In this paper, applying the theory of fixed points in complete gauge spaces, we establish some conditions for the existence and uniqueness of monotonic and positive solutions for nonlinear systems of ordinary differential equations. Moreover, the paper contains an application of the theoretical results to the study of a class of systems of nonlinear ordinary differential equations.
Citation: Adrian Nicolae Branga. Some conditions for the existence and uniqueness of monotonic and positive solutions for nonlinear systems of ordinary differential equations[J]. Electronic Research Archive, 2022, 30(6): 1999-2017. doi: 10.3934/era.2022101
In this paper, applying the theory of fixed points in complete gauge spaces, we establish some conditions for the existence and uniqueness of monotonic and positive solutions for nonlinear systems of ordinary differential equations. Moreover, the paper contains an application of the theoretical results to the study of a class of systems of nonlinear ordinary differential equations.
[1] | J. Chu, Monotone solutions of a nonlinear differential equation for geophysical fluid flows, Nonlinear Anal., 166 (2018), 144–153. https://doi.org/10.1016/j.na.2017.10.010 doi: 10.1016/j.na.2017.10.010 |
[2] | A. Aslanov, On the existence of monotone positive solutions of second order differential equations, Monatsh. Math., 184 (2017), 505–517. https://doi.org/10.1007/s00605-016-1015-9 doi: 10.1007/s00605-016-1015-9 |
[3] | T. Ertem, A. Zafer, Monotone positive solutions for a class of second-order nonlinear differential equations, J. Comput. Appl. Math., 259 (2014), 672–681. https://doi.org/10.1016/j.cam.2013.04.020 doi: 10.1016/j.cam.2013.04.020 |
[4] | Z. Yin, Monotone positive solutions of second-order nonlinear differential equations, Nonlinear Anal., 54 (2003), 391–403. https://doi.org/10.1016/S0362-546X(03)00089-0 doi: 10.1016/S0362-546X(03)00089-0 |
[5] | W. T. Li, X. L. Fan, Monotone solutions of second-order nonlinear differential equations, Appl. Math. Lett., 13 (2000), 65–70. https://doi.org/10.1016/S0893-9659(99)00210-4 doi: 10.1016/S0893-9659(99)00210-4 |
[6] | J. Rovder, On monotone solution of the third-order differential equation, J. Comput. Appl. Math., 66 (1996), 421–432. https://doi.org/10.1016/0377-0427(95)00165-4 doi: 10.1016/0377-0427(95)00165-4 |
[7] | M. Tóthová, O. Palumbíny, On monotone solutions of the fourth order ordinary differential equations, Czechoslovak Math. J., 45 (1995), 737–746. https://doi.org/10.21136/CMJ.1995.128553 doi: 10.21136/CMJ.1995.128553 |
[8] | E. Rovderová, Existence of a monotone solution of a nonlinear differential equation, J. Math. Anal. Appl., 192 (1995), 1–15. https://doi.org/10.1006/jmaa.1995.1156 doi: 10.1006/jmaa.1995.1156 |
[9] | K. Iséki, A remark on monotone solutions of differential equations, Proc. Japan Acad., 35 (1959), 370–371. https://doi.org/10.3792/pja/1195524292 doi: 10.3792/pja/1195524292 |
[10] | B. P. Demidovich, On boundedness of monotonic solutions of a system of linear differential equations, Uspekhi Mat. Nauk, 12 (1957), 143–146. |
[11] | S. Sanhan, W. Sanhan, C. Mongkolkeha, New existence of fixed point results in generalized pseudodistance functions with its application to differential equations, Mathematics, 6 (2018), 1–14. https://doi.org/10.3390/math6120324 doi: 10.3390/math6120324 |
[12] | A. N. Branga, I. M. Olaru, An application of the fixed point theory to the study of monotonic solutions for systems of differential equations, Mathematics, 8 (2020), 1–8. https://doi.org/10.3390/math8071183 doi: 10.3390/math8071183 |
[13] | J. Dugundji, Topology, Allyn and Bacon, Boston, 1966. |
[14] | I. Colojoarǎ, Sur un théoréme d'un point fixe dans les espaces uniformes complets, Com. Acad. R. P. Roumaine, 11 (1967), 281–283. |
[15] | N. Gheorghiu, Contraction theorem in uniform spaces, Stud. Cercet. Mat., 19 (1967), 119–122. |
[16] | R. J. Knill, Fixed points of uniform contractions, J. Math. Anal. Appl., 12 (1965), 449–455. https://doi.org/10.1016/0022-247X(65)90012-0 doi: 10.1016/0022-247X(65)90012-0 |
[17] | E. Tarafdar, An approach to fixed-point theorems on uniform spaces, Trans. Am. Math. Soc., 191 (1974), 209–225. https://doi.org/10.1090/S0002-9947-1974-0362283-5 doi: 10.1090/S0002-9947-1974-0362283-5 |
[18] | U. Chatterjee, Advanced Mathematical Analysis: Theory and Problems, Academic Publishers, Calcutta, 2011. |
[19] | E. S. Şuhubi, Functional Analysis, Kluwer Academic Publishers, Dordrecht, 2003. |
[20] | G. J. de Cabral-García, K. Baquero-Mariaca, J. Villa-Morales, A fixed point theorem in the space of integrable functions and applications, Rend. Circ. Mat. Palermo Ser. 2, (2022), 1–18. https://doi.org/10.1007/s12215-021-00714-7 doi: 10.1007/s12215-021-00714-7 |
[21] | F. A. Akgun, Z. Rasulov, A new iteration method for the solution of third-order BVP via Green's function, Demonstr. Math., 54 (2021), 425–435. https://doi.org/10.1515/dema-2021-0031 doi: 10.1515/dema-2021-0031 |
[22] | P. Debnath, N. Konwar, S. Radenović (eds.), Metric fixed point theory: applications in science, engineering and behavioural sciences, Forum for Interdisciplinary Mathematics, Springer Nature, Singapore, 2021. https://doi.org/10.1007/978-981-16-4896-0 |