Research article Special Issues

Global classical solutions for a class of reaction-diffusion system with density-suppressed motility

  • Received: 05 August 2021 Revised: 08 December 2021 Accepted: 11 December 2021 Published: 04 March 2022
  • This paper is concerned with a class of reaction-diffusion system with density-suppressed motility

    $ \begin{equation*} \begin{cases} u_{t} = \Delta(\gamma(v) u)+\alpha u F(w), & x \in \Omega, \quad t>0, \\ v_{t} = D \Delta v+u-v, & x \in \Omega, \quad t>0, \\ w_{t} = \Delta w-u F(w), & x \in \Omega, \quad t>0, \end{cases} \end{equation*} $

    under homogeneous Neumann boundary conditions in a smooth bounded domain $ \Omega\subset \mathbb{R}^n\; (n\leq 2) $, where $ \alpha > 0 $ and $ D > 0 $ are constants. The random motility function $ \gamma $ satisfies

    $ \begin{equation*} \gamma\in C^3((0, +\infty)), \ \gamma>0, \ \gamma'<0\, \ \text{on}\, \ (0, +\infty) \ \ \text{and}\ \ \lim\limits_{v\rightarrow +\infty}\gamma(v) = 0. \end{equation*} $

    The intake rate function $ F $ satisfies $ F\in C^1([0, +\infty)), \, F(0) = 0\, \ \text{and}\ \, F > 0\, \ \text{on}\, \ (0, +\infty) $. We show that the above system admits a unique global classical solution for all non-negative initial data $ u_0\in W^{1, \infty}(\Omega), \, v_0\in W^{1, \infty}(\Omega), \, w_0\in W^{1, \infty}(\Omega) $. Moreover, if there exist $ k > 0 $ and $ \overline{v} > 0 $ such that

    $ \begin{equation*} \inf\limits_{v>\overline{v}}v^k\gamma(v)>0, \end{equation*} $

    then the global solution is bounded uniformly in time.

    Citation: Wenbin Lyu, Zhi-An Wang. Global classical solutions for a class of reaction-diffusion system with density-suppressed motility[J]. Electronic Research Archive, 2022, 30(3): 995-1015. doi: 10.3934/era.2022052

    Related Papers:

  • This paper is concerned with a class of reaction-diffusion system with density-suppressed motility

    $ \begin{equation*} \begin{cases} u_{t} = \Delta(\gamma(v) u)+\alpha u F(w), & x \in \Omega, \quad t>0, \\ v_{t} = D \Delta v+u-v, & x \in \Omega, \quad t>0, \\ w_{t} = \Delta w-u F(w), & x \in \Omega, \quad t>0, \end{cases} \end{equation*} $

    under homogeneous Neumann boundary conditions in a smooth bounded domain $ \Omega\subset \mathbb{R}^n\; (n\leq 2) $, where $ \alpha > 0 $ and $ D > 0 $ are constants. The random motility function $ \gamma $ satisfies

    $ \begin{equation*} \gamma\in C^3((0, +\infty)), \ \gamma>0, \ \gamma'<0\, \ \text{on}\, \ (0, +\infty) \ \ \text{and}\ \ \lim\limits_{v\rightarrow +\infty}\gamma(v) = 0. \end{equation*} $

    The intake rate function $ F $ satisfies $ F\in C^1([0, +\infty)), \, F(0) = 0\, \ \text{and}\ \, F > 0\, \ \text{on}\, \ (0, +\infty) $. We show that the above system admits a unique global classical solution for all non-negative initial data $ u_0\in W^{1, \infty}(\Omega), \, v_0\in W^{1, \infty}(\Omega), \, w_0\in W^{1, \infty}(\Omega) $. Moreover, if there exist $ k > 0 $ and $ \overline{v} > 0 $ such that

    $ \begin{equation*} \inf\limits_{v>\overline{v}}v^k\gamma(v)>0, \end{equation*} $

    then the global solution is bounded uniformly in time.



    加载中


    [1] C. Liu, X. Fu, L. Liu, X. Ren, C. K. Chau, S. Li, et al., Sequential establishment of stripe patterns in an expanding cell population, Science, 334 (2011), 238–241. https://doi.org/10.1126/science.1209042 doi: 10.1126/science.1209042
    [2] X. F. Fu, L. H. Tang, C. L. Liu, J. D. Huang, T. Hwa, P. Lenz, Stripe formation in bacterial systems with density-suppressed motility, Phys. Rev. Lett., 108 (2012), 1981–1988. https://doi.org/10.1103/PhysRevLett.108.198102 doi: 10.1103/PhysRevLett.108.198102
    [3] H. Y. Jin, Z. A. Wang, Global dynamics and spatio-temporal patterns of predator-prey systems with density-dependent motion, Eur. J. Appl. Math., 32 (2021), 652–682. https://doi.org/10.1017/s0956792520000248 doi: 10.1017/s0956792520000248
    [4] P. Kareiva, G. T. Odell, Swarms of predators exhibit "preytaxis" if individual predators use area-restricted search, Am. Nat., 130 (1987), 233–270. https://doi.org/10.1086/284707 doi: 10.1086/284707
    [5] E. F. Keller, L. A. Segel, Models for chemtoaxis, J. Theor. Biol., 30 (1971), 225–234. https://doi.org/10.1016/0022-5193(71)90050-6
    [6] Z. A. Wang, On the parabolic-elliptic Keller-Segel system with signal-dependent motilities: a paradigm for global boundedness and steady states, Math. Methods Appl. Sci., 44 (2021), 10881–10898. https://doi.org/10.1002/mma.7455 doi: 10.1002/mma.7455
    [7] H. Y. Jin, Y. J. Kim, Z. A. Wang, Boundedness, stabilization, and pattern formation driven by density-suppressed motility, SIAM J. Appl. Math., 78 (2018), 1632–1657. https://doi.org/10.1137/17M1144647 doi: 10.1137/17M1144647
    [8] K. Fujie, J. Jiang, Global existence for a kinetic model of pattern formation with density-suppressed motilities, J. Differ. Equ., 269 (2020), 5338–5378. https://doi.org/10.1016/j.jde.2020.04.001 doi: 10.1016/j.jde.2020.04.001
    [9] H. Y. Jin, Z. A. Wang, The Keller-Segel system with logistic growth and signal-dependent motility, Discrete Contin. Dyn. Syst. Ser. B, 26 (2021), 3023–3041. https://doi.org/10.3934/dcdsb.2020218 doi: 10.3934/dcdsb.2020218
    [10] Z. R. Liu, J. Xu, Large time behavior of solutions for density-suppressed motility system in higher dimensions, J. Math. Anal. Appl., 475 (2019), 1596–1613. https://doi.org/10.1016/j.jmaa.2019.03.033 doi: 10.1016/j.jmaa.2019.03.033
    [11] J. P. Wang, M. X. Wang, Boundedness in the higher-dimensional Keller-Segel model with signal-dependent motility and logistic growth, J. Math. Phys., 60 (2019), 011507. https://doi.org/10.1063/1.5061738 doi: 10.1063/1.5061738
    [12] M. J. Ma, R. Peng, Z. A. Wang, Stationary and non-stationary patterns of the density-suppressed motility model, Phys. D, 402 (2020), 132259. https://doi.org/10.1016/j.physd.2019.132259 doi: 10.1016/j.physd.2019.132259
    [13] Z.A. Wang, X. Xu, Steady states and pattern formation of the density-suppressed motility model, IMA. J. Appl. Math., 86 (2021), 577–603. https://doi.org/10.1093/imamat/hxab006 doi: 10.1093/imamat/hxab006
    [14] W. B. Lv, Global existence for a class of chemotaxis-consumption systems with signal-dependent motility and generalized logistic source, Nonlinear Anal. Real World Appl., 56 (2020), 103160. https://doi.org/10.1016/j.nonrwa.2020.103160 doi: 10.1016/j.nonrwa.2020.103160
    [15] W. B. Lv, Q. Wang, A chemotaxis system with signal-dependent motility, indirect signal production and generalized logistic source: Global existence and asymptotic stabilization, J. Math. Anal. Appl., 488 (2020), 124108. https://doi.org/10.1016/j.jmaa.2020.124108 doi: 10.1016/j.jmaa.2020.124108
    [16] W. B. Lv, Q. Y. Wang, Global existence for a class of chemotaxis systems with signal-dependent motility, indirect signal production and generalized logistic source, Z. Angew. Math. Phys., 71 (2020), 53. https://doi.org/10.1007/s00033-020-1276-y doi: 10.1007/s00033-020-1276-y
    [17] W. B. Lv, Q. Y. Wang, An $n$-dimensional chemotaxis system with signal-dependent motility and generalized logistic source: global existence and asymptotic stabilization, Proc. Roy. Soc. Edinburgh Sect. A, 151 (2021), 821–841. https://doi.org/10.1017/prm.2020.38 doi: 10.1017/prm.2020.38
    [18] J. Ahn, C. W. Yoon, Global well-posedness and stability of constant equilibria in parabolic-elliptic chemotaxis systems without gradient sensing, Nonlinearity, 32 (2019), 1327–1351. https://doi.org/10.1088/1361-6544/aaf513 doi: 10.1088/1361-6544/aaf513
    [19] L. Desvillettes, Y. J. Kim, A. Trescases, C. W. Yoon, A logarithmic chemotaxis model featuring global existence and aggregation, Nonlinear Anal. Real World Appl., 50 (2019), 562–582. https://doi.org/10.1016/j.nonrwa.2019.05.010 doi: 10.1016/j.nonrwa.2019.05.010
    [20] C. Yoon, Y. J. Kim, Global existence and aggregation in a Keller-Segel model with Fokker-Planck diffusion, Acta Appl. Math., 149 (2017), 101–123. https://doi.org/10.1007/s10440-016-0089-7 doi: 10.1007/s10440-016-0089-7
    [21] H. Y. Jin, Z. A. Wang, Critical mass on the Keller-Segel system with signal-dependent motility, Proc. Amer. Math. Soc., 148 (2020), 4855–4873. https://doi.org/10.1090/proc/15124 doi: 10.1090/proc/15124
    [22] K. Fujie, J. Jiang, Comparison methods for a Keller–Segel-type model of pattern formations with density-suppressed motilities, Calc. Var. Partial Differ. Equ., 60 (2021), 92. https://doi.org/10.1007/s00526-021-01943-5 doi: 10.1007/s00526-021-01943-5
    [23] M. Burger, P. Lanrençot, A. Trescases, Delayed blow-up for chemotaxis models with local sensing, J. Lond. Math. Soc., 103 (2021), 1596–1617. https://doi.org/10.1112/jlms.12420 doi: 10.1112/jlms.12420
    [24] J. Smith-Roberge, D. Iron, T. Kolokolnikov, Pattern formation in bacterial colonies with density-dependent diffusion, Eur. J. Appl. Math., 30 (2019), 196–218. https://doi.org/10.1017/S0956792518000013 doi: 10.1017/S0956792518000013
    [25] R. Lui, H. Ninomiya, Traveling wave solutions for a bacteria system with density-suppressed motility, Discrete. Cont. Dyn. Syst.-B, 24 (2018), 931–940. https://doi.org/10.3934/dcdsb.2018213 doi: 10.3934/dcdsb.2018213
    [26] J. Li, Z. A. Wang, Traveling wave solutions to the density-suppressed motility model, J. Differ. Equ., 301 (2021), 1–36. https://doi.org/10.1016/j.jde.2021.07.038 doi: 10.1016/j.jde.2021.07.038
    [27] H. Y. Jin, S. J. Shi, Z. A. Wang, Boundedness and asymptotics of a reaction-diffusion system with density-dependent motility, J. Differ. Equ., 269 (2020), 6758–6793. https://doi.org/10.1016/j.jde.2020.05.018 doi: 10.1016/j.jde.2020.05.018
    [28] K. Fujie, Boundedness in a fully parabolic chemotaxis system with singular sensitivity, J. Math. Anal. Appl., 424 (2015), 675–684. https://doi.org/10.1016/j.jmaa.2014.11.045 doi: 10.1016/j.jmaa.2014.11.045
    [29] H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, Teubner, Stuttgart, 1993. https://doi.org/10.1007/978-3-663-11336-2_1
    [30] C. Stinner, C. Surulescu, M. Winkler, Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion, SIAM J. Math. Anal., 46 (2014), 1969–2007. https://doi.org/10.1137/13094058X doi: 10.1137/13094058X
    [31] R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Springer-Verlag, New York, 1988. https://doi.org/10.1007/978-1-4612-0645-3
    [32] R. Kowalczyk, Z. Szymańska, On the global existence of solutions to an aggregation model, J. Math. Anal. Appl., 343 (2008), 379–398. https://doi.org/10.1016/j.jmaa.2008.01.005 doi: 10.1016/j.jmaa.2008.01.005
    [33] H. Brézis, W. A. Strauss, Semi-linear second-order elliptic equations in $L^{1}$, J. Math. Soc. Japan, 25 (1973), 565–590. https://doi.org/10.2969/jmsj/02540565 doi: 10.2969/jmsj/02540565
    [34] Y. Lou, M. Winkler, Global existence and uniform boundedness of smooth solutions to a cross-diffusion system with equal diffusion rates, Comm. Partial Differ. Equ., 40 (2015), 1905–1941. https://doi.org/10.1080/03605302.2015.1052882 doi: 10.1080/03605302.2015.1052882
    [35] Y. S. Tao, M. Winkler, Effects of signal-dependent motilities in a Keller-Segel-type reaction-diffusion system, Math. Models Methods Appl. Sci., 27 (2017), 1645–1683. https://doi.org/10.1142/S0218202517500282 doi: 10.1142/S0218202517500282
    [36] M. Schechter, Self-adjoint realizations in another Hilbert space, Amer. J. Math., 106 (1984), 43–65. https://doi.org/10.2307/2374429 doi: 10.2307/2374429
    [37] N. D. Alikakos, $L^{p}$ bounds of solutions of reaction-diffusion equations, Comm. Partial Differ. Equ., 4 (1979), 827–868. https://doi.org/10.1080/03605307908820113 doi: 10.1080/03605307908820113
    [38] Y. S. Tao, Z. A. Wang, Competing effects of attraction vs. repulsion in chemotaxis, Math. Models Methods Appl. Sci., 23 (2013), 1–36. https://doi.org/10.1142/S0218202512500443 doi: 10.1142/S0218202512500443
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1813) PDF downloads(219) Cited by(6)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog