In this work, we first propose a concept of Weyl almost anti-periodic functions. Then, we make use of the contraction mapping principle and analysis techniques to research the existence of a unique Weyl almost anti-periodic solution to a neutral functional semilinear abstract differential equation. Finally, we give an example of a neutral functional partial differential equation to show the validity of the obtained results.
Citation: Weiwei Qi, Yongkun Li. Weyl almost anti-periodic solution to a neutral functional semilinear differential equation[J]. Electronic Research Archive, 2023, 31(3): 1662-1672. doi: 10.3934/era.2023086
In this work, we first propose a concept of Weyl almost anti-periodic functions. Then, we make use of the contraction mapping principle and analysis techniques to research the existence of a unique Weyl almost anti-periodic solution to a neutral functional semilinear abstract differential equation. Finally, we give an example of a neutral functional partial differential equation to show the validity of the obtained results.
[1] | Y. Li, J. Qin, Existence and global exponential stability of periodic solutions for quaternion-valued cellular neural networks with time-varying delays, Neurocomputing, 292 (2018), 91–103. https://doi.org/10.1016/j.neucom.2018.02.077 doi: 10.1016/j.neucom.2018.02.077 |
[2] | C. Huang, X. Long, J. Cao, Stability of antiperiodic recurrent neural networks with multiproportional delays, Math. Methods Appl. Sci., 43 (2020), 6093–6102. https://doi.org/10.1002/mma.6350 doi: 10.1002/mma.6350 |
[3] | D. Luo, Q. Jiang, Q. Wang, Anti-periodic solutions on Clifford-valued high-order Hopfield neural networks with multi-proportional delays, Neurocomputing, 472 (2022), 1–11. https://doi.org/10.1016/j.neucom.2021.11.001 doi: 10.1016/j.neucom.2021.11.001 |
[4] | C. Huang, S. Wen, L. Huang, Dynamics of anti-periodic solutions on shunting inhibitory cellular neural networks with multi-proportional delays, Neurocomputing, 357 (2019), 47–52. https://doi.org/10.1016/j.neucom.2019.05.022 doi: 10.1016/j.neucom.2019.05.022 |
[5] | Y. Li, J. Qin, B. Li, Existence and global exponential stability of anti-periodic solutions for delayed quaternion-valued cellular neural networks with impulsive effects, Math. Methods Appl. Sci., 42 (2019), 5–23. https://doi.org/10.1002/mma.5318 doi: 10.1002/mma.5318 |
[6] | H. Bohr, Zur theorie der fast periodischen funktionen: I. Eine verallgemeinerung der theorie der fourierreihen, Acta Math., 45 (1925), 29–127. https://doi.org/10.1007/BF02395468 doi: 10.1007/BF02395468 |
[7] | T. Yoshizawa, Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions, Springer-Verlag, New York, USA, 1975. https://doi.org/10.1007/978-1-4612-6376-0 |
[8] | T. Diagana, Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces, Springer-Verlag, New York, USA, 2013. https://doi.org/10.1007/978-3-319-00849-3 |
[9] | C. Corduneanu, Almost Periodic Oscillations and Waves, Springer-Verlag, New York, USA, 2009. https://doi.org/10.1007/978-0-387-09819-7 |
[10] | G. M. N'Guérékata, Almost Periodic and Almost Automorphic Functions in Abstract Spaces, Springer-Verlag, New York, USA, 2021. https://doi.org/10.1007/978-3-030-73718-4 |
[11] | I. Kmit, L. Recke, V. Tkachenko, Classical bounded and almost periodic solutions to quasilinear first-order hyperbolic systems in a strip, J. Differ. Equations, 269 (2020), 2532–2579. https://doi.org/10.1016/j.jde.2020.02.006 doi: 10.1016/j.jde.2020.02.006 |
[12] | Y. Li, X. Wang, Besicovitch almost periodic stochastic processes and almost periodic solutions of Clifford-valued stochastic neural networks, Discrete Contin. Dyn. Syst. B, 28 (2023), 2154–2183. https://doi.org/10.3934/dcdsb.2022162 doi: 10.3934/dcdsb.2022162 |
[13] | C. Xu, P. Li, Y. Pang, Exponential stability of almost periodic solutions for memristor-based neural networks with distributed leakage delays, Neural Comput., 28 (2016), 2726–2756. https://doi.org/10.1162/NECO_a_00895 doi: 10.1162/NECO_a_00895 |
[14] | C. Xu, M. Liao, P. Li, Z. Liu, S. Yuan, New results on pseudo almost periodic solutions of quaternion-valued fuzzy cellular neural networks with delays, Fuzzy Sets Syst., 411 (2021), 25–47. https://doi.org/10.1016/j.fss.2020.03.016 doi: 10.1016/j.fss.2020.03.016 |
[15] | Y. Li, X. Wang, N. Huo, Weyl almost automorphic solutions in distribution sense of Clifford-valued stochastic neural networks with time-varying delays, Proc. R. Soc. A, 478 (2022), 20210719. https://doi.org/10.1098/rspa.2021.0719 doi: 10.1098/rspa.2021.0719 |
[16] | M. Kostić, D. A. Velinov, Note on almost anti-periodic functions in Banach spaces, Kragujevac J. Math., 44 (2020), 287–297. https://doi.org/10.46793/KgJMat2002.287K doi: 10.46793/KgJMat2002.287K |
[17] | H. Weyl, Integralgleichungen und fastperiodische funktionen, Math. Ann., 97 (1927), 338–356. https://doi.org/10.1007/BF01447871 doi: 10.1007/BF01447871 |
[18] | J. Andres, A. M. Bersani, R. F. Grande, Hierarchy of almost periodic function spaces, Rend. Mat. Ser. VII, 26 (2006), 121–188. |
[19] | J. K. Hale, S. M. V. Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, USA, 2013. |
[20] | T. Diagana, E. M. Hernández, Existence and uniqueness of pseudo almost periodic solutions to some abstract partial neutral functional-differential equations and applications, J. Math. Anal. Appl., 327 (2007), 776–791. https://doi.org/10.1016/j.jmaa.2006.04.043 doi: 10.1016/j.jmaa.2006.04.043 |