions and initial conditions, choose the control u(t), in accordance
with (2.2), to minimize the cost functional (2.16). We refer to this problem as Problem P0.

3. The method of lines

Problem P0 is a PDE optimization problem. In order to simplify the optimal control design, we
apply the method of lines, which only discretizes the space while keeps the time continuous, to reduce
the PDEs (2.1), (2.5), (2.10) and (2.13) into ODEs [28]. First, we decompose the whole space [0, 1] into
equally-spaced intervals xi − xi−1 = 1/M, i = 1, ...,M, where M is an integer of spatial discretization,
x0 = 0, xM = 1 and define

O(xi, t) = Oi(t), N(xi, t) = Ni(t), B(xi, t) = Bi(t), C(xi, t) = Ci(t), i = 0, ...,M. (3.1)

Then, based on the (3.1), we obtain the following finite difference approximations by center difference

∂2O(xi, t)
∂x2 = M2[Oi+1(t) − 2Oi(t) + Oi−1(t)

]
,

∂2N(xi, t)
∂x2 = M2[Ni+1(t) − 2Ni(t) + Ni−1(t)

]
,

∂2B(xi, t)
∂x2 = M2[Bi+1(t) − 2Bi(t) + Bi−1(t)

]
,

∂2C(xi, t)
∂x2 = M2[Ci+1(t) − 2Ci(t) + Ci−1(t)

]
, i = 1, ...,M − 1,

(3.2)
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and
∂
(
∂N(x, t)∂C(x,t)

∂x

)
∂x

=
M2

4
[
Ni+1(t) − Ni−1(t)

][
Ci+1(t) −Ci−1(t)

]
+ M2Ni(t)

[
Ci+1(t) − 2Ci(t) + Ci−1(t)

]
, i = 1, ...,M − 1.

(3.3)

Thus, based on the (3.2) and (3.3), the dimensionless oxygen concentration model (2.1),
dimensionless neutrophil concentration model (2.5), dimensionless bacterial concentration model
(2.10) and dimensionless chemoattractant concentration model (2.13) become

dOi(t)
dt

= M2[Oi+1(t) − 2Oi(t) + Oi−1(t)
]
+ η + κu(t) − λNONi(t)Oi(t) (3.4a)

− λBOBi(t)Oi(t) − λOOi(t),

dNi(t)
dt

= DN M2[Ni+1(t) − 2Ni(t) + Ni−1(t)
]
− κN

{M2

4
[
Ni+1(t) − Ni−1(t)

][
Ci+1(t) −Ci−1(t)

]
(3.4b)

+ M2Ni(t)
[
Ci+1(t) − 2Ci(t) + Ci−1(t)

]}
+ αBN Bi(t)Ni(t)GN(Oi(t))(1 − Ni(t))

− λN
Ni(t)

(
1 + HN(Oi(t))

)
1 + eBi(t)

,

dBi(t)
dt

= DBM2[Bi+1(t) − 2Bi(t) + Bi−1(t)
]
+ αBBi(t)(1 − Bi(t)) (3.4c)

− Bi(t)
Oi(t)

KO + Oi(t)
θ + KNRNi(t)
λRBBi(t) + 1

− λBBi(t),

dCi(t)
dt

= DC M2[Ci+1(t) − 2Ci(t) + Ci−1(t)
]
+ αC Bi(t) − λCCi(t), i = 1, ...,M − 1. (3.4d)

Under the spatial discretization (3.1), the boundary conditions (2.3) and (2.8) become

O0(t) = O2(t), OM+1(t) = 1, N0(t) = N2(t), NM+1(t) = 1. (3.5)

The boundary conditions (2.11) and (2.14) become

B0(t) = B2(t), BM+1(t) = BM−1(t), C0(t) = C2(t), CM+1(t) = CM−1(t). (3.6)

The initial conditions (2.4) and (2.9) become

Oi(0) = 1, Ni(0) = x2
i e−( 1−xi

ε )2
, i = 0, ...,M. (3.7)

The initial conditions (2.12) and (2.15) become

Bi(0) = (1 − xi)2e−( xi
ε )2
, Ci(0) = (1 − xi)2e−( xi

ε )2
, i = 0, ...,M. (3.8)

Moreover, the cost functional (2.16) becomes

J(u(t)) =

M−1∑
i=0

Bi(T )

M
+ ω

∫ T

0
u2(t)dt. (3.9)

Now, we state our approximate problem as follows: given the ODEs (3.4) with the initial conditions
(3.7) and (3.8), choose the control u(t), in accordance with (2.2), to minimize the cost functional (3.9).
We refer to this problem as Problem P1.
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4. Optimal switching time control

4.1. Time-scaling transformation approach

Problem P1 is an ODE optimization problem, where the control u(t) is limited to 0 or 1. In the
hyperbaric oxygen therapy, we should choose the optimal time intervals applied by the oxygen. Note
that the time of oxygen inhalation should not be too long, no more than three times a day, no more than
120 minutes (2 hours) each time, otherwise, it is easy to cause oxygen toxicity for a human [29]. First,
the whole time horizon [0,T ] is divided into γ time intervals [30]

0 = t0 < t1 < · · · < tγ−1 < tγ = T. (4.1)

where tk, k = 1, . . . , γ − 1, are time switching points. However, unequal time intervals [tk−1, tk],
k = 1, ..., γ make the ODE optimization problem difficult to deal with, where the optimized decision
variables are the time intervals. Thus, we apply the time-scaling transformation approach to transform
the ODE optimization problem with changed switching time into a new optimization problem with
fixed switching time [31, 32]. The relationship between t (changed switching time) and s (fixed
switching time) shown in Figure 2 can be also defined as

dt(s)
ds

= ζk, s ∈ [k − 1, k), k = 1, ..., γ, (4.2)

where t(0) = 0 and t(γ) = T ; ζk, k = 1, ..., γ, are time interval variables, which should be optimized.
Let ζ = [ζ1, ζ2, ..., ζγ]>, where ζk = tk − tk−1, k = 1, ..., γ and

0 ≤ ζk ≤ T,
γ∑

k=1

ζk = T, (4.3)

and when u(t) = 1, 0 ≤ ζk ≤ Th, where Th denotes 2 hours.

0t
0 1 2

1t

...

2t

1t 

t

... ...t

1 
s

1

2



Figure 2. The relationship between t (changed switching time) and s (fixed switching time).
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Integrating (4.2) over [0, s], we can obtain the time-scaling function as

t(s) =


bsc∑
k=1
ζk + ζbsc+1(s − bsc), if s ∈ [0, γ),

T, s = γ,

(4.4)

where bsc donates an integer which is not larger than s. Accordingly, we should change the Problem
P1 with time variable “t” into a new optimization problem with auxiliary variable “s”. Let denote

Õi(s) = Oi(t(s)), Ñi(s) = Ni(t(s)), B̃i(s) = Bi(t(s)), C̃i(s) = Ci(t(s)), i = 0, ...,M. (4.5)

Combined with the chain rule, the reduced dimensionless oxygen concentration model (3.4) becomes

dÕi(s)
ds

=
dOi(t(s))

dt
dt(s)
ds

= ζk dOi(t(s))
dt

, s ∈ (k − 1, k), k = 1, . . . , γ, i = 1, ...,M − 1. (4.6)

Based on the (4.6), (3.4) becomes

dÕi(s)
ds

= ζk
{
M2[Õi+1(s) − 2Õi(s) + Õi−1(s)

]
+ η + κu(s) − λNOÑi(s)Õi(s) (4.7a)

− λBOB̃i(s)Õi(s) − λOÕi(s)
}
,

dÑi(s)
ds

= ζk
{
DN M2[Ñi+1(s) − 2Ñi(s) + Ñi−1(s)

]
− κN

{M2

4
[
Ñi+1(s) − Ñi−1(s)

][
C̃i+1(s) − C̃i−1(s)

]
(4.7b)

+ Ñi(s)M2[C̃i+1(s) − 2C̃i(s) + C̃i−1(s)
]}

+ αBN B̃i(s)Ñi(s)GN(Õi(s))(1 − Ñi(s))

− λN
Ñi(s)

(
1 + HN(Õi(s))

)
1 + eB̃i(s)

}
,

dB̃i(s)
ds

= ζk
{
DBM2[B̃i+1(s) − 2B̃i(s) + B̃i−1(s)

]
+ αBB̃i(s)(1 − B̃i(s)) (4.7c)

− B̃i(s)
Õi(s)

KO + Õi(s)
θ + K̃NRÑi(s)
λRBB̃i(s) + 1

− λBB̃i(s)
}
,

dC̃i(s)
ds

= ζk
{
DC M2[C̃i+1(s) − 2C̃i(s) + C̃i−1(s)

]
+ αC B̃i(s) − λCC̃i(s)

}
, i = 1, ...,M − 1, (4.7d)

where s ∈ (k − 1, k), k = 1, . . . , γ. The initial conditions (3.7) and (3.8) become

Õi(0) = Oi(0), Ñi(0) = Ni(0), B̃i(0) = Bi(0), B̃i(0) = Bi(0). (4.8)

After the time-scaling transformation approach (4.2), the cost functional (3.9) becomes

J(ζ) =

M−1∑
i=0

B̃i(γ)

M
+ ω

γ∑
k=1

∫ k

k−1
ζku2(s)ds. (4.9)

Finally, the optimal parameter selection problem is stated as: given the ODEs (4.7) with the initial
conditions (4.8), choose the optimal switching time points tk, k = 1, . . . , γ − 1 combined with the
control u(t) to minimize the cost functional (4.9). We refer to this problem as Problem Pγ.
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4.2. Solving problem Pγ

Problem Pγ is a nonlinear programming problem. Thus, we should compute the gradient of the cost
functional (4.9) corresponding to the time interval variables ζk, k = 1, ..., γ. However, computing its
gradient is a non-trivial task since (4.9) is an implicit, rather than an explicit function.

For each µ = 1, 2, . . . , γ and i = 1, ...,M − 1, we apply the integration and obtain

Õi(s) = Õi(µ − 1) +

∫ s

µ−1
ζµ

{
M2[Õi+1(β) − 2Õi(β) + Õi−1(β)

]
+ η + κu(β)

− λNOÑi(β)Õi(β) − λBOB̃i(β)Õi(β) − λOÕi(β)
}
dβ, s ∈ [µ − 1, µ).

(4.10)

If k ≤ µ, we differentiate (4.10) corresponding to ζk and obtain

∂Õi(s)
∂ζk

=
∂Õi(µ − 1)

∂ζk
+

∫ s

µ−1
ζµ

{
M2[∂Õi+1(β)

∂ζk
− 2

∂Õi(β)
∂ζk

+
∂Õi−1(β)
∂ζk

]
− λNO

∂[Ñi(β)Õi(β)]
∂ζk

− λBO
∂[B̃i(β)Õi(β)]

∂ζk
− λO

∂Õi(β)
∂ζk

}
+ δkµ

{
M2[Õi+1(β) − 2Õi(β) + Õi−1(β)

]
+ η + κu(β)

− λNOÑi(β)Õi(β) − λBOB̃i(β)Õi(β) − λOÕi(β)
}
dβ, s ∈ [µ − 1, µ),

(4.11)

where δkµ denotes the Kronecker delta function. If k > µ, ζk does not affect the Õi(s) during s ∈
[µ − 1, µ), thus we have

∂Õi(s)
∂ζk

= 0, s ∈ [µ − 1, µ). (4.12)

Then, we differentiate (4.11) corresponding to s and obtain

d
ds

{
∂Õi(s)
∂ζk

}
= ζµ

{
M2[∂Õi+1(s)

∂ζk
− 2

∂Õi(s)
∂ζk

+
∂Õi−1(s)
∂ζk

]
− λNO

∂[Ñi(s)Õi(s)]
∂ζk

− λBO
∂[B̃i(s)Õi(s)]

∂ζk
− λO

∂Õi(s)
∂ζk

}
+ δkµ

{
M2[Õi+1(s) − 2Õi(s) + Õi−1(s)

]
+ η + κu(s)

− λNOÑi(s)Õi(s) − λBOB̃i(s)Õi(s) − λOÕi(s)
}
, s ∈ [µ − 1, µ).

(4.13)

From (4.10)–(4.13), we can obtain the state variations ∂Õi(s)
∂ζk

for each k = 1, 2, . . . , γ, i = 1, ...,M − 1

d
ds

{
∂Õi(s)
∂ζk

}
= ζµ

{
M2[∂Õi+1(s)

∂ζk
− 2

∂Õi(s)
∂ζk

+
∂Õi−1(s)
∂ζk

]
− λNO

∂[Ñi(s)Õi(s)]
∂ζk

− λBO
∂[B̃i(s)Õi(s)]

∂ζk
− λO

∂Õi(s)
∂ζk

}
+ δkµ

{
M2[Õi+1(s) − 2Õi(s) + Õi−1(s)

]
+ η + κu(s)

− λNOÑi(s)Õi(s) − λBOB̃i(s)Õi(s) − λOÕi(s)
}
,

(4.14)
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where s ∈ [µ − 1, µ), µ = k, k + 1, ..., γ.
For the initial condition (4.8), we have

∂Õi(0)
∂ζk

= 0, k = 1, 2, . . . , γ. (4.15)

Similarly, we can obtain the state variations ∂Ñi(s)
∂ζk

, ∂B̃i(s)
∂ζk

and ∂C̃i(s)
∂ζk

, k = 1, 2, . . . , γ, i = 1, ...,M − 1.
Moreover, for the cost functional (4.9), the gradient formulas corresponding to ζk, k = 1, 2, . . . , γ

can be obtained using the chain rule of differentiation

∂J(ζ)
∂ζk =

1
M

M−1∑
i=0

∂B̃i(γ)
∂ζk + ω

∫ k

k−1
u2(s)ds, k = 1, 2, . . . , γ. (4.16)

Based on the gradient formulas (4.16), the existing nonlinear programming algorithm, such as
Sequential Quadratic Program (SQP) algorithm [33], can be applied to solve the Problem Pγ. The
flow chart is shown in Figure 3.

A PDE optimization problem (Problem     )

Start

 An ODE optimization model (Problem     )

  Solve the state variations  (4.14) with 
initial conditions (4.15) 

Compute the cost functional (4.9) and gradient 
formulas corresponding to each time interval (4.16)  

Use a nonlinear programming algorithm (such 
as SQP) 

Optimal?

End

No

Yes

The method of lines

 approachTime-scaling transformation 

0P

1P

Solve the  ODE model (4.7) with initial 
conditions (4.8)

 An ODE optimization model (Problem     )P

Figure 3. The flow chart for solving the Problem Pγ.
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5. Computational numerical analysis

For the computational numerical analysis, the proposed method in Section 4 is implemented in
MATLAB software, which uses ODE15s to solve the reduced ODEs (4.7) for the cost functional and
gradient formulas and then apply the SQP algorithm to perform the optimization steps. The parameter
values for the dimensionless oxygen concentration model and dimensionless neutrophil concentration
model are set as: η = 0.2284, κ = 5.4, λNO = 37, λBO = 22.7872, λO = 2.4667, DN = 0.02, κN = 10,
αBN = 14.28, λN = 5 and e = 30. Meanwhile, the parameter values for dimensionless bacterial
concentration model and dimensionless chemoattractant concentration model are set as: DB = 0.0001,
αB = 1.26, KO = 0.75, KNR = 2, λRB = 3.73, λB = 5, DC = 1.5, αC = 20 and λC = 0.9, which are
consistent with [21]. Moreover, the distribution coefficient ε is set as 0.01 and the whole time horizon
T is set as 0.432, which corresponds to 24 hours.

The spatial discretization number N is set as 61 and the weight coefficient ω is set as 0.07. Our
computational numerical analysis is carried out on a personal computer with the following
configuration: Intel(R) Core(TM) i7-6820HQ CPU, 2.70GHz CPU, 16.00GB RAM, 64-bit Windows
10 Operating System.
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(a) The optimal switching time control sequences (γ =

5).
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(b) Dimensionless bacterial concentration at x = 0
(γ = 5).

Figure 4. The optimal switching time control and corresponding dimensionless bacterial
concentration at x = 0 (γ = 5).

We divide the whole time horizon into γ = 5 time intervals and set corresponding control
sequences u(s) as 0, 1, 0, 1, 0. The initial guess for ζk, k = 1, ..., γ is T/γ, which denotes the equal
time intervals. The optimal switching time control sequences under γ = 5 are shown in Figure 4(a)
and the dimensionless bacterial concentration at x = 0 under γ = 5 is shown in Figure 4(b).
Hyperbaric oxygen therapy is not required due to the high concentration of oxygen at the initial time.
Then, it is applied when the oxygen concentration is reduced but the bacterial concentration is still
relatively high. Finally, our normal human immune system completely replaces expensive treatments
to inhibit or even destroy these bacteria when the bacterial concentration is low. The distribution of
the dimensionless oxygen concentration, dimensionless neutrophil concentration, dimensionless
bacterial concentration and dimensionless chemoattractant concentration is shown in Figure 5(a),
5(b), 5(c) and 5(d), respectively. The oxygen concentration (shown in Figure 5(a)) decreases first,
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then increases and then decreases due to the optimal switching time control sequences (shown in
Figure 4(a)). The neutrophils (shown in Figure 5(b)) remain dense near the edge of the chronic wound
and are chemically attracted to the center of the chronic wound very slowly. Since the
chemoattractant (shown in Figure 5(d)) does not reach the edge of the chronic wound, neutrophils are
lack of movement. Through the regulation of oxygen, the bacterial concentration approaches to 0.
Correspondingly, the chemoattractant concentration drops to 0 due to the quick loss of the bacteria.

(a) The distribution of the dimensionless oxygen
concentration (γ = 5).

(b) The distribution of the dimensionless neutrophil
concentration (γ = 5).

(c) The distribution of the dimensionless bacterial
concentration (γ = 5).

(d) The distribution of the dimensionless chemoattractant
concentration (γ = 5).

Figure 5. The distribution of the dimensionless oxygen concentration, dimensionless
neutrophil concentration, dimensionless bacterial concentration and dimensionless
chemoattractant concentration (γ = 5).

We extend the number of time intervals into γ = 7 and set corresponding control sequences u(s)
as 0, 1, 0, 1, 0, 1, 0. The optimal switching time control sequences are shown in Figure 6(a) and
the dimensionless bacterial concentration at x = 0 is shown in Figure 6(b). The distribution of the
dimensionless oxygen concentration and dimensionless bacterial concentration is shown in Figure 7(a)
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(a) The optimal switching time control sequences (γ =

7).
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(b) Dimensionless bacterial concentration at x = 0
(γ = 7).

Figure 6. The optimal switching time control and corresponding dimensionless bacterial
concentration at x = 0 (γ = 7).

and 7(b), respectively. Since the optimal switching time control sequences (γ = 7) are similar to the
case of γ = 5, the dynamics of oxygen, neutrophils, bacteria and chemoattractants are almost identical
to those of γ = 5. However, note that increasing γ from 5 to 7 does not lead to any significant change
in the inhibition of bacteria. Thus, choosing γ = 5 for the time intervals is sufficient.

The results also provide protocols for switching treatment on/off in practice and their meaning in
terms of bacterial suppression. From Figures 5(a), 5(c), 7(a) and 7(b), we can see that when the
dimensionless oxygen concentration is less than about 0.75 and the dimensionless bacterial
concentration is more than about 0.45, the hyperbaric oxygen therapy is applied effectively.
Otherwise, our normal human immune system can inhibit or even destroy these bacteria and the
hyperbaric oxygen therapy is not necessary. Note that there are much uncertainty and complex
coupling relationship between variables in practice, which will influence the optimal therapeutic
effect. Moreover, [31] presents the convergence proof that the optimized control sequences after the
time-scaling transformation can approach the theoretic optimal control as γ → +∞. When the number
of time intervals is increased to a certain extent, the optimal results are similar and not sensitive to γ.
However, we cannot choose γ too large due to consideration of human safety and the limitations of
medical conditions. We choose γ = 5 (twice a day) and γ = 7 (three times a day) in the computational
numerical analysis. Our numerical results show that the optimal switching time control sequences are
similar when γ is increased from 5 to 7, which means the results are not very sensitive to γ.

Different from traditional empirical strategies, this paper’s work can accurately give better protocols
for switching treatment on/off at a lower economic cost. Through precise hyperbaric oxygen regulation,
bacterial propagation is effectively inhibited, thereby the wound healing is improved. The results of
the proposed method can provide some guidance for the medical staff by use of the hyperbaric oxygen
therapy for wound healing in practice. Moreover, combined with image recognition technology, our
proposed method can be easily extended to the intelligent medical field.
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(a) The distribution of the dimensionless oxygen
concentration (γ = 7).

(b) The distribution of the dimensionless bacterial
concentration (γ = 7).

Figure 7. The distribution of the dimensionless oxygen concentration and dimensionless
bacterial concentration (γ = 7).

6. Conclusion and future work

In this paper, we propose the optimal switching time control of the hyperbaric oxygen therapy for
bacterial concentration suppression. The bacterial concentration is coupled with the oxygen
concentration, neutrophil concentration and chemoattractant concentration governed by PDEs. The
method of lines is first used to reduce the PDE optimization problem into an ODE optimization
problem. Then, the time-scaling transformation approach is applied and the gradient formulas of the
cost functional corresponding to the time intervals are derived based on the sensitivity analysis.
Finally, a new effective computational method is proposed and computational numerical analysis
shows the effectiveness of the proposed strategy. In the future, we will work on the experiments to
further verify the feasibility of the proposed strategy. Moreover, the iterative learning control [34],
control parameterization with optimized control values [35, 36] and adaptive control [37] for the
hyperbaric oxygen therapy can be considered.
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