The classical notion of statistical convergence has recently been transported to the scope of real normed spaces by means of the f-statistical convergence for f a modulus function. Here, we go several steps further and extend the f-statistical convergence to the scope of uniform spaces, obtaining particular cases of f-statistical convergence on pseudometric spaces and topological modules.
Citation: Francisco Javier García-Pacheco, Ramazan Kama. f-Statistical convergence on topological modules[J]. Electronic Research Archive, 2022, 30(6): 2183-2195. doi: 10.3934/era.2022110
[1] | Yudan Ma, Ming Zhao, Yunfei Du . Impact of the strong Allee effect in a predator-prey model. AIMS Mathematics, 2022, 7(9): 16296-16314. doi: 10.3934/math.2022890 |
[2] | Chaoxiong Du, Wentao Huang . Hopf bifurcation problems near double positive equilibrium points for a class of quartic Kolmogorov model. AIMS Mathematics, 2023, 8(11): 26715-26730. doi: 10.3934/math.20231367 |
[3] | Yougang Wang, Anwar Zeb, Ranjit Kumar Upadhyay, A Pratap . A delayed synthetic drug transmission model with two stages of addiction and Holling Type-II functional response. AIMS Mathematics, 2021, 6(1): 1-22. doi: 10.3934/math.2021001 |
[4] | Jawdat Alebraheem . Asymptotic stability of deterministic and stochastic prey-predator models with prey herd immigration. AIMS Mathematics, 2025, 10(3): 4620-4640. doi: 10.3934/math.2025214 |
[5] | Komal Bansal, Trilok Mathur, Narinderjit Singh Sawaran Singh, Shivi Agarwal . Analysis of illegal drug transmission model using fractional delay differential equations. AIMS Mathematics, 2022, 7(10): 18173-18193. doi: 10.3934/math.20221000 |
[6] | Binfeng Xie, Na Zhang . Influence of fear effect on a Holling type III prey-predator system with the prey refuge. AIMS Mathematics, 2022, 7(2): 1811-1830. doi: 10.3934/math.2022104 |
[7] | Sahabuddin Sarwardi, Hasanur Mollah, Aeshah A. Raezah, Fahad Al Basir . Direction and stability of Hopf bifurcation in an eco-epidemic model with disease in prey and predator gestation delay using Crowley-Martin functional response. AIMS Mathematics, 2024, 9(10): 27930-27954. doi: 10.3934/math.20241356 |
[8] | Ruizhi Yang, Dan Jin, Wenlong Wang . A diffusive predator-prey model with generalist predator and time delay. AIMS Mathematics, 2022, 7(3): 4574-4591. doi: 10.3934/math.2022255 |
[9] | Yingyan Zhao, Changjin Xu, Yiya Xu, Jinting Lin, Yicheng Pang, Zixin Liu, Jianwei Shen . Mathematical exploration on control of bifurcation for a 3D predator-prey model with delay. AIMS Mathematics, 2024, 9(11): 29883-29915. doi: 10.3934/math.20241445 |
[10] | Ming Wu, Hongxing Yao . Stability and bifurcation of a delayed diffusive predator-prey model affected by toxins. AIMS Mathematics, 2023, 8(9): 21943-21967. doi: 10.3934/math.20231119 |
The classical notion of statistical convergence has recently been transported to the scope of real normed spaces by means of the f-statistical convergence for f a modulus function. Here, we go several steps further and extend the f-statistical convergence to the scope of uniform spaces, obtaining particular cases of f-statistical convergence on pseudometric spaces and topological modules.
In the last two decades, the fractional difference equations have recently received considerable attention in many fields of science and engineering, see [1,2,3,4] and the references therein. On the other hand, the q-difference equations have numerous applications in diverse fields in recent years and has gained intensive interest [5,6,7,8,9]. It is well know that the q-fractional difference equations can be used as a bridge between fractional difference equations and q-difference equations, many papers have been published on this research direction, see [10,11,12,13,14,15] for examples. We recommend the monograph [16] and the papers cited therein.
For 0<q<1, we define the time scale Tq={qn:n∈Z}∪{0}, where Z is the set of integers. For a=qn0 and n0∈Z, we denote Ta=[a,∞)q={q−ia:i=0,1,2,...}.
In [17], Abdeljawad et.al generalized the q-fractional Gronwall-type inequality in [18], they obtained the following q-fractional Gronwall-type inequality.
Theorem 1.1 ([17]). Let α>0, u and ν be nonnegative functions and w(t) be nonnegative and nondecreasing function for t∈[a,∞)q such that w(t)≤M where M is a constant. If
u(t)≤ν(t)+w(t)q∇−αau(t), |
then
u(t)≤ν(t)+∞∑k=1(w(t)Γq(α))kq∇−kαaν(t). | (1.1) |
Based on the above result, Abdeljawad et al. investigated the following nonlinear delay q-fractional difference system:
{qCαax(t)=A0x(t)+A1x(τt)+f(t,x(t),x(τt)),t∈[a,∞)q,x(t)=ϕ(t),t∈Iτ, | (1.2) |
where qCαa means the Caputo fractional difference of order α∈(0,1), ˉIτ={τa,q−1τa,q−2τa,...,a}, τ=qd∈Tq with d∈N0={0,1,2,...}.
Remark 1.1. The domain of t in (1.2) is inaccurate, please see the reference [19].
In [20], Sheng and Jiang gave the following extended form of the fractional Gronwall inequality :
Theorem 1.2 ([20]). Suppose α>0, β>0, a(t) is a nonnegative function locally integrable on [0,T), ˜g(t), and ˉg(t) are nonnegative, nondecreasing, continuous functions defined on [0,T); ˜g(t)≤˜M, ˉg(t)≤ˉM, where ˜M and ˉM are constants. Suppose x(t) is a nonnegative and locally integrable on [0,T) with
x(t)≤a(t)+˜g(t)∫t0(t−s)α−1x(s)ds+ˉg(t)∫t0(t−s)β−1x(s)ds,t∈[0,T). |
Then
x(t)≤a(t)+∫t0∞∑n=1[g(t)]nn∑k=0Ckn[Γ(α)]n−k[Γ(β)]kΓ[(n−k)α+kβ](t−s)(n−k)α+kβ−1a(s)ds, | (1.3) |
where t∈[0,T), g(t)=˜g(t)+ˉg(t) and Ckn=n(n−1)⋯(n−k+1)k!.
Corollary 1.3 [20] Under the hypothesis of Theorem 1.2, let a(t) be a nondecreasing function on [0,T). Then
x(t)≤a(t)Eγ[g(t)(Γ(α)tα+Γ(β)tβ)], | (1.4) |
where γ=min{α,β}, Eγ is the Mittag-Leffler function defined by Eγ(z)=∞∑k=0zkΓ(kγ+1).
Finite-time stability is a more practical method which is much valuable to analyze the transient behavior of nature of a system within a finite interval of time. It has been widely studied of integer differential systems. In recent decades, the finite-time stability analysis of fractional differential systems has received considerable attention, for instance [21,22,23,24,25] and the references therein. In [26], Du and Jia studied the finite-time stability of a class of nonlinear fractional delay difference systems by using a new discrete Gronwall inequality and Jensen inequality. Recently, Du and Jia in [27] obtained a criterion on finite time stability of fractional delay difference system with constant coefficients by virtue of a discrete delayed Mittag-Leffler matrix function approach. In [28], Ma and Sun investigated the finite-time stability of a class of fractional q-difference equations with time-delay by utilizing the proposed delayed q-Mittag-Leffler type matrix and generalized q-Gronwall inequality, respectively. Based on the generalized fractional (q,h)-Gronwall inequality, Du and Jia in [19] derived the finite-time stability criterion of nonlinear fractional delay (q,h)-difference systems.
Motivated by the above works, we will extend the q-fractional Gronwall-type inequality (Theorem 1.1) to the spreading form of the q-fractional Gronwall inequality. As applications, we consider the existence and uniqueness of the solution of the following nonlinear delay q-fractional difference damped system :
{qCαax(t)−A0qCβax(t)=B0x(t)+B1x(τt)+f(t,x(t),x(τt)),t∈[a,b)q,x(t)=ϕ(t),∇qx(t)=ψ(t),t∈Iτ, | (1.5) |
where [a,b)q=[a,b)∩Ta, b∈Ta, Iτ={qτa,τa,q−1τa,q−2τa,...,a}, τ=qd∈Tq with d∈N0={0,1,2,...}, qCαa and qCβa mean the Caputo fractional difference of order α∈(1,2) and order β∈(0,1), respectively, and the constant matrices A0, B0 and B1 are of appropriate dimensions. Moreover, a novel criterion of finite-time stability criterion of (1.5) is established. We generalized the main results of [17] in this paper.
The organization of this paper is given as follows: In Section 2, we give some notations, definitions and preliminaries. Section 3 is devoted to proving a spreading form of the q-fractional Gronwall inequality. In Section 4, the existence and uniqueness of the solution of system (1.5) are given and proved, and the finite-time stability theorem of nonlinear delay q-fractional difference damped system is obtained. In Section 5, an example is given to illustrate our theoretical result. Finally, the paper is concluded in Section 6.
In this section, we provided some basic definitions and lemmas which are used in the sequel.
Let f:Tq→R (q∈(0,1)), the nabla q-derivative of f is defined by Thabet et al. as follows:
∇qf(t)=f(t)−f(qt)(1−q)t,t∈Tq∖{0}, |
and q-derivatives of higher order by
∇nqf(t)=∇q(∇n−1qf)(t),n∈N. |
The nabla q-integral of f has the following form
∫t0f(s)∇qs=(1−q)t∞∑i=0qif(tqi) | (2.1) |
and for 0≤a∈Tq
∫taf(s)∇qs=∫t0f(s)∇qs−∫a0f(s)∇qs. | (2.2) |
The definition of the q-factorial function for a nonpositive integer α is given by
(t−s)αq=tα∞∏i=01−stqi1−stqi+α. | (2.3) |
For a function f:Tq→R, the left q-fractional integral q∇−αa of order α≠0,−1,−2,... and starting at 0<a∈Tq is defined by
q∇−αaf(t)=1Γq(α)∫ta(t−qs)α−1qf(s)∇qs, | (2.4) |
where
Γq(α+1)=1−qα1−qΓq(α),Γq(1)=1, α>0. | (2.5) |
The left q-fractional derivative q∇βa of order β>0 and starting at 0<a∈Tq is defined by
q∇βaf(t)=(q∇maq∇−(m−β)af)(t), | (2.6) |
where m is the smallest integer greater or equal than β.
Definition 2.1 ([11]). Let 0<α∉N and f:Ta→R. Then the Caputo left q-fractional derivative of order α of a function f is defined by
qCαaf(t):=q∇−(n−α)a∇nqf(t)=1Γq(n−α)∫ta(t−qs)n−α−1q∇nqf(s)∇qs,t∈Ta, | (2.7) |
where n=[α]+1.
Let us now list some properties which are needed to obtain our results.
Lemma 2.1 ([29]). Let α,β>0 and f be a function defined on (0,b). Then the following formulas hold:
(q∇−βaq∇−αaf)(t)=q∇−(α+β)af(t),0<a<t<b, |
(q∇αaq∇−αaf)(t)=f(t),0<a<t<b. |
Lemma 2.2 ([11]). Let α>0 and f be defined in a suitable domain. Thus
q∇−αaqCαaf(t)=f(t)−n−1∑k=0(t−a)kqΓq(k+1)∇kqf(a) | (2.8) |
and if 0<α≤1 we have
q∇−αaqCαaf(t)=f(t)−f(a). | (2.9) |
The following identity plays a crucial role in solving the linear q-fractional equations:
q∇−αa(x−a)μq=Γq(μ+1)Γq(α+μ+1)(x−a)μ+αq,0<a<x<b, | (2.10) |
where α∈R+ and μ∈(−1,∞).
Apply q∇αa on both sides of (2.10), by virtue of Lemma 2.1, one can obtain
q∇αa(x−a)μ+αq=Γq(α+μ+1)Γq(μ+1)(x−a)μq,0<a<x<b, | (2.11) |
where α∈R+ and μ∈(−1,∞).
By Theorem 7 in [11], for any 0<β<1, one has
(qCβaf)(t)=(q∇βaf)(t)−(t−a)−βqΓq(1−β)f(a). | (2.12) |
For any 1<α≤2, by (2.8), one has
q∇−αaqCαaf(t)=f(t)−f(a)−(t−a)1q∇qf(a). | (2.13) |
Apply q∇αa on both sides of (2.13), by Lemma 2.1 and (2.11), we get
(qCαaf)(t)=(q∇αaf)(t)−f(a)q∇αa(t−a)0q−f(a)q∇αa(t−a)1q=(q∇αaf)(t)−(t−a)−αqΓq(1−α)f(a)−(t−a)1−αqΓq(2−α)∇qf(a). | (2.14) |
In this section, we give and prove the following spreading form of generalized q-fractional Gronwall inequality, which extend a q-fractional Gronwall inequality in Theorem 1.1.
Theorem 3.1. Let α>0 and β>0. Assume that u(t) and g(t) are nonnegative functions for t∈[a,T)q. Let wi(t) (i=1,2) be nonnegative and nondecreasing functions for t∈[a,T)q with wi(t)≤Mi, where Mi are positive constants (i=1,2) and
[Γq(α)Tα(1−q)α+Γq(β)Tβ(1−q)β]max{M1Γq(α), M2Γq(β)}<1. | (3.1) |
If
u(t)≤g(t)+w1(t)q∇−αau(t)+w2(t)q∇−βau(t),t∈[a,T)q, | (3.2) |
then
u(t)≤g(t)+∞∑n=1w(t)nn∑k=0CknΓq(α)n−kΓq(β)kq∇−((n−k)α+kβ)ag(t),t∈[a,T)q, | (3.3) |
where w(t)=max{w1(t)Γq(α), w2(t)Γq(β)}.
Proof. Define the operator
Au(t)=w(t)∫ta[(t−qs)α−1q+(t−qs)β−1q]u(s)∇qs,t∈[a,T)q. | (3.4) |
According to (3.2), one has
u(t)≤g(t)+Au(t). | (3.5) |
By (3.5) and the monotonicity of the operator A, we obtain
u(t)≤n−1∑k=0Akg(t)+Anu(t),t∈[a,T)q. | (3.6) |
In the following, we will prove that
Anu(t)≤w(t)nn∑k=0CknΓq(α)n−kΓq(β)kq∇−((n−k)α+kβ)au(t),t∈[a,T)q, | (3.7) |
and
limn→∞Anu(t)=0. | (3.8) |
Obviously, the inequality (3.7) holds for n=1. Assume that (3.7) is true for n=m, that is
Amu(t)≤w(t)mm∑k=0CkmΓq(α)m−kΓq(β)kq∇−((m−k)α+kβ)au(t)=w(t)mm∑k=0CkmΓq(α)m−kΓq(β)kΓq((m−k)α+kβ)∫ta(t−qs)(m−k)α+kβ−1qu(s)∇qs,t∈[a,T)q. | (3.9) |
When n=m+1, by using (3.4), (3.9), (2.10) and the nondecreasing of function w(t), we get
Am+1u(t)=A(Amu(t))
≤w(t)∫ta[(t−qs)α−1q+(t−qs)β−1q]
×(w(s)mm∑k=0CkmΓq(α)m−kΓq(β)kΓq((m−k)α+kβ)∫sa(s−qr)(m−k)α+kβ−1qu(r)∇qr)∇qs
≤w(t)m+1∫tam∑k=0CkmΓq(α)m−kΓq(β)kΓq((m−k)α+kβ)[(t−qs)α−1q+(t−qs)β−1q]
×[∫sa(s−qr)(m−k)α+kβ−1qu(r)∇qr]∇qs
=w(t)m+1m∑k=0CkmΓq(α)m−kΓq(β)kΓq((m−k)α+kβ)[∫ta(t−qs)α−1q∫sa(s−qr)(m−k)α+kβ−1qu(r)∇qr∇qs
+∫ta(t−qs)β−1q∫sa(s−qr)(m−k)α+kβ−1qu(r)∇qr∇qs]
=w(t)m+1m∑k=0CkmΓq(α)m−kΓq(β)kΓq((m−k)α+kβ)[∫ta∫tqr(t−qs)α−1q(s−qr)(m−k)α+kβ−1qu(r)∇qr∇qs
+∫ta∫tqr(t−qs)β−1q(s−qr)(m−k)α+kβ−1qu(r)∇qr∇qs]
=w(t)m+1m∑k=0CkmΓq(α)m−kΓq(β)kΓq((m−k)α+kβ)
×(Γq(α)∫ta[1Γq(α)∫tqr(t−qs)α−1q(s−qr)(m−k)α+kβ−1q∇qs]u(r)∇qr
+Γq(β)∫ta[1Γq(β)∫tqr(t−qs)β−1q(s−qr)(m−k)α+kβ−1q∇qs]u(r)∇qr)
=w(t)m+1m∑k=0CkmΓq(α)m−kΓq(β)kΓq((m−k)α+kβ)
×(Γq(α)∫taq∇−αqr(t−qr)(m−k)α+kβ−1qu(r)∇qr
+Γq(β)∫taq∇−βqr(t−qr)(m−k)α+kβ−1qu(r)∇qr)
=w(t)m+1m∑k=0CkmΓq(α)m−kΓq(β)kΓq((m−k)α+kβ)
×(Γq(α)Γq((m−k)α+kβ)Γq((m−k+1)α+kβ)∫ta(t−qr)(m−k+1)α+kβ−1qu(r)∇qr
+Γq(β)Γq((m−k)α+kβ)Γq((m−k)α+(k+1)β)∫ta(t−qr)(m−k)α+(k+1)β−1qu(r)∇qr)
=w(t)m+1m∑k=0CkmΓq(α)m−kΓq(β)k
×(Γq(α)q∇−((m−k+1)α+kβ)au(t)+Γq(β)q∇−((m−k)α+(k+1)β)au(t))
=w(t)m+1m∑k=0CkmΓq(α)m+1−kΓq(β)kq∇−((m−k+1)α+kβ)au(t)
+w(t)m+1m+1∑k=1Ck−1mΓq(α)m+1−kΓq(β)kq∇−((m+1−k)α+kβ)au(t)
=w(t)m+1[C0mΓq(α)m+1q∇−((m+1)α)au(t)
+m∑k=1(Ckm+Ck−1m)Γq(α)m+1−kΓq(β)kq∇−((m−k+1)α+kβ)au(t)
+CmmΓq(β)m+1q∇−((m+1)β)au(t)]
=w(t)m+1m+1∑k=0Ckm+1Γq(α)m+1−kΓq(β)kq∇−((m+1−k)α+kβ)au(t).
Thus, (3.7) is proved.
Using Stirling's formula of the q-gamma function [30], yields that
Γq(x)=[2]1/2qΓq2(1/2)(1−q)12−xeθqx(1−q)−qx,0<θ<1, |
that is
Γq(x)∼D(1−q)12−x,x→∞, | (3.10) |
where D=[2]1/2qΓq2(1/2). Moreover, if t>a>0 and γ>0 (γ is not a positive integer), then 1−atqj<1−atqγ+j for each j=0,1,..., and
(t−a)γq=tγ∞∏j=01−atqj1−atqγ+j<tγ. | (3.11) |
By w1(t)<M1 and w2(t)<M2, one has that w(t)<max{M1Γq(α), M2Γq(β)}:=M. Applying the first mean value theorem for definite integrals [31], (3.10) and (3.11), there exists a ξ∈[a,t]q such that
limn→∞Anu(t)≤limn→∞u(ξ)n∑k=0MnCknΓq(α)n−kΓq(β)kΓq((n−k)α+kβ)∫ta(t−qr)(n−k)α+kβ−1q∇qs=limn→∞u(ξ)n∑k=0MnCknΓq(α)n−kΓq(β)kΓq((n−k)α+kβ+1)(t−a)(n−k)α+kβq≤limn→∞u(ξ)n∑k=0MnCknΓq(α)n−kΓq(β)kΓq((n−k)α+kβ+1)t(n−k)α+kβ=limn→∞u(ξ)n∑k=0MnCknΓq(α)n−kΓq(β)kD(1−q)12−((n−k)α+kβ+1)t(n−k)α+kβ=limn→∞u(ξ)√1−qDn∑k=0MnCkn[Γq(α)tα(1−q)α]n−k[Γq(β)tβ(1−q)β]k=limn→∞u(ξ)√1−qD[M(Γq(α)(1−q)αtα+Γq(β)(1−q)βtβ)]n. |
From (3.1), for each t∈[a,T)q, we have
[M(Γq(α)(1−q)αtα+Γq(β)(1−q)βtβ)]n→0,as n→∞. |
Thus, Anu(t)→0 as n→∞. Let n→∞ in (3.6), by (3.8) we get
u(t)≤g(t)+∞∑k=1Akg(t). | (3.12) |
From (3.7) and (3.12), we obtain (3.3). This completes the proof.
Corollary 3.2. Under the hypothesis of Theorem 3.1, let g(t) be a nondecreasing function on t∈[a,T)q. Then
u(t)≤g(t)∞∑n=0w(t)nn∑k=0CknΓq(α)n−kΓq(β)kΓq((n−k)α+kβ+1)(t−a)(n−k)α+kβq | (3.13) |
Proof. By (3.3), (2.10) and the assumption that g(t) is nondecreasing function for t∈[a,T)q, we have
u(t)≤g(t)[1+∞∑n=1w(t)nn∑k=0CknΓq(α)n−kΓq(β)kq∇−((n−k)α+kβ)a1]=g(t)[1+∞∑n=1w(t)nn∑k=0CknΓq(α)n−kΓq(β)k1Γq((n−k)α+kβ+1)(t−a)(n−k)α+kβq]=g(t)∞∑n=0w(t)nn∑k=0CknΓq(α)n−kΓq(β)kΓq((n−k)α+kβ+1)(t−a)(n−k)α+kβq. |
Throughout this paper, we make the following assumptions:
(H1) f∈D(Tq×Rn×Rn,Rn) is a Lipschitz-type function. That is, for any x,y:Tτa→Rn, there exists a positive constant L>0 such that
‖f(t,y(t),y(τt))−f(t,x(t),x(τt))‖≤L(‖y(t)−x(t)‖+‖y(τt)−x(τt)‖), | (4.1) |
for t∈[a,T)q.
(H2)
f(t,0,0)=[0,0,...,0]⏟nT. | (4.2) |
(H3)
[Γq(α)Tα(1−q)α+Γq(α−β)Tα−β(1−q)α−β]max{‖B0‖+‖B1‖+2LΓq(α), ‖A0‖Γq(α−β)}<1. | (4.3) |
Definition 4.1. The system (1.5) is finite-time stable w.r.t.{δ,ϵ,Te}, with δ<ϵ, if and only if max{‖ϕ‖,‖ψ‖}<δ implies ‖x(t)‖<ϵ, ∀t∈[a,Te]q=[a,Te]∩[a,T)q.
Theorem 4.1. Assume that (H1) and (H3) hold. Then the problem (1.5) has a unique solution.
Proof. First we have to prove that x:Tτa→Rm is a solution of system (1.5) if and only if
x(t)=ϕ(a)+ψ(a)(t−a)−A0(t−a)α−βqΓq(α−β+1)ϕ(a)+A0Γq(α−β)∫ta(t−qs)α−β−1qx(s)∇qs+1Γq(α)∫ta(t−qs)α−1q[B0x(s)+B1x(τs)+f(s,x(s),x(τs))]∇qs,t∈[a,T)q,x(t)=ϕ(t),∇qx(t)=ψ(t),t∈Iτ. | (4.4) |
For t∈Iτ, it is clear that x(t)=ϕ(t) with ∇qx(t)=ψ(t) is the solution of (1.5). For t∈[a,T)q, we apply q∇αa on both sides of (4.4) to obtain
q∇αax(t)=ϕ(a)(t−a)−αqΓq(1−α)+ψ(a)(t−a)1−αqΓq(2−α)−ϕ(a)A0(t−a)−βqΓq(1−β)+A0q∇βax(t)+B0x(t)+B1x(τt)+f(t,x(t),x(τt)), | (4.5) |
where (q∇αaq∇−αax)(t)=x(t) and (q∇αaq∇−(α−β)ax)(t)=q∇βax(t) (by Lemma 2.1) have been used. By using (2.12) and (2.14), we get
qCαax(t)−A0qCβax(t)=B0x(t)+B1x(τt)+f(t,x(t),x(τt)),t∈[a,T)q. |
Conversely, from system (1.5), we can see that x(t)=ϕ(t) and ∇qx(t)=ψ(t) for t∈Iτ. For t∈[a,T)q, we apply q∇−αa on both sides of (1.5) to get
q∇−αa[qCαax(t)−A0qCβax(t)]=1Γq(α)∫ta(t−qs)α−1q[B0x(s)+B1x(τs)+f(s,x(s),x(τs))]∇qs. |
According to Lemma 2.2, we obtain
x(t)=ϕ(a)+ψ(a)(t−a)−A0(t−a)α−βqΓq(α−β+1)ϕ(a)+A0Γq(α−β)∫ta(t−qs)α−β−1qx(s)∇qs+1Γq(α)∫ta(t−qs)α−1q[B0x(s)+B1x(τs)+f(s,x(s),x(τs))]∇qs,t∈[a,T)q. |
Secondly, we will prove the uniqueness of solution to system (1.5). Let x and y be two solutions of system (1.5). Denote z by z(t)=x(t)−y(t). Obviously, z(t)=0 for t∈Iτ, which implies that system (1.5) has a unique solution for t∈Iτ.
For t∈[a,T)q, one has
z(t)=A0Γq(α−β)∫ta(t−qs)α−β−1qz(s)∇qs+1Γq(α)∫ta(t−qs)α−1q[B0z(s)+B1z(τs)+f(s,x(s),x(τs))−f(s,y(s),y(τs))]∇qs. | (4.6) |
If t∈Jτ={a,q−1a,...,τ−1a}, then τt∈Iτ and z(τt)=0. Hence,
z(t)=A0Γq(α−β)∫ta(t−qs)α−β−1qz(s)∇qs+1Γq(α)∫ta(t−qs)α−1q[B0z(s)+f(s,x(s),x(τs))−f(s,y(s),y(τs))]∇qs, |
which implies that
‖z(t)‖≤‖A0‖Γq(α−β)∫ta(t−qs)α−β−1q‖z(s)‖∇qs+1Γq(α)∫ta(t−qs)α−1q[‖B0‖‖z(s)‖+‖f(s,x(s),x(τs))−f(s,y(s),y(τs))‖]∇qs≤‖A0‖Γq(α−β)∫ta(t−qs)α−β−1q‖z(s)‖∇qs+1Γq(α)∫ta(t−qs)α−1q[‖B0‖‖z(s)‖+L(‖z(s)‖+‖z(τs)‖)]∇qs(by (H1))=‖A0‖Γq(α−β)∫ta(t−qs)α−β−1q‖z(s)‖∇qs+‖B0‖+LΓq(α)∫ta(t−qs)α−1q‖z(s)‖∇qs. | (4.7) |
By applying Corollary 3.2 and (H3), we get
‖z(t)‖≤0⋅∞∑n=0wn1n∑k=0CknΓq(α)n−kΓq(α−β)kΓq((n−k)α+k(α−β)+1)(t−a)(n−k)α+k(α−β)q=0, | (4.8) |
where w1=max{‖A0‖Γ(α−β),‖B0‖+LΓ(α)}. This implies x(t)=y(t) for t∈Jτ.
For t∈[τ−1a,T)q, we obtain
z(t)=A0Γq(α−β)∫ta(t−qs)α−β−1qz(s)∇qs+1Γq(α)∫ta(t−qs)α−1q[B0z(s)+f(s,x(s),x(τs))−f(s,y(s),y(τs))]∇qs+1Γq(α)∫ta(t−qs)α−1qB1z(τs)∇qs. | (4.9) |
Therefore,
‖z(t)‖=‖A0‖Γq(α−β)∫ta(t−qs)α−β−1q‖z(s)‖∇qs+1Γq(α)∫ta(t−qs)α−1q[‖B0‖‖z(s)‖+‖f(s,x(s),x(τs))−f(s,y(s),y(τs))‖]∇qs+1Γq(α)∫ta(t−qs)α−1q‖B1‖‖z(τs)‖∇qs≤‖A0‖Γq(α−β)∫ta(t−qs)α−β−1q‖z(s)‖∇qs+‖B0‖+LΓq(α)∫ta(t−qs)α−1q‖z(s)‖∇qs+‖B1‖+LΓq(α)∫ta(t−qs)α−1q‖z(τs)‖∇qs. | (4.10) |
Let z∗(t)=maxθ∈[a,t]q{‖z(θ)‖,‖z(τθ)‖} for t∈[τ−1a,T)q, where [a,t]q=[a,t]∩Ta, it is obvious that z∗(t) is a increasing function. From (4.10), we obtain that
z∗(t)≤‖A0‖Γq(α−β)∫ta(t−qs)α−β−1qz∗(s)∇qs+‖B0‖+LΓq(α)∫ta(t−qs)α−1qz∗(s)∇qs+‖B1‖+LΓq(α)∫ta(t−qs)α−1qz∗(s)∇qs=‖A0‖Γq(α−β)∫ta(t−qs)α−β−1qz∗(s)∇qs+‖B0‖+‖B1‖+2LΓq(α)∫ta(t−qs)α−1qz∗(s)∇qs. | (4.11) |
By applying Corollary 3.2 and (H3) again, we get
‖z(t)‖≤z∗(t)≤0⋅∞∑n=0wn2n∑k=0CknΓq(α)n−kΓq(α−β)kΓq((n−k)α+k(α−β)+1)(t−a)(n−k)α+k(α−β)q=0, |
where w2=max{‖A0‖Γ(α−β),‖B0‖+‖B1‖+2LΓ(α)}. Thus, we end up with x(t)=y(t) for t∈[τ−1a,T)q. The proof is completed.
Theorem 4.2. Assume that the conditions (H1), (H2) and (H3) hold. Then the system (1.5) is finite-time stable if the following condition is satisfied:
(1+(t−a)+‖A0‖(t−a)α−βqΓq(α−β+1))∞∑n=0wn2n∑k=0CknΓq(α)n−kΓq(α−β)kΓq((n−k)α+k(α−β)+1)(t−a)(n−k)α+k(α−β)q<εδ, | (4.12) |
where w2=max{‖B0‖+‖B1‖+2LΓq(α),‖A0‖Γq(α−β)}.
Proof. Applying left q-fractional integral on both sides of (1.5), we obtain
q∇−αa(qCαax(t))−A0q∇−αa(qCβax(t))=qΔ−αa(B0x(t)+B1x(τt)+f(t,x(t),x(τt))). | (4.13) |
By (4.12) and utilizing Lemma 2.2 we have
x(t)=ϕ(a)+ψ(a)(t−a)−A0(t−a)α−βqΓq(α−β+1)ϕ(a)+A0Γq(α−β)∫ta(t−qs)α−β−1qx(s)∇qs+1Γq(α)∫ta(t−qs)α−1q[B0x(s)+B1x(τs)+f(s,x(s),x(τs))]∇qs. |
Thus, by (H1) and (H2), we get
‖x(t)‖≤‖ϕ‖+‖ψ‖(t−a)+‖A0‖‖ϕ‖(t−a)α−βqΓq(α−β+1)+‖A0‖Γq(α−β)∫ta(t−qs)α−β−1q‖x(s)‖∇qs+1Γq(α)∫ta(t−qs)α−1q[‖B0‖‖x(s)‖+‖B1‖‖x(τs)‖+‖f(s,x(s),x(τs))‖]∇qs≤‖ϕ‖+‖ψ‖(t−a)+‖A0‖‖ϕ‖(t−a)α−βqΓq(α−β+1)+‖A0‖Γq(α−β)∫ta(t−qs)α−β−1q‖x(s)‖∇qs+1Γq(α)∫ta(t−qs)α−1q[(‖B0‖+L)‖x(s)‖+(‖B1‖+L)‖x(τs)‖]∇qs. | (4.14) |
Let g(t)=‖ϕ‖+‖ψ‖(t−a)+‖A0‖‖ϕ‖(t−a)α−βqΓq(α−β+1), then g is a nondecreasing function.
Set ˉx(t)=maxθ∈[a,t]q{‖x(θ)‖,‖x(τθ)‖}, then by (4.14) we get
ˉx(t)≤g(t)+‖A0‖Γq(α−β)∫ta(t−qs)α−β−1qˉx(s)∇qs+‖B0‖+‖B1‖+2LΓq(α)∫ta(t−qs)α−1qˉx(s)∇qs=g(t)+(‖B0‖+‖B1‖+2L)q∇−αaˉx(t)+‖A0‖q∇−(α−β)aˉx(t). | (4.15) |
Applying the result of Corollary 3.2, we have
‖x(t)‖≤ˉx(t)≤g(t)∞∑n=0wn2n∑k=0CknΓq(α)n−kΓq(α−β)kΓq((n−k)α+k(α−β)+1)(t−a)(n−k)α+k(α−β)q≤δ(1+(t−a)+‖A0‖(t−a)α−βqΓq(α−β+1))∞∑n=0wn2n∑k=0CknΓq(α)n−kΓq(α−β)kΓq((n−k)α+k(α−β)+1)(t−a)(n−k)α+k(α−β)q<ε. | (4.16) |
Therefore, the system (1.5) is finite-time stable. The proof is completed.
If x∈Rn, then ‖x‖=∑ni=1|xi|. If A∈Rn×n, then the induced norm ‖⋅‖ is defined as ‖A‖=max1≤j≤n∑ni=1|aij|.
Example 5.1. Consider the nonlinear delay q-fractional differential difference system
{qC1.8ax(t)−(00.620.560)qC0.8ax(t)=(00.080.1090)x(t)+(0.15000.12)x(τt)+f(t,x(t),x(τt)),t∈[a,T)q,x(t)=ϕ(t),∇qx(t)=ψ(t),t∈Iτ, | (5.1) |
where α=1.8, β=0.8, q=0.6, a=q5=0.65, T=q−1=0.6−1, τ=q3=0.63, x(t)=[x1(t),x2(t)]T∈R2,
f(t,x(t),x(τt))=14[sinx1(t),sinx2(τt)]T−15[arctanx1(τt),arctanx2(τt)]T, |
and
ϕ(t)=[0.05,0.035]T,ψ(t)=[0.04,0.045]T,t∈Iτ={0.69,0.68,0.67,0.66,0.65}. |
Obviously, ‖ϕ‖=‖ψ‖=0.0085<0.1=δ, ϵ=1. We can see that f satisfies conditions (H1) (L=14) and (H2). We can calculate ‖A0‖=0.62, ‖B0‖=0.109, ‖B1‖=0.15.
When T=0.6−1, it is easy to check that
[Γq(α)Tα(1−q)α+Γq(α−β)Tα−β(1−q)α−β]max{‖B0‖+‖B1‖+2LΓq(α),‖A0‖Γq(α−β)}=0.8992<1, |
that is, (H3) holds. By using Matlab (the pseudo-code to compute different values of Γq(σ), see [32]), when t=1∈[a,T)q,
(1+(t−a)+‖A0‖(t−a)α−βqΓq(α−β+1))∞∑n=0wn2n∑k=0CknΓq(α)n−kΓq(α−β)kΓq((n−k)α+k(α−β)+1)(t−a)(n−k)α+k(α−β)q≈8.4593<10=ϵδ. |
Thus, we obtain Te=1.
In this paper, we introduced and proved new generalizations for q-fractional Gronwall inequality. We examined the validity and applicability of our results by considering the existence and uniqueness of solutions of nonlinear delay q-fractional difference damped system. Moreover, a novel and easy to verify sufficient conditions have been provided in this paper which are easy to determine the finite-time stability of the solutions for the considered system. Finally, an example is given to illustrate the effectiveness and feasibility of our criterion. Motivated by previous works [33,34], the possible applications of fractional q-difference in the field of stability theory will be considered in the future.
The authors are grateful to the anonymous referees for valuable comments and suggestions that helped to improve the quality of the paper. This work is supported by Natural Science Foundation of China (11571136).
The authors declare that there is no conflicts of interest.
[1] | A. Zygmund, Trigonometric series. Vol. I, II, 3rd edition, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2002, With a foreword by Robert A. Fefferman. https://doi.org/10.1017/CBO9781316036587 |
[2] |
H. Fast, Sur la convergence statistique, Colloq. Math., 2 (1951), 241–244. https://doi.org/10.4064/cm-2-3-4-241-244 doi: 10.4064/cm-2-3-4-241-244
![]() |
[3] | H. Steinhaus, Sur la convergence ordinarie et la convergence asymptotique, Colloq. Math., 2 (1951), 73–74. https://eudml.org/doc/209981 |
[4] |
I. J. Schoenberg, The integrability of certain functions and related summability methods, Am. Math. Mon., 66 (1959), 361–375. https://doi.org/10.2307/2308747 doi: 10.2307/2308747
![]() |
[5] |
I. J. Schoenberg, The integrability of certain functions and related summability methods. Ⅱ, Am. Math. Mon., 66 (1959), 562–563. https://doi.org/10.2307/2309853 doi: 10.2307/2309853
![]() |
[6] |
J. S. Connor, The statistical and strong p-Cesàro convergence of sequences, Analysis, 8 (1988), 47–63. https://doi.org/10.1524/anly.1988.8.12.47 doi: 10.1524/anly.1988.8.12.47
![]() |
[7] |
J. A. Fridy, On statistical convergence, Analysis, 5 (1985), 301–313. https://doi.org/10.1524/anly.1985.5.4.301 doi: 10.1524/anly.1985.5.4.301
![]() |
[8] | J. A. Fridy, C. Orhan, Lacunary statistical convergence, Pacific J. Math., 160 (1993), 43–51. http://projecteuclid.org/euclid.pjm/1102624563 |
[9] |
M. İlkhan, E. E. Kara, On statistical convergence in quasi-metric spaces, Demonstr. Math., 52 (2019), 225–236. https://doi.org/10.1515/dema-2019-0019 doi: 10.1515/dema-2019-0019
![]() |
[10] |
R. Kama, On some vector valued multiplier spaces with statistical Cesáro summability, Filomat, 33 (2019), 5135–5147. https://doi.org/10.2298/FIL1916135K doi: 10.2298/FIL1916135K
![]() |
[11] |
I. J. Maddox, Statistical convergence in a locally convex space, Math. Proc. Cambridge Philos. Soc., 104 (1988), 141–145. https://doi.org/10.1017/S0305004100065312 doi: 10.1017/S0305004100065312
![]() |
[12] | T. Šalát, On statistically convergent sequences of real numbers, Math. Slovaca, 30 (1980), 139–150. https://eudml.org/doc/34081 |
[13] | E. Kolk, The statistical convergence in Banach spaces, Tartu Ül. Toimetised, 41–52. |
[14] |
J. Connor, M. Ganichev, V. Kadets, A characterization of Banach spaces with separable duals via weak statistical convergence, J. Math. Anal. Appl., 244 (2000), 251–261. https://doi.org/10.1006/jmaa.2000.6725 doi: 10.1006/jmaa.2000.6725
![]() |
[15] |
A. Aizpuru, M. Nicasio-Llach, F. Rambla-Barreno, A remark about the Orlicz-Pettis theorem and the statistical convergence, Acta Math. Sin. (Engl. Ser.), 26 (2010), 305–310. https://doi.org/10.1007/s10114-010-7472-5 doi: 10.1007/s10114-010-7472-5
![]() |
[16] |
A. Aizpuru, M. Nicasio-Llach, A. Sala, A remark about the statistical Cesàro summability and the Orlicz-Pettis theorem, Acta Math. Hungar., 126 (2010), 94–98. https://doi.org/10.1007/s10474-009-9021-1 doi: 10.1007/s10474-009-9021-1
![]() |
[17] |
A. Aizpuru, M. Nicasio-Llach, About the statistical uniform convergence, Bull. Braz. Math. Soc. (N.S.), 39 (2008), 173–182. https://doi.org/10.1007/s00574-008-0078-1 doi: 10.1007/s00574-008-0078-1
![]() |
[18] |
A. Aizpuru, M. Nicasio-Llach, Spaces of sequences defined by the statistical convergence, Studia Sci. Math. Hungar., 45 (2008), 519–529. https://doi.org/10.1556/SScMath.2007.1063 doi: 10.1556/SScMath.2007.1063
![]() |
[19] | H. Cakalli, On statistical convergence in topological groups, Pure Appl. Math. Sci., 43 (1996), 27–31. |
[20] | A. Caserta, G. Di Maio, L. D. R. Kočinac, Statistical convergence in function spaces, Abstr. Appl. Anal., Art. ID 420419, 11. https://doi.org/10.1155/2011/420419 |
[21] |
G. Di Maio, L. D. R. Kočinac, Statistical convergence in topology, Topology Appl., 156 (2008), 28–45. https://doi.org/10.1016/j.topol.2008.01.015 doi: 10.1016/j.topol.2008.01.015
![]() |
[22] |
H. Nakano, Concave modulars, J. Math. Soc. Japan, 5 (1953), 29–49. https://doi.org/10.2969/jmsj/00510029 doi: 10.2969/jmsj/00510029
![]() |
[23] |
I. J. Maddox, Sequence spaces defined by a modulus, Math. Proc. Cambridge Philos. Soc., 100 (1986), 161–166. https://doi.org/10.1017/S0305004100065968 doi: 10.1017/S0305004100065968
![]() |
[24] |
W. H. Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, Canadian J. Math., 25 (1973), 973–978. https://doi.org/10.4153/CJM-1973-102-9 doi: 10.4153/CJM-1973-102-9
![]() |
[25] | S. Pehlivan, Strongly almost convergent sequences defined by a modulus and uniformly statistical convergence, Soochow J. Math., 20 (1994), 205–211. |
[26] |
J. Connor, On strong matrix summability with respect to a modulus and statistical convergence, Canad. Math. Bull., 32 (1989), 194–198. https://doi.org/10.4153/CMB-1989-029-3 doi: 10.4153/CMB-1989-029-3
![]() |
[27] |
A. Aizpuru, M. C. Listán-García, F. Rambla-Barreno, Double density by moduli and statistical convergence, Bull. Belg. Math. Soc. Simon Stevin, 19 (2012), 663–673. https://doi.org/10.36045/bbms/1353695907 doi: 10.36045/bbms/1353695907
![]() |
[28] |
A. Aizpuru, M. C. Listán-García, F. Rambla-Barreno, Density by moduli and statistical convergence, Quaest. Math., 37 (2014), 525–530. https://doi.org/10.2989/16073606.2014.981683 doi: 10.2989/16073606.2014.981683
![]() |
[29] |
R. Kama, Spaces of vector sequences defined by the f-statistical convergence and some characterizations of normed spaces, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 114 (2020), 1–9. https://doi.org/10.1007/s13398-020-00806-6 doi: 10.1007/s13398-020-00806-6
![]() |
[30] |
F. León-Saavedra, M. d. C. Listán-García, F. J. Pérez Fernández, M. P. Romero de la Rosa, On statistical convergence and strong Cesàro convergence by moduli, J. Inequal. Appl., 2019 (2019, 1–12. https://doi.org/10.1186/s13660-019-2252-y doi: 10.1186/s13660-019-2252-y
![]() |
[31] |
M. C. Listán-García, f-statistical convergence, completeness and f-cluster points, Bull. Belg. Math. Soc. Simon Stevin, 23 (2016), 235–245. https://doi.org/10.36045/bbms/1464710116 doi: 10.36045/bbms/1464710116
![]() |
[32] | V. I. Arnautov, S. T. Glavatsky, A. V. Mikhalev, Introduction to the theory of topological rings and modules, vol. 197 of Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 1996. https://doi.org/10.2307/3619650 |
[33] |
F. J. García-Pacheco, S. Sáez-Martínez, Normalizing rings, Banach J. Math. Anal., 14 (2020), 1143–1176. https://doi.org/10.1007/s43037-020-00055-0 doi: 10.1007/s43037-020-00055-0
![]() |
[34] |
F. J. Garcia-Pacheco, Regularity in topological modules, Mathematics, 8 (2020), 1580. https://doi.org/10.3390/math8091580 doi: 10.3390/math8091580
![]() |
[35] | S. Warner, Topological fields, vol. 157 of North-Holland Mathematics Studies, North-Holland Publishing Co., Amsterdam, 1989. https://www.elsevier.com/books/topological-fields/warner/978-0-444-87429-0 |
[36] | S. Warner, Topological rings, vol. 178 of North-Holland Mathematics Studies, North-Holland Publishing Co., Amsterdam, 1993. https://www.elsevier.com/books/topological-rings/warner/978-0-444-89446-5 |
[37] | A. R. Freedman, J. J. Sember, Densities and summability, Pacific J. Math., 95 (1981), 293–305. http://projecteuclid.org/euclid.pjm/1102735070 |
1. | Wellington F. da Silva, Ricardo B. Viana, Naiane S. Morais, Thalles G. Costa, Rodrigo L. Vancini, Gustavo C. T. Costa, Marilia S. Andrade, Claudio A. B. de Lira, Acute effects of exergame-based calisthenics versus traditional calisthenics on state-anxiety levels in young adult men: a randomized trial, 2022, 18, 1824-7490, 715, 10.1007/s11332-021-00841-9 | |
2. | Myungjin Jung, Emily Frith, Minsoo Kang, Paul D. Loprinzi, Effects of Acute Exercise on Verbal, Mathematical, and Spatial Insight Creativity, 2023, 5, 2096-6709, 87, 10.1007/s42978-021-00158-6 | |
3. | Sedat Sen, Süreyya Yörük, A Reliability Generalization Meta‐Analysis of the Kaufman Domains of Creativity Scale, 2023, 0022-0175, 10.1002/jocb.620 | |
4. | Ramón Romance, Adriana Nielsen-Rodríguez, Rui Sousa Mendes, Juan Carlos Dobado-Castañeda, Gonçalo Dias, The influence of physical activity on the creativity of 10 and 11-year-old school children, 2023, 48, 18711871, 101295, 10.1016/j.tsc.2023.101295 | |
5. | Petra J. Luteijn, Inge S. M. van der Wurff, Piet van Tuijl, Amika S. Singh, Hans H. C. M. Savelberg, Renate H. M. de Groot, The Effect of Standing Versus Sitting on Creativity in Adolescents—A Crossover Randomized Trial: The PHIT2LEARN Study, 2023, 17, 1751-2271, 209, 10.1111/mbe.12381 | |
6. | Myungjin Jung, Matthew B. Pontifex, Charles H. Hillman, Minsoo Kang, Michelle W. Voss, Kirk I. Erickson, Paul D. Loprinzi, A mechanistic understanding of cognitive performance deficits concurrent with vigorous intensity exercise, 2024, 180, 02782626, 106208, 10.1016/j.bandc.2024.106208 |