Research article Special Issues

On a study of the representation of solutions of a $ \Psi $-Caputo fractional differential equations with a single delay


  • Received: 15 December 2021 Revised: 31 January 2022 Accepted: 16 February 2022 Published: 07 March 2022
  • We give a representation of solutions to linear nonhomogeneous $ \Psi $-fractional delayed differential equations with noncommutative matrices. We newly define $ \Psi $-delay perturbation of Mittag-Leffler type matrix function with two parameters and apply the method of variation of constants to obtain the representation of the solutions. We investigate the existence and uniqueness of solutions for a class of $ \Psi $-fractional delayed semilinear differential equations by using Banach Fixed Point Theorem. Further, we establish the Ulam-Hyers stability result for the analyzed problem. Finally, we provide some examples to illustrate the applicability of our results.

    Citation: Mustafa Aydin, Nazim I. Mahmudov, Hüseyin Aktuğlu, Erdem Baytunç, Mehmet S. Atamert. On a study of the representation of solutions of a $ \Psi $-Caputo fractional differential equations with a single delay[J]. Electronic Research Archive, 2022, 30(3): 1016-1034. doi: 10.3934/era.2022053

    Related Papers:

  • We give a representation of solutions to linear nonhomogeneous $ \Psi $-fractional delayed differential equations with noncommutative matrices. We newly define $ \Psi $-delay perturbation of Mittag-Leffler type matrix function with two parameters and apply the method of variation of constants to obtain the representation of the solutions. We investigate the existence and uniqueness of solutions for a class of $ \Psi $-fractional delayed semilinear differential equations by using Banach Fixed Point Theorem. Further, we establish the Ulam-Hyers stability result for the analyzed problem. Finally, we provide some examples to illustrate the applicability of our results.



    加载中


    [1] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science Limited, 2006.
    [2] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives Theory and Applications, Gordon and Breach, New York, 1993.
    [3] K. Diethelm, The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputoo Type, Springer-Verlag, Berlin, 2010.
    [4] M. Caputo, Linear model of dissipation whose Q is almost frequency independent II, Geophys. J. Int., 13 (1967), 529–539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x doi: 10.1111/j.1365-246X.1967.tb02303.x
    [5] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, 2000. https://doi.org/10.1142/3779
    [6] T. R. Prabhakar, A singular integral equation with a generalized MittagLeffler function in the kernel, Med. J. Aust., 1 (1971), 715. https://doi.org/10.5694/j.1326-5377.1971.tb87803.x doi: 10.5694/j.1326-5377.1971.tb87803.x
    [7] D. Baleanu, A. Fernandez, On fractional operators and their classifications, Mathematics, 7 (2019). https://doi.org/10.3390/math7090830
    [8] A. Fernandez, M. A. Özarslan, D. Baleanu, On fractional calculus with general analytic kernels, Appl. Math. Comput., 354 (2019), 248–265. https://doi.org/10.1016/j.amc.2019.02.045 doi: 10.1016/j.amc.2019.02.045
    [9] I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, 1999.
    [10] M. A. E. Herzallah, A. M. A. El-Sayed, D. Baleanu, On the fractional-order diffusion-wave process, Rom. J. Phys., 55 (2010), 274–284.
    [11] V. Tarasov, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, 2011.
    [12] A. Fernandez, D. Baleanu, A. S. Fokas, Solving PDEs of fractional order using the unified transform method, Appl. Math. Comput., 339 (2018), 738–749. https://doi.org/10.1016/j.amc.2018.07.061 doi: 10.1016/j.amc.2018.07.061
    [13] A. I. Zayed, A class of fractional integral transforms: A generalization of the fractional Fourier transform, IEEE T. Signal Proc., 50 (2002), 619–627. https://doi.org/10.1109/78.984750 doi: 10.1109/78.984750
    [14] F. H. Kerr, Namias fractional fourier-transforms on L2 and applications to differential equations, J. Math. Anal. Appl., 136 (1988), 404–418. https://doi.org/10.1016/0022-247X(88)90094-7 doi: 10.1016/0022-247X(88)90094-7
    [15] F. Jarad, T. Abdeljawad, Generalized fractional derivatives and Laplace transform, Discrete Cont. Dyn. Syst. S, 13 (2020), 709–772. https://doi.org/10.3934/dcdss.2020039 doi: 10.3934/dcdss.2020039
    [16] H. M. Ozaktas, Z. Zalevsky, M. A. Kutay, The Fractional Fourier Transform with Applications in Optics and Signal Processing, Wiley, 2001.
    [17] V. Namias, The fractional order Fourier transform and its application to quantum mechanics, IMA J. Appl. Math., 25 (1980), 241–265. https://doi.org/10.1093/imamat/25.3.241 doi: 10.1093/imamat/25.3.241
    [18] D. Y. Khusainov, G. V. Shuklin, Linear autonomous time-delay system with permutation matrices solving, Stud. Univ. Žilina, 17 (2003), 101–108.
    [19] M. Li, J. R. Wang, Exploring delayed Mittag-Leffler type matrix functions to study finite time stability of fractional delay differential equations, Appl. Math. Comput., 324 (2018), 254–265. https://doi.org/10.1016/j.amc.2017.11.063 doi: 10.1016/j.amc.2017.11.063
    [20] N. I. Mahmudov, Delayed perturbation of Mittag-Leffler functions and their applications to fractional linear delay differential equations, Math. Methods Appl. Sci., 42 (2019), 5489–5497. https://doi.org/10.1002/mma.5446 doi: 10.1002/mma.5446
    [21] N. I. Mahmudov, Multi-delayed perturbation of Mittag-Leffler type matrix functions, J. Math. Anal. Appl., 505 (2022), 125589. https://doi.org/10.1016/j.jmaa.2021.125589 doi: 10.1016/j.jmaa.2021.125589
    [22] R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul., 44 (2017), 460–481. https://doi.org/10.1016/j.cnsns.2016.09.006 doi: 10.1016/j.cnsns.2016.09.006
    [23] N. I. Mahmudov, M. Aydın, Representation of solutions of nonhomogeneous conformable fractional delay differential equations, Chaos Soliton. Fract., 150 (2021), 111190. https://doi.org/10.1016/j.chaos.2021.111190 doi: 10.1016/j.chaos.2021.111190
    [24] Q. Fan, G. C. Wu, H. Fu, A note on function space and boundedness of a general fractional integral in continuous time random walk, J. Nonlinear Math. Phys., (2021). https://doi.org/10.1007/s44198-021-00021-w
    [25] H. Fu, G. C. Wu, G. Yang, L. L. Huang, Continuous-time random walk to a general fractional Fokker-Planck equation on fractal media, Eur. Phys. J. Spec. Top., 230 (2021), 3927–3933. https://doi.org/10.1140/epjs/s11734-021-00323-6 doi: 10.1140/epjs/s11734-021-00323-6
    [26] H. M. Fahad, M. U. Rehman, A. Fernandez, On Laplace transforms with respect to functions and their applications to fractional differential equations, Math. Meth. Appl. Sci., (2021), 1–20.
    [27] W. Rudin, Functional Analysis, McGraw-Hill, New York, 1973.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1698) PDF downloads(195) Cited by(2)

Article outline

Figures and Tables

Figures(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog