ERA, 31(3): 1662-1672.

EE DOI: 10.3934/era.2023086

AIMS Electronic Received: 25 November 2022

@ Research Archive

Revised: 11 January 2023
Accepted: 29 January 2023
http://www.aimspress.com/journal/era Published: 01 February 2023

Research article

Weyl almost anti-periodic solution to a neutral functional semilinear
differential equation

Weiwei Qi and Yongkun Li*
Department of Mathematics, Yunnan University, Kunming, Yunnan 650091, China
* Correspondence: Email: yklie@ynu.edu.cn.

Abstract: In this work, we first propose a concept of Weyl almost anti-periodic functions. Then,
we make use of the contraction mapping principle and analysis techniques to research the existence
of a unique Weyl almost anti-periodic solution to a neutral functional semilinear abstract differential
equation. Finally, we give an example of a neutral functional partial differential equation to show the
validity of the obtained results.

Keywords: Weyl almost anti-periodicity; neutral functional differential equation; semilinear abstract
differential equation

1. Introduction

In nature, human society, engineering technology and other fields, periodic and anti-periodic
fluctuations are widespread. Differential equation is an important mathematical model to describe the
phenomena and processes in these fields. Therefore, the problem of periodic and anti-periodic
solutions of differential equations has always been a focus in the field of qualitative research of
differential equations, whether in terms of theoretical research or practical application [1-5]. Since H.
Bohr [6] introduced the almost periodic function as a natural extension of periodic function into
mathematics, almost periodic solutions to differential equations [7-11] and mathematical models
described by differential equations [12—15] has also become an important problem. Recently, the
concepts of Bohr and Stepanov almost anti-periodic functions were proposed in [16]. As we know,
Weyl almost periodic function is an extension of Bohr almost periodic function and Stepanov almost
periodic function [15, 17, 18], but unlike them, the space formed by Weyl almost periodic function is
incomplete under Weyl seminorm [9, 18]. As a result, it is a difficult and interesting problem to
investigate Weyl almost periodic solutions to differential equations and has always attracted the
interest of many scholars. Therefore, it is also meaningful and challenging to introduce a definition of
Weyl almost anti-periodic function and study solutions of such functions to differential equations and
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dynamical systems.

Inspired by the above analysis and observation, and considering that the semilinear abstract neutral
functional differential equation includes many mathematical models as its special cases [19]. The
primary purpose of this work is to introduce a definition of Weyl almost anti-periodic function, and
then investigate the existence of a unique Weyl almost anti-periodic solution to a semilinear abstract
neutral functional differential equation.

The remainder of this work is structured as follows: In Section 2, we propose a notion of Weyl
almost anti-periodic function. In Section 3, we discuss the existence of a unique Weyl almost anti-
periodic solution for a neutral functional semi-linear differential equation and we provide an example
to show the validity of our result. In Section 4, we provide a brief conclusion.

2. Weyl almost anti-periodic function

Let (B, || - ||) denote a Banach space. For p > 1, f € Li (R, B), the Weyl seminorm of f is defined

as:
1
»

1 a+T
Ifllyr = lim sup(— f IIf(t)Ilpdt) .
T—+00 4R T a

Definition 2.1. [9] Function f € L' (R,B) is called a p-th Weyl almost periodic function, if for each

loc
€ > 0, it is possible to find a constant | = l(€) > O such that each interval of length l(€) contains a point

7 € R satisfying
1fC+7) = fOllwr <€

We will denote the collection of such functions by WPAP(R, B).
Remark 2.1. According to [9], for x € WPAP(R, B), we have ||x||y» < oo.

Definition 2.2. A function f € L; (R,B) is called a p-th Weyl almost anti-periodic function, if for any
€ > 0, it is possible to find an | = l(€) > 0 such that each interval with length l(€) contains at least one
T = 7(€) € R such that

1fC+D)+ fOllwe <€
We will use WPANP(R, B) to stand for the space of all such functions.

Definition 2.3. Let f € L] (RxB,B), then it is called p-th Weyl almost anti-periodic in t € R uniformly
in x € B, if for any € > 0 and each compact subset K of B, it is possible to find an | = l(e,K) > 0 such
that each interval with length | contains at least one T = 1(€) € R satisfying

IfC+7.0)+ fC 0w <€
uniformly in x € K. We will denote the collection of all such functions by WPANP(R X B, B).

Example 2.1. (1°) If fi(t) = cos(xt) + cos( \2nt) + 5, then one can easily check that f(t) is not

2+
periodic, not anti-periodic, nor almost anti-periodic but Weyl almost anti-periodic.

(2°) Let f»5(t) = cos(rt) + cos( \/ETU) + ﬁ + 3, then one can easily show that f, € WPAP(R,B), but
f» ¢ WPANP(R, B).
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Example 2.2. Take f5(f) = 2 cos(2t) — —5 and fi(t) = — cos(4t) + —, then one can easily show that

1+12 1412’

f3(t) and fy(t) are Weyl almost anti-periodic. Since f3(t) + f4(t) = 1 forallt e R, ||5(- + ) + fu(- + T) +
S+ faOllwe = 2 > 0 for every T € R. Hence, f5(t) + f4(t) is not Weyl almost anti-periodic.

Remark 2.2. Example 2.1 shows that WPANP(R, B) is a proper subset of WPAP(R,B). Example 2.2
shows that WPANP(R, B) does not form a linear space under usual linear operations.

Remark 2.3. Based on Definition 2.1 in [16] and Definition 2.2, one can conclude that an anti-periodic
function is an almost anti-periodic function and an almost anti-periodic function is also a Weyl almost
anti-periodic function, but the converse is not true.

3. Weyl almost anti-periodic mild solution

The neutral functional semilinear differential equation we are concerned in this paper is as follow:

d
2,10 = flu(t = )] = Au(®) + gt ut = ), 12 1o, (3.1

in which, A is the infinitesimal generator of a Cy-semigroup {7'(¢) : t > 0} on Banach space B, f €
C(B,B), g : R xB — B is a measurable function, 8, ¢ > 0 are constants.
The initial value imposed on system (3.1) is as follow:

x(s) = ¢(s), @€ C([to-n.1].B), n=max{f,&}. (3.2)

Definition 3.1. Function v : R — B is said to be a mild solution of (3.1) and (3.2) if it satisfies the
initial value condition (3.2) and the following equation

v(t) =T (t — 1o)[v(to) — f(v(to — O)] + f(v(t - 0))
+ f AT(t—s)f(v(s — 0))ds + f T(t— s)g(s,v(s—&))ds

1o fo
forallt € Rwitht > t.
In order to gain our main result, we assume that:

(H,) There are two positive constants M,  satisfying ||T(¢)|| < Me™'.
(H,) The function w — AT (w) defined on [0, o) is a strongly measurable one and there exists a
nonincreasing function J : [0, c0) — [0, c0) with ¢ J(+) € L([0, o), [0, o)) satisfying

+00
f e I@)dh < Ky, AT(@)ll < e*"J(@), @ 20.
0

(H3) Function f € C(B,B),g € WPANP(R x B,B) and there are constants L/, L* > 0 such that for all
x,y€BandteR,

£ = fOI < Lllx £, llg(t, %) £ gt DI < Lol + yll.

Moreover, f(0) = g(¢,0) = 0.
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(H,) The constant M := L/ + KL + 4£ § * satisfies Z’ZL < M < 1, where M is mentioned in (H,), K is
mentioned in (H), ¢ is mentioned in (H;) and (H,).

Let L*(R,B) denote the space of all essentially bounded and measurable functions from R to B.

Then, it is a Banach space when endowed with the norm ||x||, = ess sup ||x(?)|| for x € L*(R, B).
teR

Lemma 3.1. [f®@ e L”

loc

(R, B) with ||®||lw» < oo, then one has

'fooe—W(g(._

0

Hf T e J@)e -
0

Proof. By Fubini’s theorem, we deduce that
+00
‘ f e 70(- — w)dw
0 wr
1 a+T -+ 00 o p— 1
= lim sup[ f (f e e ||®(t - w)lldw) dt]
Ta+oo acR
=1 13
< lim sup f f @0t — w)ll”dw( f Wdzu) dt]
T—)+oo acR

a+T
sg"pl lim sup|— f f e 5?0 — w)ll”dwdt]

T—+c 4eR
=% tim sup|= f i@ f ||®(r—w)||f’dtdw]
To+0 4R

a+w+T 1
f ool f IIG)(s)IIPdsdw]
0 T a+w

1

+00 1
=§"’p‘[ f e‘f“n@n’;w,dw]
0

< M1®llw

-1
< ¢ [1Ollwr
wr

and

< Ki[1®llw».
wp

p-1
< % lim sup
T—+0 41 7eR

and that

wp

1 T O w | ik )
= lim sup[T f ( f T Nyt T J(@) 5 ||®(t—w)||dw) dt]
a 0

T—)+oo acR

1 a+T +00 +00 p—1 [l]
< lim sup = f f e I@)O - @) de f eI w)dm) di]
T—>+oo acR a 0 0

1

p-1 1 a+T +00 o » 7
<K,” lim sup | e IO - D dwd]|
a 0

T—+0 4R

f ) e % J(@)O(- — w)dw
0
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1

p-l 1 +00 a+T L
=K,” lim sup [? f e " J(w) f [|®( - w)llpdtdw]
0 a

To+00 4R
1

+00 1 a+w+T >
f e 7 J(w)— f ||®(s)||pdsdw]
0 T a+w

1

L’l +00 ;
=K’ [ f e‘f“J(w)n@n’;V,,dw]
0

<Ki||®[lw».

p-1
<K, lim sup

I r5ie
a+weR

The proof is done.

Theorem 3.1. Let assumptions (H,)—(H3) be fulfilled. Then system (3.1) admits one and only one Weyl
almost anti-periodic solution in L™ (R, B).

Proof. By Definition 3.1, it is clear that x : R — B is a solution to (3.1) if it meets the equation

! t

x(t) = f(x(t—6)) + f AT(t— 5)f(x(s — 0))ds + f T(t— s5)g(s, x(s—&))ds. 3.3)

—00 —00

Define an operator A : L*(R,B) — B by

(ADD) =f (@l - ) + f ATt - $)f(d(s — O))ds + f T(t - )g(s, ¢(s — O)ds

—00 ()

— (i - 0)) + fo AT(@) [t - @ — O))de + fo T(@)g(t - @, (i - @ — E))dw,

where ¢ € L*(R, B).
First of all, we will confirm that A(L*(R,B)) c L*(R, B). Indeed, for every ¢ € L*(R, B), one gets

IAB) e <IF@C — D)l + || fo AT(@)f($(- - @ — O)dew

(o)

+

fo T(@)g(- - @, d(-— & - )dew

(09

<L/l — )]l + LfH f " e J (@b — @ — O)dw
0

(9]

+ L8

f " Me (- o — )
0
MILS

(o9

<L |#ll + Ki L' ||$llo0 + [1hlco-

Hence, A is a self-mapping.
Next, we will demonstrate A is a contraction mapping. For any x,y € L*(R, B), one has

lI(AX) = (Ap)lleo

<[f (= 0) = FOC = )l + fo AT (@)||f(x(- =@ = 0)) = fO( — @ = O))lldw
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+ fo T(@)lg(- — @, x(- =@ = &) = 8- =@, y(- = @ = &))||dw
<L|Ix(- = 6) = y(- = O)ll + Lff i (@)X~ @~ 0) = y(- — @ ~ O)lldw
0

- f()m e7Nx( ~ @ =€)~ y(- —~ T = §)llndw

MILS
s(Lf LKL+ T)le s

which, by (H,), means that A is a contraction mapping. Consequently, we derive that (3.1) admits
unique one mild solution x* € L™ (R, B).
Lastly, we will demonstrate that the x* is Weyl almost anti-periodic. By (3.3), one can infer that

X)) = f(x*"(t-0)) + f 00AT(w)f(x"‘(t —w - 0))dw + f ) T(w)g(t—w, x"(t —w — &))dw. (3.4)
0 0

Since g € WPANP(R xB, B), for every € > 0 and each compact subset K of B that contains x*, there
is a constant [ = [(¢€,K) > 0 such that in each interval with length / contains at least one 7 = 7(€) € R
satisfying
llg(- + 7, %) + g(, Vllwr < €

for all x € K.
On one hand, with the help of (3.4), one can deduce that

" + 1) = X" Ollwe

|recrr-om-soce-on+ [ ar@scer-m-o) - s - o - opaw
+ f+°° T@)@+17-o,xX(+17-w@-&))+ 8¢ +7-w, X' (- —w—§&))dw
0

- fo T@)@C+1-@x(—@m-§)+g8(-wx(-w- f)))dW‘

wr

<L 41 =2 Ol + 1

f ” eI @)X (+T-m-0)-X(—wT— 9))‘1“‘
0

wr

+ MILS8

f ) W+ T T =+ X~ @ - E)dw
0

wep
+ MH fo PG +T-TX(—w-E)+g(-—w x(—w— §)))dw‘
I:G)].

wp

Furthermore, by virtue of Lemma 3.1, one can get that

O <L|Ix"(- + 1) = X" Ollwr + KL X"+ 7 =@ = 0) = X" (- = @ = O)llwr
g
+

I C+1-—wm =) +x (- —lwr
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M
+ ?Ilg(- +T-w X (=) + 8~ X (—@=)lwr

. MLt M
<L + K L)X+ 1) = x°C)llwe + §WT+ﬂfﬂww+?6 (3.5)

On the other hand, we can derive that

Ix* ¢+ 7) + X" Ollwe

JEC+T=0)+ f(X'(- - 0) + j(; AT@)(f(xX'(+7-w-0) + f(x'( —w - 0)dw
+ fm T@)@(+17-o,xX(+17-w-&)-g(-+7-w,x(—w—§)dw
0

+ fo T(@)@C+1-w,x(—w-§)+8( ~w,x'( —w-§)dw

wp

<NxXC+71)+ xOllwe + Lf‘

f ) @)X (+T-w-0)+ X(—w-0))dw
0

wp
—+00
+ ML? f X +T—wm— &) - x(- —w—f))dw”
0 wr
+00
+ M‘ f 7@ AT T X~ T ) +g( ~ X~ w - §)dw
0 wr
=0,
then again by Lemma 3.1, we can get that
O, <L/|IX*(- + 1) + X Ollwe + KiL X + T =@ = 0) + X*(- = @ — O)lw»
8
+ X' +7-w =) -x(—w—lwr
M k k
+ ?Ilg(~ +T-w X (—w =)+ 8¢ @ x(—@=llwr
. MLs . M
<L+ K D)X+ 1) + X5 C)llwe + {Hf(+ﬂ—x(ﬂmw%ze (3.6)

Consequently, from (3.5) and (3.6) it follows that

ML#

"¢ + 1) + X" Ollwr < 7 (=L = K L) ¢+ 1) = X Cllwe

M
+?a—U—mUWe

<#(1 -L - KlLf)_z(gllx*(- +7)+ X O)lwr + %6)

M
+?a—U—mUﬁe

M)?*(L8)?
- T D+ 3 Ol
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N (M)*L# N M
CO-L KL (0-L —KLH®

hence, we obtain

M)2L8 M
m%+ﬂ+ﬂww<4 (M) )

20-L-KLY  (1-1-KL)
MALE? !
% (1 T2 -1 - KlLf)Z)

_E( (M)?L# . M )
S\ -1 -K L2 (1-L -KL)
ML# -1 ML? -1
% (1 A== KlLf)) (1 - LIr - KlLfg“)
_6( (M)*L8 . M )
S\ -1 -KL)? (-1 -KL)
ML# -1 ML\
% (1 T za —Lf—KlLf)) (1 - Mg—MLg)
_6( (M)?L# . M )
T\ -1 -KL)?  (1-L -KL)
ML# - M{ - ML#
% (1 Tza —Lf—KlLf)) M{ - 2MLF

which means that x* is p-th Weyl almost anti-periodic. The proof is finished.

Example 3.1. Consider the neutral type partial deferential equation

2 u(t, x) + f(u(t — 0,))] = Su(t, x) + g(t, u(t — &, x)),
ut,0) =u(@,n)=0, te€(0,+00), 3.7
ud,x) =¢@0,x), 60€[-1,0], xel[0,n],

where
f(u(t -6, x)) =0.25 sin(u(t — 1, x))
and 0.255si 0.5
. t—0.),
g(t,u(t — &, x)) = cos(nt) + cos( \/im) + smgt(-’_ I x)).
Take B = L*([0,x]) with || - || and (-, -) as its norm and inner product, respectively. Let A be an

operator defined as Au = u”” with its domain
D(A) := {u € L*([0,7]) : u”’ € L*([0,x]), u(0) = u(x) = 0}.

According to the statements in Examples’ section of [20], the operator A is the generator of an
analytic semigroup (7'(#));so on B. Additionally, one gets, for ¢ € B,

(o9

T(He =) e (¢, 2)2,

n=1
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and for ¢ € D(A),

()

A(,D = - Z I’l2 <‘;0’ Zn) Zns

n=1

where z,(€) = \/g sin(né).
Hence, T'(¢) satisfies (H;) with M =1, =1, and ||[T(?)|| < e7', t € [0, +00).

Take
1 t>0,
J@) =40 =0,
-1 <0,

then (H,) holds with K; = 1.

Consequently, (3.7) can be rewritten in a form as (3.1). It is easy to see that assumption (H3) holds
with L/ = L# = 0.25 and assumption (Hy4) holds with M = 0.75 and % =05<M<1. Therefore,
according to Theorem 3.1, (3.7) admit one unique Weyl almost anti-periodic mild solution.

4. Conclusions

In this work, a definition of Weyl almost anti-periodic function has been introduced and the
existence of a unique Weyl almost anti-periodic mild solution to a neutral functional semilinear
differential equation has been confirmed by using the compressing mapping theorem and some
analytical techniques. The concept and the approach developed in this work may be used to study
Weyl almost anti-periodic solutions for other kinds of differential equations and may also be used to
discuss Weyl almost anti-periodic solutions for neural networks and population models.
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