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1. Introduction

The idea of statistical convergence was given by Zygmund [1] in the first edition of his monograph
published in Warsaw in 1935. Later on, Fast [2] introduced the statistical convergence of number
sequences in terms of the density of subsets of N. Steinhaus [3] also defined, independently, the
notion of statistical convergence. Other primary works on this topic are [4, 5]. Ever since, the concept
of statistical convergence has been developed and enriched with deep and beautiful results by many
authors [6–12].

Kolk [13] initiated the study of applications of statistical convergence to the scope of Banach spaces.
Later in [14], there are important results that relate the statistical convergence to classical properties of
Banach spaces. In [15–18], spaces of sequences defined by the statistical convergence are introduced
and studied, serving, for instance, to characterize the weakly unconditionally Cauchy series in terms of
statistical convergence. Outside the context of normed spaces, we find the works of İlkhan and Kara [9]
and Maddock [11], were the statistical convergence is transported to the settings of quasi-metric spaces
and locally convex spaces, respectively. In [19–21], statistical convergence was transported to more
abstract settings such as topological groups, function spaces, and topological spaces, respectively.
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The notion of a modulus function was introduced by Nakano [22]. Maddox [23] and Ruckle [24]
have introduced and discussed some properties of sequence spaces defined by using a modulus func-
tion. Pehlivan [25] generalized the strong almost convergence with the help of modulus functions.
Connor [26] considered strong matrix summability with respect to a modulus and statistical conver-
gence. Finally, in [27–31] the statistical convergence by moduli is defined and studied in a deep
manner.

The aim of this manuscript is to go several steps further and extend the statistical convergence by
moduli to the scope of uniform spaces, obtaining particular cases of statistical convergence by moduli
on pseudometric spaces and topological modules.

2. Methodology

This section will serve to gather all the necessary results and techniques on which we will rely to
accomplish our main results.

2.1. Uniform spaces

Uniform spaces were conceived as general spaces where uniform continuity and uniform conver-
gence can be naturally defined.

Definition 2.1 (Uniform space). Let X be a set. A uniformity on X is a filter U ⊆ P(X × X) satisfying,
for every U ∈ U, the following conditions:

• U ⊆ X×X is a reflexive internal binary relation on X, that is, ∆X ⊆ U, where ∆X := {(x, x) : x ∈ X}
is the diagonal of X.
• There exists V ∈ U such that V◦V ⊆ U, where V◦V := {(v,w) ∈ X×X : ∃u ∈ X (v, u), (u,w) ∈ V}.
• U−1 ∈ U, where U−1 := {(v, u) ∈ X × X : (u, v) ∈ V}.

The pair (X,U) is called a uniform space. The elements of U are called entourages or vicinities.

Every filter base of U is called a base of entourages or vicinities. For every x ∈ X and every U ∈ U,
U[x] := {y ∈ X : (x, y) ∈ U}. An entourage U is said to be symmetric provided that U = U−1. If
U is an entourage, then V := U ∩ U−1 is a symmetric entourage. If B is a base of entourages, then
B1 :=

{
U ∩ U−1 : U ∈ B

}
is also a base of entourages.

Every uniform space becomes a topological space by defining the topology by means of the en-
tourages. Let X be a uniform space. Then

τ := {A ⊆ X : ∀a ∈ A ∃U entourage U[a] ⊆ A} ∪ {∅}

is a topology on X that turns it into a regular topological space. If B is a base of entourages, then
B[x0] := {U[x0] : U ∈ B} is a base of neighborhoods of x0.

Definition 2.2 (Complete uniform space). Let X be a uniform space. A Cauchy prefilter in X is a
prefilter F ⊆ P(X) such that for every entourage U ⊆ X × X there exists B ∈ F with B× B ⊆ U. We say
that X is complete if every Cauchy prefilter in X is convergent, that is, there exists x0 ∈ X such that for
every entourage U ⊆ X × X there exists B ∈ F with B ⊆ U[x0].

Special cases of uniform spaces are the pseudometric spaces and the topological groups.
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Example 2.3. Let X be a pseudometric space. The sets of the form

Uδ := {(x, y) ∈ X × X : d(x, y) < δ},

for every δ > 0, form a base of entourages whose generated filter is called the pseudometric uniformity.
For every x ∈ X and every δ > 0, Uδ[x] = U(x, δ), that is, the open ball of center x and radius δ.

Example 2.4. Let G be a topological group. The sets of the form

UV :=
{
(g, h) ∈ G ×G : gh−1 ∈ V

}
,

for every V ⊆ G neighborhood of 1, constitute a base of entourages whose generated filter is called the
group uniformity. For every g ∈ G and every V ⊆ G neighborhood of 1, UV[g] = V−1g.

We will work with a special class of topological groups: the topological modules [32–36]. The fol-
lowing characterization of module topology [36, Theorem 3.6] will be very much employed throughout
this manuscript.

Theorem 2.5. If M is a topological module over a topological ring R and B is a base of neighborhoods
of 0 in M, then it is verified that:

1. For every U ∈ B there exists V ∈ B such that V + V ⊆ U.
2. For every U ∈ B there exists V ∈ B such that −V ⊆ U.
3. For every U ∈ B there exist V ∈ B and a 0-neighborhood W ⊆ R such that WV ⊆ U.
4. For every U ∈ B and every r ∈ R there exists V ∈ B such that rV ⊆ U.
5. For every U ∈ B and every m ∈ M there exists a 0-neighborhood W ⊆ R such that Wm ⊆ U.

Conversely, for any filter base on a module over a topological ring verifying all five properties above
there exists a unique module topology on the module such that the filter base is a basis of neighborhoods
of zero.

2.2. Modulus functions

Modulus functions were introduced in [22].

Definition 2.6 (Modulus function). A modulus function is a function f : [0,∞)→ [0,∞) satisfying the
following conditions for all x, y ∈ [0,∞):

• f (x) = 0 if and only if x = 0.
• f (x + y) ≤ f (x) + f (y).
• f is increasing.
• f is continuous from the right at 0.

It follows that f must be continuous everywhere on [0,∞), and f
( x

r

)
≥

1
r

f (x) for all x ∈ R+ and all

r ∈ N. Notice that a modulus f may be bounded or unbounded. For example, f (x) =
x

x + 1
is bounded,

whereas f (x) = xp, for 0 < p < 1, is unbounded.

Definition 2.7 (Compatible modulus). A modulus function f is compatible if for any ε > 0 there exist

ε̃ > 0 and n0 = n0(ε) such that
f (nε̃)
f (n)

< ε for all n ≥ n0.

Electronic Research Archive Volume 30, Issue 6, 2183–2195.



2186

Examples [30] of compatible modulus functions are f (x) = x + log(x + 1) and f (x) = x +
x

x + 1
.

Examples of noncompatible modulus functions are f (x) = log(x+ 1) and f (x) = W(x), where W is the
W-Lambert function restricted to [0,∞), that is, the inverse of xex.

2.3. f -Density of subsets of N

The notion of f -density for subsets of the natural numbers was introduced in [28].

Definition 2.8 ( f -Density). Let f be a modulus function. The f -density of a subset A ⊆ N is defined as

d f (A) := lim
n→∞

f (card(A ∩ [1, n]))
f (n)

if the limit exists.

When f is the identity, we obtain the classical version of density [37] of subsets of N, denoted by
d(A). Several basic properties of d f will be employed in the upcoming sections.

Remark 2.9. Let f be a modulus function. Then:

1. d f is increasing, that is, d f (A) ≤ d f (B) whenever A ⊆ B ⊆ N and d f (A), d f (B) exist.
2. Since d f (∅) = 0 and d f (N) = 1, we have that 0 ≤ d f (A) ≤ 1 for all A ⊆ N for which d f (A) exists.
3. d f is subadditive, that is, d f (A∪ B) ≤ d f (A) + d f (B) for all A, B ⊆ N for which d f (A), d f (B) exist.
4. An example displayed in [28] shows that d f is not additive even for disjoint pairs of subsets of N.
5. If A ⊆ N and d f (A) = 0, then d f (N \ A) = 1.
6. In [28, Example 2.1], it is shown that the converse to the previous proposition does not hold, that

is, d f (A) = 1 does not necessarily mean d f (N \ A) = 0.
7. d f (A) = 0 implies d(A) = 0 for all A ⊆ N.
8. If A ⊆ N is finite and f is unbounded, then d f (A) = 0.

The following lemma, which can be found in [28, Lemma 3.4], will be very useful in the upcoming
section.

Lemma 2.10. If H is a infinite subset of N, then there exists an unbounded modulus function f such
that d f (H) = 1.

3. Results

We will present in this section our main results of this manuscript. This section will be divided into
two subsections. The first subsection is devoted to present basic results on f -statistical convergence on
uniform spaces. The second and final subsection contains specific results on f -statistical convergence
on topological modules.

3.1. f -Statistical convergence in uniform spaces

Like we mentioned before in Section 2, uniform spaces are abstract generalizations of pseudometric
spaces and topological groups. Thus, it makes sense to extend the concept of f -statistical convergence
to uniform spaces.
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Definition 3.1 ( f -Statistical convergence). Let X be a uniform space. Let f be a modulus function. A
sequence (xn)n∈N ⊆ X is said to be f -statistically convergent to x0 ∈ X if the set {n ∈ N : (xn, x0) < U}
has f -density 0 for every entourage U ⊆ X × X. We will denote by f -st lim(xn) to the set of all
f -statistical limits of (xn)n∈N.

Under the settings of the previous definition,

lim
n→∞

f (card ({k ≤ n : (xk, x0) < U}))
f (n)

= 0

for every entourage U ⊆ X × X. As expected, when the modulus f is the identity, then we call it
statistical convergence and denote it by st lim(xn).

Notice that, due to the increasing character of d f , in order to take the f -statistical limit of a sequence
(xn)n∈N ⊆ X, it only suffices to show that {n ∈ N : (xn, x0) < U} has f -density 0 for all U in a base of
entourages.

Our first basic result is aimed at showing that, in Hausdorff uniform spaces, the f -statistical limit is
unique it it exists.

Proposition 3.2. Let X be a Hausdorff uniform space. Let f be a modulus function. Let (xn)n∈N ⊆ X
be a sequence. Then f -st lim(xn) is either empty or a singleton.

Proof. Suppose on the contrary that there are x0 , y0 in f -st lim(xn). We can find a sym-
metric entourage U ⊆ X × X such that U[x0] ∩ U[y0] = ∅. Since x0, y0 ∈ f -st lim(xn),
we have that d f ({n ∈ N : (xn, x0) < U}) = d f ({n ∈ N : (xn, y0) < U}) = 0. By Remark 2.9(5),
d f ({n ∈ N : (xn, x0) ∈ U}) = d f (N \ {n ∈ N : (xn, x0) < U}) = 1. However, {n ∈ N : (xn, x0) ∈ U} ⊆
{n ∈ N : (xn, y0) < U} due to the fact that U[x0] ∩ U[y0] = ∅, reaching the contradiction that
{n ∈ N : (xn, y0) < U} has f -density 1 in view of Remark 2.9(1). □

The following results relate the f -statistical convergence with the statistical convergence and the
usual convergence.

Proposition 3.3. Let X be a uniform space. A sequence (xn)n∈N ⊆ X is convergent to x0 ∈ X if and only
if (xn)n∈N is f -statistically convergent to x0 for every unbounded modulus f . In short,

lim
n→∞

xn =
⋂
{ f -st lim(xn) : f unbounded modulus function} .

Proof.

⇒ Fix an arbitrary unbounded modulus f . For every symmetric entourage U ⊆ X × X there exists
n0 ∈ N with xn ∈ U[x0] for all n ≥ n0, which assures that

lim
n→∞

f (card({k ≤ n : (xk, x0) < U}))
f (n)

≤ lim
n→∞

f (n0)
f (n)

= 0.

This assures that (xn)n∈N is f -statistically convergent to x0.
⇐ Conversely, if (xn)n∈N is not convergent to x0, then there exists a symmetric entourage U ⊆ X × X

and a subsequence
(
xnk

)
k∈N such that xnk < U[x0] for each k ∈ N. As a consequence, H :=

{n ∈ N : (xn, x0) < U} is infinite. By Lemma 2.10, there exists an unbounded modulus function f
with d f (H) = 1, meaning that (xn)n∈N is not f -statistically convergent to x0.
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□

Proposition 3.4. Let X be a uniform space. Let (xn)n∈N ⊆ X and x0 ∈ X. Then:

1. If there exists a modulus f such that (xn)n∈N is f -statistically convergent to x0, then (xn)n∈N is
statistically convergent to x0. In short,⋃

{ f -st lim(xn) : f modulus function} ⊆ st lim(xn).

2. Conversely, if (xn)n∈N is statistically convergent to x0, then (xn)n∈N is f -statistically convergent to
x0 for every compatible modulus function f . In short,

st lim(xn) ⊆
⋂
{ f -st lim(xn) : f compatible modulus function} .

Proof.

1. For every symmetric entourage U ⊆ X × X and every r ∈ N, there exists nr ∈ N such that

f (card({k ≤ n : (xk, x0) < U}))
f (n)

<
1
r

for all n ≥ nr, that is,

f (card({k ≤ n : (xk, x0) < U})) <
f (n)

r
≤ f
(n

r

)
for all n ≥ nr, which implies, in view that f is increasing, that

card({k ≤ n : (xk, x0) < U}| <
n
r

for all n ≥ nr, yielding x0 ∈ st lim(xn).
2. Take f any compatible modulus functions. Take any symmetric entourage U ⊆ X × X. Fix an

arbitrary ε > 0. Since f is compatible, there exists ε̃ > 0 and n0 = n0(ε) ∈ N such that
f (nε̃)
f (n)

< ε

for all n ≥ n0. Since x0 ∈ st lim(xn), there exists r0 = r0(ε) ∈ N such that if n ≥ r0, then
card ({k ≤ n : (xk, x0) < U}) ≤ nε̃. Using the increasing monotonicity of f , we obtain

f (card ({k ≤ n : (xk, x0) < U}))
f (n)

≤
f (nε̃)
f (n)

< ε

for all n ≥ max{n0, r0}. Thus, (xn)n∈N is f -statistically convergent to x0.

□

Under the settings of the previous proposition, we conclude that⋃
{ f -st lim(xn) : f modulus} ⊆ st lim(xn) ⊆

⋂{
f -st lim(xn) : f compatible modulus

}
.

Since trivially⋂{
f -st lim(xn) : f compatible modulus

}
⊆
⋃
{ f -st lim(xn) : f modulus} ,

we obtain the following chain of equalities:⋃
{ f -st lim(xn) : f modulus} = st lim(xn) =

⋂{
f -st lim(xn) : f compatible modulus

}
.

The next result in this subsection is a generalization of [28, Theorem 3.1], which is itself a general-
ization of a theorem by Fast [2]. First, a technical lemma is needed.
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Lemma 3.5. Let f be a modulus function. Let (B j) j∈N be an increasing sequence of subsets of N with
f -density 0. If there exists one B j which is infinite, then there are strictly increasing sequences ( jk)k∈N

and (nk)k∈N of naturals such that:

1. For all k ∈ N, nk ∈ B jk and
f(card(B jk∩[1,i]))

f (i) ≤ 1
k whenever i ≥ nk.

2. A :=
⋃
k∈N

B jk ∩ [nk, nk+1) has f -density 0.

Proof. We will follow an inductive process. Let j1 := min{ j ∈ N : card(B j) = ∞}. Choose any
n1 ∈ B j1 . There exist j2 ∈ N with j2 > j1, which can actually be taken j2 := j1 + 1, and n2 ∈ B j2 such

that n2 > n1 and f(card(B j2∩[1,i]))
f (i) ≤ 1

2 whenever i ≥ n2. Inductively, we find strictly increasing sequences

( jk)k∈N and (nk)k∈N of naturals such that, for all k ∈ N, nk ∈ B jk and
f(card(B jk∩[1,i]))

f (i) ≤ 1
k whenever i ≥ nk.

Finally, we will show that d f (A) = 0. Indeed, fix an arbitrary ε > 0 and take k ∈ N with 1
k < ε. If

i ≥ nε := nk, then we can find l ∈ Nwith l ≥ k such that nl ≤ i < nl+1, meaning that A∩[1, i] ⊆ B jl∩[1, i]
and

f (card(A ∩ [1, i]))
f (i)

≤
f
(
card(B jl ∩ [1, i])

)
f (i)

≤
1
l
≤

1
k
< ε.

As a consequence, d f (A) = 0. □

Before proving the generalization of [28, Theorem 3.1], let us observe that if f is an unbounded
modulus function and A ⊆ N has f -density 0, then d f (N \ A) = 1 so N \ A cannot be finite.

Theorem 3.6. Let X be a uniform space with a countable base of entourages. Let f be an unbounded
modulus function. Let (xn)n∈N ⊆ X and x0 ∈ X. Then x0 ∈ f -st lim(xn) if and only if there exists A ⊆ N
with d f (A) = 0 and x0 ∈ lim

i∈N\A
xi. In short,

f -st lim(xn) =
⋃{

lim
i∈N\A

xi : A ⊆ N, d f (A) = 0
}
.

Proof. Let B be a countable base of entourages. We may assume without any loss of generality that
the entourages of B are symmetric and nested downward, that is, B = {U j : j ∈ N} with U1 ⊇ U2 ⊇

U3 ⊇ · · · .

⇒ For every j ∈ N, let B j := {i ∈ N : (xi, x0) < U j}. Notice that B j ⊆ B j+1 and d f

(
B j

)
= 0 for all

j ∈ N. At this stage, we will distinguish between two cases:

• All the B j’s are finite. In this case, it is trivial that x0 ∈ lim
n→∞

xn, so it only suffices to take
A = ∅.
• There exists one B j which is infinite. In this case, we will call on Lemma 3.5 to find strictly

increasing sequences ( jk)k∈N and (nk)k∈N of naturals such that, for all k ∈ N, nk ∈ B jk and
f(card(B jk∩[1,i]))

f (i) ≤ 1
k whenever i ≥ nk. Now, let A :=

⋃
k∈N

B jk ∩ [nk, nk+1). We know that

d f (A) = 0. Let us finally prove that x0 ∈ lim
i∈N\A

xi. Indeed, fix an arbitrary symmetric entourage

U ⊆ X ×X and take k ∈ N such that U jk ⊆ U. Since N \A is infinite (because it has f -density
1 and f is unbounded), we can take ik := min{i ∈ N \ A : i ≥ nk}. If i ∈ N \ A and i ≥ ik ≥ nk,
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then we can find l ∈ N with l ≥ k such that nl ≤ i < nl+1, meaning that i < B jl , which implies
that (xi, x0) ∈ U jl ⊆ U jk ⊆ U. As a consequence, x0 ∈ lim

i∈N\A
xi.

⇐ Conversely, assume that A ⊆ N satisfies that x0 ∈ lim
i∈N\A

xi and d f (A) = 0. Fix an arbitrary

symmetric entourage U ⊆ X × X. There exists iU ∈ N \ A such that (xi, x0) ∈ U for each i ∈ N \ A
and i > iU . Therefore, {i ∈ N : (xi, x0) < U} ⊆ A ∪ {1, . . . , iU} , meaning that

d f ({i ∈ N : (xi, x0) < U}) ≤ d f (A ∪ {1, . . . , iU}) ≤ d f (A) + d f ({1, . . . , iU}) = 0.

Observe that right above we have applied Remark 2.9(8) due to the unboundedness of f , and
subadditivity of d f given by Remark 2.9(3). The arbitrariness of U shows that x0 ∈ f -st lim(xn).

□

Theorem 3.6 has strong consequences on the f -statistical convergence of f -statistically Cauchy
sequences.

Definition 3.7 ( f -Statistical Cauchy). Let X be a uniform space. Let f be a modulus function. A
sequence (xn)n∈N ⊆ X is said to be f -statistically Cauchy if for every entourage U ⊆ X × X there exists
nU ∈ N such that the set

{
n ∈ N :

(
xn, xnU

)
< U
}

has f -density 0.

The following corollary is an abstract generalization of [27, Theorem 3.3].

Corollary 3.8. Let X be a uniform space with a countable base of entourages. Let f be an unbounded
modulus function. If X is complete, then every f -statistically Cauchy sequence (xn)n∈N ⊆ X is f -
statistically convergent.

Proof. Let B be a countable base of entourages. Like in the proof of Theorem 3.6, we may assume
without any loss of generality that the entourages of B are symmetric and nested downward, that is,
B = {Ul : l ∈ N} with U1 ⊇ U2 ⊇ U3 ⊇ · · · . For every l ∈ N, take ml := nUl as in Definition 3.7 for the
entourage Ul ∈ B, that is, d f

({
i ∈ N :

(
xi, xml

)
< Ul
})
= 0. For each j ∈ N, define V j :=

⋂
l≤ j Ul[xml]

and B j := {i ∈ N : xi < V j} =
⋃

l≤ j
{
i ∈ N :

(
xi, xml

)
< Ul
}
, meaning that d f (B j) = 0 in view of Remark

2.9(4), that is, subadditivity of d f , hence V j , ∅. Notice that (V j) j∈N is decreasing, thus it is a prefilter
(or filter base) in X. We will show next that (V j) j∈N is a Cauchy prefilter in X. Indeed, fix an arbitrary
entourage U ⊆ X × X. Take another entourage V ⊆ X × X such that V ◦ V ⊆ U. Since B is base of
entourages, there exists l ∈ N with Ul ⊆ V . Then Vl × Vl ⊆ Ul[xml] × Ul[xml] ⊆ Ul ◦ Ul ⊆ V ◦ V ⊆ U.
This shows that (V j) j∈N is a Cauchy prefilter in X. Since X is complete, (V j) j∈N is convergent to some
x0 ∈ X, meaning that for every entourage U ⊆ X × X, there exists j ∈ N such that V j ⊆ U[x0]. On the
other hand, (B j) j∈N is increasing. At this stage, we will distinguish between two possibilities:

• All the B j’s are finite. In this case, it is trivial to check that x0 ∈ lim
n→∞

xn. Since f is unbounded,
we conclude that x0 ∈ f -st lim(xn) in virtue of Proposition 3.3.
• There exists one B j which is infinite. In this case, we will call on Lemma 3.5 to find strictly

increasing sequences ( jk)k∈N and (nk)k∈N of naturals such that, for all k ∈ N, nk ∈ B jk and
f(card(B jk∩[1,i]))

f (i) ≤ 1
k whenever i ≥ nk. Now, let A :=

⋃
k∈N

B jk ∩ [nk, nk+1). We know that d f (A) = 0.

Let us finally prove that x0 ∈ lim
i∈N\A

xi, which will imply that x0 ∈ f -st lim(xn) in accordance with

Electronic Research Archive Volume 30, Issue 6, 2183–2195.



2191

Theorem 3.6. Indeed, fix an arbitrary symmetric entourage U ⊆ X × X. Since (V j) j∈N is conver-
gent to x0 ∈ X, there exists k ∈ N such that V jk ⊆ U[x0]. Since N \ A is infinite (because it has
f -density 1 and f is unbounded), we can take ik := min{i ∈ N \ A : i ≥ nk}. If i ∈ N \ A and
i ≥ ik ≥ nk, then we can find l ∈ N with l ≥ k such that nl ≤ i < nl+1, meaning that i < B jl , which
implies that xi ∈ V jl ⊆ V jk ⊆ U[x0]. As a consequence, x0 ∈ lim

i∈N\A
xi.

□

3.2. f -Statistical convergence on topological modules

Even though topological modules are special cases of topological groups, we decide to study f -
statistical convergence on topological modules because in order to prove the most natural results we
are in need of commutativity. And it is well known that every topological commutative group, with
additive notation, is a topological Z-module when Z is endowed with the discrete topology.

Let R be a topological ring and M a topological R-module. Let f be a modulus function. Note that
a sequence (xn)n∈N ⊆ M is f -statistically convergent to x0 ∈ M if the set {n ∈ N : xn < x0 + U} has f -
density 0 for every additively symmetric 0-neighborhood U in M (recall that by additively symmetric
we mean U = −U).

The following remark, although it is trivial, is extremely useful to perform operations with f -
statistical limits.

Remark 3.9. Let M be a module over a ring R. Let A, B,C be subsets of M. Then:

1. If A + B ⊆ C and C − A ⊆ B, then A + B = C.
2. If C − A ⊆ B and C − B ⊆ A, then B = C − A.

Theorem 3.10. Let R be a topological ring and M a topological R-module. Let f be a modulus
function. Consider sequences (xn)n∈N, (yn)n∈N ⊆ M and r ∈ R. Then:

1. f -st lim(xn + yn) = f -st lim(xn) + f -st lim(yn).
2. r f -st lim(xn) ⊆ f -st lim(rxn).
3. If r ∈ R is invertible, then f -st lim(rxn) = r f -st lim(xn).
4. If M = R, then f -st lim(xn) f -st lim(yn) ⊆ f -st lim(xnyn).

Proof.

1. Fix arbitrary elements x0 ∈ f -st lim(xn) and y0 ∈ f -st lim(yn). Take any additively symmetric
0-neighborhood U ⊆ M. There exists another addivitely symmetric 0-neighborhood V ⊆ M such
that V + V ⊆ U. Then

{n ∈ N : xn + yn < (x0 + y0) + U} ⊆ {n ∈ N : xn < x0 + V} ∪ {n ∈ N : yn < y0 + V}.

As a consequence,

d f ({n ∈ N : xn + yn < (x0 + y0) + U}) ≤ d f ({n ∈ N : xn < x0 + V})

+ d f ({n ∈ N : yn < y0 + V})

= 0.
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The arbitrariness of U shows that x0 + y0 ∈ f -st lim(xn + yn). All of these prove that f -st lim(xn)+
f -st lim(yn) ⊆ f -st lim(xn + yn). Following a similar reasoning, it can be proved that f -st lim(xn +

yn) − f -st lim(xn) ⊆ f -st lim(yn). In view of Remark 3.9, we conclude that f -st lim(xn + yn) =
f -st lim(xn) + f -st lim(yn).

2. Fix an arbitrary element x0 ∈ f -st lim(xn). Take any additively symmetric 0-neighborhood U ⊆
M. There exists another addivitely symmetric 0-neighborhood V ⊆ M such that rV ⊆ U. Then

{n ∈ N : rxn < rx0 + U} ⊆ {n ∈ N : xn < x0 + V}.

As a consequence,

d f ({n ∈ N : rxn < rx0 + U}) ≤ d f ({n ∈ N : xn < x0 + V}) = 0.

The arbitrariness of U shows that rx0 ∈ f -st lim(rxn).
3. From the previous item, we know that r f -st lim(xn) ⊆ f -st lim(rxn). If we apply the same reason-

ing with r−1, we obtain that

f -st lim(xn) = r−1 (r f -st lim(xn)) ⊆ r−1 f -st lim(rxn) ⊆ f -st lim
(
r−1rxn

)
= f -st lim(xn).

4. Fix arbitrary elements x0 ∈ f -st lim(xn) and y0 ∈ f -st lim(yn). Take any additively symmetric 0-
neighborhood U ⊆ R. Let W ⊆ R be an additively symmetric 0-neighborhood such that W +W +
W ⊆ U. There exists another addivitely symmetric 0-neighborhood V1 ⊆ R such that V1V1 ⊆ W.
We can also find additively symmetric 0-neighborhoods V2,V3 ⊆ R such that V2y0 ⊆ W and
x0V3 ⊆ W. If we take V := V1 ∩ V2 ∩ V3, then we obtain that V is an addivitely symmetric
0-neighborhood satisfying that Vy0 + x0V + VV ⊆ W +W +W ⊆ U. Then

{n ∈ N : xnyn < x0y0 + U} ⊆ {n ∈ N : xn < x0 + V} ∪ {n ∈ N : yn < y0 + V}.

As a consequence,

d f ({n ∈ N : xnyn < x0y0 + U}) ≤ d f ({n ∈ N : xn < x0 + V})

+ d f ({n ∈ N : yn < y0 + V})

= 0.

The arbitrariness of U shows that x0y0 ∈ f -st lim(xnyn).
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20. A. Caserta, G. Di Maio, L. D. R. Kočinac, Statistical convergence in function spaces, Abstr. Appl.
Anal., Art. ID 420419, 11. https://doi.org/10.1155/2011/420419
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