The classical notion of statistical convergence has recently been transported to the scope of real normed spaces by means of the $ f $-statistical convergence for $ f $ a modulus function. Here, we go several steps further and extend the $ f $-statistical convergence to the scope of uniform spaces, obtaining particular cases of $ f $-statistical convergence on pseudometric spaces and topological modules.
Citation: Francisco Javier García-Pacheco, Ramazan Kama. $ f $-Statistical convergence on topological modules[J]. Electronic Research Archive, 2022, 30(6): 2183-2195. doi: 10.3934/era.2022110
The classical notion of statistical convergence has recently been transported to the scope of real normed spaces by means of the $ f $-statistical convergence for $ f $ a modulus function. Here, we go several steps further and extend the $ f $-statistical convergence to the scope of uniform spaces, obtaining particular cases of $ f $-statistical convergence on pseudometric spaces and topological modules.
[1] | A. Zygmund, Trigonometric series. Vol. I, II, 3rd edition, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2002, With a foreword by Robert A. Fefferman. https://doi.org/10.1017/CBO9781316036587 |
[2] | H. Fast, Sur la convergence statistique, Colloq. Math., 2 (1951), 241–244. https://doi.org/10.4064/cm-2-3-4-241-244 doi: 10.4064/cm-2-3-4-241-244 |
[3] | H. Steinhaus, Sur la convergence ordinarie et la convergence asymptotique, Colloq. Math., 2 (1951), 73–74. https://eudml.org/doc/209981 |
[4] | I. J. Schoenberg, The integrability of certain functions and related summability methods, Am. Math. Mon., 66 (1959), 361–375. https://doi.org/10.2307/2308747 doi: 10.2307/2308747 |
[5] | I. J. Schoenberg, The integrability of certain functions and related summability methods. Ⅱ, Am. Math. Mon., 66 (1959), 562–563. https://doi.org/10.2307/2309853 doi: 10.2307/2309853 |
[6] | J. S. Connor, The statistical and strong $p$-Cesàro convergence of sequences, Analysis, 8 (1988), 47–63. https://doi.org/10.1524/anly.1988.8.12.47 doi: 10.1524/anly.1988.8.12.47 |
[7] | J. A. Fridy, On statistical convergence, Analysis, 5 (1985), 301–313. https://doi.org/10.1524/anly.1985.5.4.301 doi: 10.1524/anly.1985.5.4.301 |
[8] | J. A. Fridy, C. Orhan, Lacunary statistical convergence, Pacific J. Math., 160 (1993), 43–51. http://projecteuclid.org/euclid.pjm/1102624563 |
[9] | M. İlkhan, E. E. Kara, On statistical convergence in quasi-metric spaces, Demonstr. Math., 52 (2019), 225–236. https://doi.org/10.1515/dema-2019-0019 doi: 10.1515/dema-2019-0019 |
[10] | R. Kama, On some vector valued multiplier spaces with statistical Cesáro summability, Filomat, 33 (2019), 5135–5147. https://doi.org/10.2298/FIL1916135K doi: 10.2298/FIL1916135K |
[11] | I. J. Maddox, Statistical convergence in a locally convex space, Math. Proc. Cambridge Philos. Soc., 104 (1988), 141–145. https://doi.org/10.1017/S0305004100065312 doi: 10.1017/S0305004100065312 |
[12] | T. Šalát, On statistically convergent sequences of real numbers, Math. Slovaca, 30 (1980), 139–150. https://eudml.org/doc/34081 |
[13] | E. Kolk, The statistical convergence in Banach spaces, Tartu Ül. Toimetised, 41–52. |
[14] | J. Connor, M. Ganichev, V. Kadets, A characterization of Banach spaces with separable duals via weak statistical convergence, J. Math. Anal. Appl., 244 (2000), 251–261. https://doi.org/10.1006/jmaa.2000.6725 doi: 10.1006/jmaa.2000.6725 |
[15] | A. Aizpuru, M. Nicasio-Llach, F. Rambla-Barreno, A remark about the Orlicz-Pettis theorem and the statistical convergence, Acta Math. Sin. (Engl. Ser.), 26 (2010), 305–310. https://doi.org/10.1007/s10114-010-7472-5 doi: 10.1007/s10114-010-7472-5 |
[16] | A. Aizpuru, M. Nicasio-Llach, A. Sala, A remark about the statistical Cesàro summability and the Orlicz-Pettis theorem, Acta Math. Hungar., 126 (2010), 94–98. https://doi.org/10.1007/s10474-009-9021-1 doi: 10.1007/s10474-009-9021-1 |
[17] | A. Aizpuru, M. Nicasio-Llach, About the statistical uniform convergence, Bull. Braz. Math. Soc. (N.S.), 39 (2008), 173–182. https://doi.org/10.1007/s00574-008-0078-1 doi: 10.1007/s00574-008-0078-1 |
[18] | A. Aizpuru, M. Nicasio-Llach, Spaces of sequences defined by the statistical convergence, Studia Sci. Math. Hungar., 45 (2008), 519–529. https://doi.org/10.1556/SScMath.2007.1063 doi: 10.1556/SScMath.2007.1063 |
[19] | H. Cakalli, On statistical convergence in topological groups, Pure Appl. Math. Sci., 43 (1996), 27–31. |
[20] | A. Caserta, G. Di Maio, L. D. R. Kočinac, Statistical convergence in function spaces, Abstr. Appl. Anal., Art. ID 420419, 11. https://doi.org/10.1155/2011/420419 |
[21] | G. Di Maio, L. D. R. Kočinac, Statistical convergence in topology, Topology Appl., 156 (2008), 28–45. https://doi.org/10.1016/j.topol.2008.01.015 doi: 10.1016/j.topol.2008.01.015 |
[22] | H. Nakano, Concave modulars, J. Math. Soc. Japan, 5 (1953), 29–49. https://doi.org/10.2969/jmsj/00510029 doi: 10.2969/jmsj/00510029 |
[23] | I. J. Maddox, Sequence spaces defined by a modulus, Math. Proc. Cambridge Philos. Soc., 100 (1986), 161–166. https://doi.org/10.1017/S0305004100065968 doi: 10.1017/S0305004100065968 |
[24] | W. H. Ruckle, $FK$ spaces in which the sequence of coordinate vectors is bounded, Canadian J. Math., 25 (1973), 973–978. https://doi.org/10.4153/CJM-1973-102-9 doi: 10.4153/CJM-1973-102-9 |
[25] | S. Pehlivan, Strongly almost convergent sequences defined by a modulus and uniformly statistical convergence, Soochow J. Math., 20 (1994), 205–211. |
[26] | J. Connor, On strong matrix summability with respect to a modulus and statistical convergence, Canad. Math. Bull., 32 (1989), 194–198. https://doi.org/10.4153/CMB-1989-029-3 doi: 10.4153/CMB-1989-029-3 |
[27] | A. Aizpuru, M. C. Listán-García, F. Rambla-Barreno, Double density by moduli and statistical convergence, Bull. Belg. Math. Soc. Simon Stevin, 19 (2012), 663–673. https://doi.org/10.36045/bbms/1353695907 doi: 10.36045/bbms/1353695907 |
[28] | A. Aizpuru, M. C. Listán-García, F. Rambla-Barreno, Density by moduli and statistical convergence, Quaest. Math., 37 (2014), 525–530. https://doi.org/10.2989/16073606.2014.981683 doi: 10.2989/16073606.2014.981683 |
[29] | R. Kama, Spaces of vector sequences defined by the $f$-statistical convergence and some characterizations of normed spaces, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 114 (2020), 1–9. https://doi.org/10.1007/s13398-020-00806-6 doi: 10.1007/s13398-020-00806-6 |
[30] | F. León-Saavedra, M. d. C. Listán-García, F. J. Pérez Fernández, M. P. Romero de la Rosa, On statistical convergence and strong Cesàro convergence by moduli, J. Inequal. Appl., 2019 (2019, 1–12. https://doi.org/10.1186/s13660-019-2252-y doi: 10.1186/s13660-019-2252-y |
[31] | M. C. Listán-García, $f$-statistical convergence, completeness and $f$-cluster points, Bull. Belg. Math. Soc. Simon Stevin, 23 (2016), 235–245. https://doi.org/10.36045/bbms/1464710116 doi: 10.36045/bbms/1464710116 |
[32] | V. I. Arnautov, S. T. Glavatsky, A. V. Mikhalev, Introduction to the theory of topological rings and modules, vol. 197 of Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 1996. https://doi.org/10.2307/3619650 |
[33] | F. J. García-Pacheco, S. Sáez-Martínez, Normalizing rings, Banach J. Math. Anal., 14 (2020), 1143–1176. https://doi.org/10.1007/s43037-020-00055-0 doi: 10.1007/s43037-020-00055-0 |
[34] | F. J. Garcia-Pacheco, Regularity in topological modules, Mathematics, 8 (2020), 1580. https://doi.org/10.3390/math8091580 doi: 10.3390/math8091580 |
[35] | S. Warner, Topological fields, vol. 157 of North-Holland Mathematics Studies, North-Holland Publishing Co., Amsterdam, 1989. https://www.elsevier.com/books/topological-fields/warner/978-0-444-87429-0 |
[36] | S. Warner, Topological rings, vol. 178 of North-Holland Mathematics Studies, North-Holland Publishing Co., Amsterdam, 1993. https://www.elsevier.com/books/topological-rings/warner/978-0-444-89446-5 |
[37] | A. R. Freedman, J. J. Sember, Densities and summability, Pacific J. Math., 95 (1981), 293–305. http://projecteuclid.org/euclid.pjm/1102735070 |