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Abstract: This paper is concerned with a class of reaction-diffusion system with density-suppressed
motility 

ut = ∆(γ(v)u) + αuF(w), x ∈ Ω, t > 0,
vt = D∆v + u − v, x ∈ Ω, t > 0,
wt = ∆w − uF(w), x ∈ Ω, t > 0,

under homogeneous Neumann boundary conditions in a smooth bounded domain Ω ⊂ Rn (n ≤ 2),
where α > 0 and D > 0 are constants. The random motility function γ satisfies

γ ∈ C3((0,+∞)), γ > 0, γ′ < 0 on (0,+∞) and lim
v→+∞

γ(v) = 0.

The intake rate function F satisfies F ∈ C1([0,+∞)), F(0) = 0 and F > 0 on (0,+∞). We show
that the above system admits a unique global classical solution for all non-negative initial data u0 ∈

W1,∞(Ω), v0 ∈ W1,∞(Ω), w0 ∈ W1,∞(Ω). Moreover, if there exist k > 0 and v > 0 such that

inf
v>v

vkγ(v) > 0,

then the global solution is bounded uniformly in time.
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1. Introduction and main results

To explain the strip pattern formation observed in the experiment of [1] induced by the
“self-trapping mechanism”, the following three-component reaction-diffusion system with density-
dependent motility was proposed in [1]

ut = ∆(γ(v)u) + αw2u
w2+λ
, x ∈ Ω, t > 0,

vt = D∆v + u − v, x ∈ Ω, t > 0,
wt = ∆w − w2u

w2+λ
, x ∈ Ω, t > 0,

(1.1)

where u(x, t), v(x, t),w(x, t) denote the bacterial cell density, concentration of acyl-homoserine lactone
(AHL) and nutrient density, respectively; α, λ,D > 0 are constants and Ω is a bounded smooth domain
in Rn. The first equation of (1.1) describes the random motion of bacterial cells with AHL-density
dependent motility coefficient γ(v), and cell growth due to the nutrient intake. The second equation
of (1.1) describes the diffusion, production and turnover of AHL, while the third equation gives the
dynamics of the nutrient with diffusion and consumption. Simultaneously a simplified two-component
system was discussed in the supplemental material of [1] and formally analyzed in [2]:ut = ∆(γ(v)u) + µu(1 − u), x ∈ Ω, t > 0,

vt = D∆v + u − v, x ∈ Ω, t > 0,
(1.2)

where the decay of bacterial cells at high density was used to approximate the nutrient depletion effect.
A striking feature of systems (1.1) and (1.2) is that the cell diffusion rate depends on a motility function
γ(v) satisfying γ′(v) < 0, which takes into account the repressive effect of AHL concentration on the
cell motility (cf. [1]). The density-suppressed motility mechanism has also been used to model other
biological processes, such as preytaxis [3, 4] and chemotaxis [5, 6]. From the expansion

∆(γ(v)u) = ∇ · (γ(v)∇u + uγ′(v)∇v) = γ(v)∆u + 2γ′(v)∇v · ∇u + uγ′′(v)|∇v|2 + uγ′(v)∆v,

we see that the nonlinear diffusion rate function γ(v) not only contributes a cross-diffusion structure but
also renders a possible diffusion degeneracy (i.e., γ(v)→ 0 as v→ +∞). Therefore many conventional
methods are inapplicable and the analysis of (1.1) or (1.2) is very delicate. The progresses were not
made to the system (1.2) until recently with homogeneous Neumann boundary conditions in a smooth
bounded domain Ω ⊂ Rn. The existing results on (1.2) can be classified into two cases: µ > 0 and
µ = 0, to be recalled below.

When µ > 0, the global existence and asymptotic behavior of solutions was first established in [7]
under certain conditions on γ(v) in two dimensions, followed by a series of works [8–11]. For small µ >
0, the existence/nonexistence of nonconstant steady states of (1.2) was rigorously established in [12,
13] in appropriate parameter regimes. Some other works with generalized logistic source or indirect
production of chemical signals can be found in [14–17]. When µ = 0, the global well-posedness of
solutions is more delicate. If γ(v) decays algebraically in v, the solution may exist globally in two
or higher dimensions [18–20]. While if γ(v) decays exponentially, the solution may blow-up in two
dimensions with a critical mass [8,21,22]. The global weak solution with large initial data was studied
in [19, 23]. Except the studies on the bounded domain with zero Neumman boundary conditions,
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there are some results obtained in the whole space R: when γ(v) is a piecewise constant function, the
dynamics of discontinuity interface was studied in [24] and discontinuous traveling wave solutions of
(1.2) with µ > 0 were constructed in [25]; the existence of smooth traveling wave solutions of (1.2)
with µ > 0 and a particular motility function γ(v) = 1/(1 + v)m(m > 0) was recently shown in [26].

Compared to the abundant results recently obtained for the system (1.2) as recalled above, the
progress made to the three-component system (1.1) is very limited. The purpose of this paper is to
explore the global well-posedness of the following system

ut = ∆(γ(v)u) + αuF(w), x ∈ Ω, t > 0,
vt = D∆v + u − v, x ∈ Ω, t > 0,
wt = ∆w − uF(w), x ∈ Ω, t > 0,
∂u
∂ν
= ∂v
∂ν
= ∂w
∂ν
= 0, x ∈ ∂Ω, t > 0,

(u, v,w)(x, 0) = (u0, v0,w0) (x), x ∈ Ω,

(1.3)

with constants α > 0 and D > 0, where the system (1.1) is a special case of (1.3) with F(w) = w2

w2+λ
.

By postulating that

γ(v) ∈ C3([0,+∞)) and 0 < γ1 ≤ γ(v) ≤ γ2, |γ
′(v)| < η on [0,+∞) (1.4)

where γ1, γ2 are positive constants, and

F ∈ C1([0,+∞)), F(0) = 0 and F(w) > 0, F′(w) > 0 on (0,+∞),

a recent work [27] showed that the problem (1.3) admits a global classical solution (u, v,w) which
asymptotically converges to (u∗, u∗, 0) in L∞ with u∗ = 1

|Ω|
(∥u0∥L1 + α∥w0∥L1) if D > 0 is suitably large.

The main approaches employed in [27] to establish the global classical solutions with uniform-in-
time bounds are based on the method of energy estimates and Moser iteration by fully capturing the
diffusive dissipation of u with the assumption that γ(v) has a positive lower bound. The assumption
(1.4) bypasses the possible diffusion degeneracy/singularity and rules out a large class of functions
such as γ(v) = c0

vk (c0, k > 0) and γ(v) = e−χv(χ > 0) widely studied in the existing works as recalled
above. The goal of this paper is to remove this essential restriction imposed in (1.4) and establish the
global well-posedness of solutions to (1.3). Roughly speaking, under the following relaxed structural
assumptions on γ(v) and F(v):

γ(v) ∈ C3((0,+∞)), γ(v) > 0, γ′(v) < 0 on (0,+∞), and lim
v→+∞

γ(v) = 0, (1.5)

and
F ∈ C1([0,+∞)), F(0) = 0 and F > 0 on (0,+∞), (1.6)

then for any initial data (u0, v0,w0) satisfying

u0 ∈ W1,∞(Ω), v0 ∈ W1,∞(Ω), w0 ∈ W1,∞(Ω),
u0 ≥ 0, v0 > 0, w0 ≥ 0 and u0 . 0,

(1.7)

we show the problem (1.3) admits a unique global classical solution in two dimensions. Moreover if
there exist k > 0 and v̄ > 0 such that

inf
v>v̄

vkγ(v) > 0 (1.8)
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the solution is uniformly bounded in time.
Our main results are precisely stated as follows.

Theorem 1.1. Let Ω ⊂ Rn(n ≤ 2) be a bounded domain with smooth boundary. Assume that the
conditions (1.5) and (1.6) hold. Then for any initial data (u0, v0,w0) satisfying the condition (1.7),
there exists a triple (u, v,w) of non-negative functions

(u, v,w) ∈
[
C0(Ω × [0,+∞)) ∩C2,1(Ω × (0,+∞))

]3

which solves (1.3) in the classical sense. Moreover, if the motility function γ satisfies the condition
(1.8), then the global solution is uniformly bounded in time, that is there exists a constant C > 0 such
that

∥u(·, t)∥L∞ + ∥v(·, t)∥W1,∞ + ∥w(·, t)∥W1,∞ ≤ C for all t > 0.

The key of proving Theorem 1.1 is to derive that v has a positive lower bound to rule out the diffusion
singularity and has an upper bound to exclude the diffusion degeneracy (see section 3.3.) The positive
lower bound of v can be obtained easily by showing that

∫
Ω

udx has a positive lower bound along with
a nice result of [28]. The crucial step is to show that v has an upper bound. Inspired by an idea from the
work [8], we construct an auxiliary problem and use the maximum principle for the inverse operator
(I − D∆)−1 to derive an upper bound of v through the constructed auxiliary problem.

The rest of this paper is organized as follows. Section 2 is devoted to the local existence of solutions
and extensibility of (1.3). With some important inequalities which will be used frequently, we derive
a priori estimates of solutions for the system (1.3) in section 3. Finally, we prove Theorem 1.1 in
section 4.

2. Preliminaries

In this section, we present some basic results and facts, including local existence and extensibility
criterion of classical solutions as well as some frequently used well-known inequalities.

The existence of local solutions and extensibility criterion for the system (1.3) can be obtained by
Amann’s theorem (cf. [29]) or fixed point theorem (cf. [7]). Below, we only state the local existence
result without proof.

Lemma 2.1 (Local existence). Let Ω ⊂ Rn be a bounded domain with smooth boundary. If the initial
data satisfy the condition (1.7), then there exist a constant Tmax ∈ (0,∞] and a triple (u, v,w) of non-
negative functions

(u, v,w) ∈
[
C0(Ω × [0,Tmax)) ∩C2,1(Ω × (0,Tmax))

]3
,

which solves (1.3) in the classical sense in Ω × (0,Tmax). Moreover, if Tmax < +∞, then

lim sup
t↗Tmax

(∥u(·, t)∥L∞ + ∥v(·, t)∥W1,∞ + ∥w(·, t)∥W1,∞) = ∞.

Next, we recall some well-known results which will be used later frequently. The first one is an
ODE inequality [30].
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Lemma 2.2. Let Tmax > 0, τ ∈ (0,Tmax), a > 0 and b > 0. Suppose that y : [0,Tmax) → [0,∞) is
absolutely continuous and satisfies

y′(t) + ay(t) ≤ h(t) for all t ∈ (0,Tmax)

with some nonnegative function h ∈ L1
loc([0,Tmax)) fulfilling∫ t+τ

t
h(s)ds ≤ b for all t ∈ [0,Tmax − τ).

Then it follows that

y(t) ≤ max
{

y(0) + b,
b
aτ
+ 2b

}
for all t ∈ [0,Tmax).

Below is an uniform Grönwall inequality [31] which can help us derive the uniform-in-time esti-
mates of solutions.

Lemma 2.3. Let Tmax > 0, τ ∈ (0,Tmax). Suppose that a, b, y are three positive locally integrable
functions on (0,Tmax) such that y′ is locally integrable on (0,Tmax) and the following inequalities are
satisfied:

y′(t) ≤ a(t)y(t) + b(t) for all t ∈ (0,Tmax)

as well as ∫ t+τ

t
a ≤ a1,

∫ t+τ

t
b ≤ a2,

∫ t+τ

t
y ≤ a3 for all t ∈ [0,Tmax − τ),

where ai(i = 1, 2, 3) are positive constants. Then

y(t) ≤
(a3

τ
+ a2

)
ea1 for all t ∈ [τ,Tmax).

The third one is about the regularity of solutions to the linear parabolic equation and the proof can
be found in [32].

Lemma 2.4. Assume that Ω ⊂ Rn is a bounded domain with smooth boundary. Suppose that y(x, t) ∈
C2,1(Ω̄ × (0,Tmax)) is the solution of

yt = ∆y − y + ϕ(x, t), x ∈ Ω, t ∈ (0,Tmax),
∂y
∂ν
= 0, x ∈ ∂Ω, t ∈ (0,Tmax),

y(x, t) = y0(x) ∈ C0(Ω̄),

where ϕ(x, t) ∈ L∞((0,Tmax); Lp(Ω)). Then there exists a constant C > 0 such that

∥y(·, t)∥W1,q ≤ C for all t ∈ (0,Tmax)

with

q ∈

[1, np
n−p ), if p ≤ n,

[1,∞], if p > n.
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3. A priori estimates

This section is devoted to deriving a priori estimates of solutions for the system (1.3), so that the
global existence of solutions can be obtained by the extensibility criterion. We will proceed in several
steps. In the following, we shall use Ci(i = 1, 2, · · · ) to denote a generic positive constant which may
vary in the context.

3.1. The boundedness of u in L1(Ω)

A basic property of solutions is the uniform-in-time L1 boundedness of u due to the special structure
of the system (1.3).

Lemma 3.1. Let (u, v,w) be a solution of (1.3). Then there exist constants c,C > 0 such that

c ≤
∫
Ω

u ≤ C for all t ∈ (0,Tmax). (3.1)

Proof. Integrating the first equation of (1.3) over Ω with the boundary conditions, we have d
dt

∫
Ω

u ≥ 0
which implies ∫

Ω

u ≥
∫
Ω

u0.

We multiply the third equation of (1.3) by α and add the resulting equation to the first equation of (1.3).
Then integrating the result over Ω by parts along with the boundary conditions, we get

d
dt

(∫
Ω

u + α
∫
Ω

w
)
= 0

which yields ∫
Ω

u + α
∫
Ω

w =
∫
Ω

u0 + α

∫
Ω

w0.

Then, the non-negativity of u and w yields (3.1). □

3.2. The upper bound of w

The following lemma concerns the upper bound of w which is an immediate consequence of the
maximum principle (see [27]).

Lemma 3.2. Let (u, v,w) be a solution of (1.3). We can find a constant C = ∥w0∥L∞ > 0 such that

w ≤ C for any (x, t) ∈ Ω × (0,Tmax).

3.3. The lower and upper bounds of v

The following lemma is vital for us to rule out the possible singularity of γ(v) near v = 0. The mass
inequality (3.1) plays a key role in the proof of this lemma. The proof can be found in [28].

Lemma 3.3. Let (u, v,w) be a solution of (1.3). Then there exists a constant C > 0 fulfilling

v ≥ C for any (x, t) ∈ Ω × (0,Tmax).
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Motivated from the paper [8, 22], next, we derive the upper bound of v, which is a key to preclude
the degeneracy of diffusion.

Let us introduce an auxiliary function g which satisfies the following equation
−D∆g + g = u, x ∈ Ω, t ∈ [0,Tmax),
∂g
∂ν
= 0, x ∈ ∂Ω, t ∈ [0,Tmax),

g(x, 0) = g0(x) ≥ 0, x ∈ Ω,

(3.2)

where u is the solution of (1.3) obtained in Lemma 2.1. Then, g is non-negative since u ≥ 0 and has
the following basic properties. The first property states that the Lq norm of g can be controlled by the
L1 norm of u (cf. [33]).

Lemma 3.4. Let u ∈ C(Ω) be a non-negative function such that
∫
Ω

u > 0. If g ∈ C2(Ω) is a solution of
the system (3.2), then for any q satisfying 1 ≤ q < n

(n−2)+
there exists a constant C > 0 such that

∥g∥Lq ≤ C∥u∥L1 .

The second property tells us that g satisfies a simple inequality.

Lemma 3.5. Let (u, v,w) be a solution of (1.3) and g satisfies (3.2). Then for all (x, t) ∈ Ω × (0,Tmax),
we have

gt +
1
D
γ(v)u =

1
D

(I − D∆)−1[γ(v)u] + α(I − D∆)−1[uF(w)]. (3.3)

Moreover, there exists a constant C > 0 such that

gt ≤ Cg for any (x, t) ∈ Ω × (0,Tmax). (3.4)

Proof. The first equation of (1.3) can be rewritten as

ut = −
1
D

(I − D∆)[γ(v)u] + αuF(w) +
1
D
γ(v)u.

Taking the operator (I − D∆)−1 on both side of the above equation and noticing the definition of g, we
can get (3.3) directly.

Now we prove (3.4). According to the non-increasing property of γ and Lemma 3.3, there exists a
constant C1 > 0 such that

γ(v) ≤ C1.

Noticing Lemma 2.1, Lemma 3.2 and the smoothing property of F, we get a constant C2 > 0 such that

F(w) ≤ C2.

Owing to the nonnegativity of u, it holds that

γ(v)u ≥ 0.

Recall (3.2). Then by the comparison principle for elliptic equations, we have

1
D

(I − D∆)−1[γ(v)u] + α(I − D∆)−1[uF(w)] ≤
(C1

D
+ αC2

)
g,
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which, combined with (3.3), implies that

gt ≤

(C1

D
+ αC2

)
g.

This finishes the proof. □

With the help of Lemma 3.5 and the standard comparison principle for parabolic equations, we shall
derive the upper bound of v.

Lemma 3.6. Let (u, v,w) be a solution of (1.3) and g satisfies (3.2). Then there is a constant C > 0
such that

v ≤ C(g + 1) for any (x, t) ∈ Ω × (0,Tmax).

Moreover, if Tmax < +∞, there exists C0 > 0 such that

v ≤ C0 for any (x, t) ∈ Ω × (0,Tmax).

Proof. With the hypothesis (1.5), we can choose a constant C1 ≥ 0 large enough such that

0 < γ(C1) < D.

Let
Γ(s) :=

1
D

∫ s

C1

γ(x)dx for all s ≥ 0,

which gives

γ(v)u =γ(v)(vt − D∆v + v)
=DΓt(v) − D2∆Γ(v) + Dγ′(v)|∇v|2 + γ(v)v.

This, combined with Lemma 3.5, implies

vt − D∆v + v = − D∆g + g

=gt − D∆g + g +
1
D
γ(v)u

−
1
D

(I − D∆)−1[γ(v)u] − α(I − D∆)−1[uF(w)]

=(g + Γ(v))t − D∆(g + Γ(v)) + (g + Γ(v)) + γ′(v)|∇v|2 +
1
D
γ(v)v − Γ(v)

−
1
D

(I − D∆)−1[γ(v)u] − α(I − D∆)−1[uF(w)].

(3.5)

Now, we estimate the terms on the right hand side of (3.5). In view of the monotone decreasing
property of γ, Lemma 3.3 and the definition of Γ, we see that there exists a constant C2 > 0 such that

1
D
γ(v)v − Γ(v) =

1
D
γ(v)v +

1
D

∫ C1

v
γ(x)dx

≤
1
D

[
γ(v)v + γ(v)(C1 − v)

]
Electronic Research Archive Volume 30, Issue 3, 995–1015.
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=
C1

D
γ(v) ≤

C2

D
for 0 ≤ v ≤ C1

or otherwise

1
D
γ(v)v − Γ(v) =

1
D
γ(v)v −

1
D

∫ v

C1

γ(x)dx

≤
1
D

[
γ(v)v − γ(v)(v −C1)

]
=

C1

D
γ(v) ≤

C2

D
for v ≥ C1.

Due to the non-negativity of −γ′(v), γ(v)u as well as uF(w) and the comparison principle for elliptic
equations, we get from (3.5)

vt − D∆v + v ≤ (g + Γ(v))t − D∆(g + Γ(v)) + (g + Γ(v)) +
C2

D
.

Noticing for the initial data, we can choose a constant C3 > 0 large enough such that C2
D ≤ C3 and

v0 ≤ g0 + Γ(v0) +C3.

Hence, the comparison principle for parabolic equations gives that

v ≤ g + Γ(v) +C3,

which along with the fact

Γ(v) ≤
γ(C1)

D
v,

implies

v ≤
1

1 − γ(C1)
D

(g +C3).

With the aid of Lemma 3.5, if Tmax < +∞, then there exists a constant C4 > 0 such that

v ≤ C4.

Hence we complete the proof of this lemma. □

Note the upper bound derived in Lemma 3.6 may depend on Tmax, see (3.4). The following lemma
asserts the upper bound of v which is independent of Tmax under additional condition (1.8).

Lemma 3.7. Let (u, v,w) be a solution of (1.3). If the motility function γ satisfies the condition (1.8),
then there exists a constant C > 0 independent of Tmax such that

v ≤ C for any (x, t) ∈ Ω × (0,Tmax).
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Proof. We can rewrite the first equation of (1.3) as

((I − D∆)g)t +
1
D

(I − D∆)(γ(v)u) =
1
D
γ(v)u + αuF(w).

Multiplying the above equation by g = (I − D∆)−1u and integrating the result over Ω, we have

1
2

d
dt

(∫
Ω

g2 + D
∫
Ω

|∇g|2
)
+

1
D

∫
Ω

γ(v)u2 =
1
D

∫
Ω

γ(v)ug + α
∫
Ω

uF(w)g. (3.6)

In view of the assumption (1.5) and Lemma 3.3, we get C1 > 0 fulfilling

γ(v) ≤ C1. (3.7)

Noticing Lemma 2.1, Lemma 3.2 and the smoothing property of F, we get a constant C2 > 0 such that

F(w) ≤ C2. (3.8)

Substituting (3.7) and (3.8) into (3.6), we obtain from Lemma 3.1 that

1
2

d
dt

(∫
Ω

g2 + D
∫
Ω

|∇g|2
)
+

1
D

∫
Ω

γ(v)u2 ≤

(C1

D
+ αC2

)
C3∥g∥L∞ , (3.9)

holds for some constant C3 > 0. Moreover, it follows from (3.2) that

D
∫
Ω

|∇g|2 +
∫
Ω

g2 =

∫
Ω

ug ≤ C3∥g∥L∞

which, added to (3.9) yields

d
dt

(∫
Ω

g2 + D
∫
Ω

|∇g|2
)
+

(∫
Ω

g2 + D
∫
Ω

|∇g|2
)
+

2
D

∫
Ω

γ(v)u2

≤2
(C1

D
+ αC2 + 1

)
C3∥g∥L∞ .

(3.10)

Now we estimate the right hand side of the above inequality. For any max{n2 , 1} < p < 2, thanks to
the Sobolev embedding theorem, the standard elliptic estimate and Hölder’s inequality, we can find
constants C4,C5,C6 > 0 such that

∥g∥L∞ ≤C4∥g∥W2,p ≤ C5∥u∥Lp

≤
1

2D
1(

C1
D + αC2 + 1

)
C3

∫
Ω

γ(v)u2 +C6

(∫
Ω

γ−
p

2−p (v)
) 2−p

p

.

In view of the assumption (1.8), there exist k > 0, v > 0 and C7 > 0 such that

vkγ(v) ≥ C7 for all v > v

i.e.,
γ−1(v) ≤ C−1

7 vk for all v > v.

Electronic Research Archive Volume 30, Issue 3, 995–1015.



1005

Noticing the non-increasing property of γ, we get

γ−1(v) ≤ γ−1(v) for all 0 ≤ v ≤ v.

Therefore, it holds that
γ−1(v) ≤ γ−1(v) +C−1

7 vk for all v ≥ 0.

Hence, using Lemma 3.6 and Lemma 3.4, there exist constants C8,C9,C10 > 0 such that∫
Ω

γ−
p

2−p (v) ≤
∫
Ω

(
γ−1(v) +C−1

7 vk
) p

2−p

≤

∫
Ω

(
γ−1(v) +C−1

7 (C8(g + 1))k
) p

2−p

≤C9

∫
Ω

g
pk

2−p dx +C9

≤C10

(3.11)

which implies that

∥g∥L∞ ≤
1

2D
1(

C1
D + αC2 + 1

)
C3

∫
Ω

γ(v)u2 +C6C
2−p

p

10 . (3.12)

Combining (3.10), (3.11) with (3.12), we get

d
dt

(∫
Ω

g2 + D
∫
Ω

|∇g|2
)
+

(∫
Ω

g2 + D
∫
Ω

|∇g|2
)
+

1
D

∫
Ω

γ(v)u2

≤2
(C1

D
+ αC2 + 1

)
C3C6C

2−p
p

10

which along with Grönwall’s inequality yields a constant C11 > 0 such that∫
Ω

g2 + D
∫
Ω

|∇g|2 ≤ C11

and ∫ t+τ

t

∫
Ω

γ(v)u2 ≤ C11 for all t ∈ (0,Tmax − τ) (3.13)

with τ = min{1, 1
2Tmax}. Due to (3.12) and (3.13), the following inequality∫ t+τ

t

∫
Ω

g ≤ |Ω|
∫ t+τ

t
∥g∥L∞ ≤ C12 for all t ∈ (0,Tmax − τ), (3.14)

holds for some constant C12 > 0. According to Lemma 3.5, we can find a constant C13 > 0 such that

gt ≤ C13g for all t ∈ (0,Tmax).

Using Lemma 2.3 with (3.14) and the definition of τ, we get a constant C14 > 0 so that

g ≤ C14 =
C12

|Ω|τ
eC13 for any (x, t) ∈ Ω × (τ,Tmax)

which, along with Lemma 3.5 applied to any (x, t) ∈ Ω × [0, τ], asserts that

g ≤ C15 for any (x, t) ∈ Ω × [0,Tmax)

holds for some constant C15 > 0. This completes the proof by using Lemma 3.6. □
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3.4. L∞-estimates of u

Once we get the positive lower and upper bounds of v, then the diffusion motility function γ(v) is
neither degenerate nor singular and the estimate of L∞-norm of u essentially can be derived by the
procedures as shown in [27]. For completeness, we briefly demonstrate the mains steps below.

3.4.1. The space-time L2-bound of u

In this subsection, we aim to derive the bound of u in space-time L2-norm by the classical duality-
based arguments (cf. [27, 34, 35]). For convenience, we introduce some notations here. Let A0 denote
the self-adjoint realization of −∆ defined in the Hilbert space

L2
⊥(Ω) =

{
ϕ ∈ L2(Ω)

∣∣∣∣ ∫
Ω

ϕ = 0
}
,

with its domain

D(A0) =
{
ϕ ∈ W2,2(Ω) ∩ L2

⊥(Ω)
∣∣∣∣ ∂ϕ
∂ν
= 0 on ∂Ω

}
.

Then A0 is self-adjoint and possesses bound self-adjoint fractional powers A−β0 for any β > 0 (cf. [36]).
Now the classical duality-based arguments lead to the boundedness of u in space-time L2.

Lemma 3.8. Let (u, v,w) be a solution of (1.3). Then there exists a constant C > 0 such that∫ t+τ

t

∫
Ω

u2 ≤ C for all t ∈ [0,Tmax − τ)

with τ = min{1, 1
2Tmax}.

Proof. According to Lemma 3.3, Lemma 3.6 and (1.5), we can find constants C1,C2 > 0 such that

C1 ≤ γ(v) ≤ C2.

Multiplying the third equation of (1.3) by α and adding the resulting equation to the first equation of
(1.3), we get

(u + αw)t = ∆(γ(v)u + αw)

which can be rewritten as

(u + αw − u − αw)t = −A0(γ(v)u + αw − γ(v)u − αw), (3.15)

where f = 1
|Ω|

∫
Ω

f . In view of (3.15) and the fact
∫
Ω

(u + αw − u − αw) = 0, integrating by parts, we
obtain

1
2

d
dt

∫
Ω

|A−
1
2

0 (u + αw − u − αw)|2

=

∫
Ω

A−
1
2

0 (u + αw − u − αw) · A−
1
2

0 (u + αw − u − αw)t

=

∫
Ω

A−1
0 (u + αw − u − αw) · (u + αw − u − αw)t
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= −

∫
Ω

A−1
0 (u + αw − u − αw) · A0(γ(v)u + αw − γ(v)u − αw)

= −

∫
Ω

(u + αw − u − αw) · (γ(v)u + αw − γ(v)u − αw)

= −

∫
Ω

γ(v)(u − u)2 − u
∫
Ω

γ(v)(u − u) − α
∫
Ω

(1 + γ(v))(u − u)(w − w)

− αu
∫
Ω

γ(v)(w − w) − α2
∫
Ω

(w − w)2

≤ −C1

∫
Ω

(u − u)2 +C2|Ω|u
2
+ 2α(1 +C2)|Ω|u · w +C2|Ω|αu · w − α2

∫
Ω

(w − w)2

which yields a constant C3 > 0 such that

d
dt

∫
Ω

|A−
1
2

0 (u + αw − u − αw)|2 + 2C1

∫
Ω

(u − u)2 + 2α2
∫
Ω

(w − w)2 ≤ C3. (3.16)

By the Poincaré inequality and the fact∫
Ω

A−
1
2

0 (u + αw − u − αw) = 0,

we can find a constant C4 > 0 such that∫
Ω

∣∣∣∣A− 1
2

0 (u + αw − u − αw)
∣∣∣∣2

≤C4

∫
Ω

∣∣∣∣∇A−
1
2

0 (u + αw − u − αw)
∣∣∣∣2

=C4

∫
Ω

|u + αw − u − αw|2

≤2C4

∫
Ω

(u − u)2 + 2C4α
2
∫
Ω

(w − w)2

≤2C4

∫
Ω

(u − u)2 + 2C4α
2|Ω| ∥w0∥

2
L∞

which combined with (3.16) implies there exists a constant C5 > 0 such that

d
dt

∫
Ω

|A−
1
2

0 (u + αw − u − αw)|2 +
C1

2C4

∫
Ω

∣∣∣∣A− 1
2

0 (u + αw − u − αw)
∣∣∣∣2

+C1

∫
Ω

(u − u)2 + 2α2
∫
Ω

(w − w)2 ≤ C5.

(3.17)

An application of Grönwall’s inequality gives a constant C6 > 0 such that∫
Ω

|A−
1
2

0 (u + αw − u − αw)|2 ≤ C6.

Integrating (3.17) over (t, t + τ), we get ∫ t+τ

t

∫
Ω

(u − u)2 ≤ C7
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for some constant C7 > 0, which implies∫ t+τ

t

∫
Ω

u2 =

∫ t+τ

t

∫
Ω

(u − u)2 +

∫ t+τ

t

∫
Ω

u2
≤ C7 + u2

|Ω|.

Hence, we complete the proof of the lemma. □

3.4.2. L2-estimate of u

Lemma 3.9. Let (u, v,w) be a solution of (1.3). Then there exists a constant C > 0 such that∫
Ω

|∇v|2 ≤ C for all t ∈ (0,Tmax)

and ∫ t+τ

t

∫
Ω

|∆v|2 ≤ C for all t ∈ [0,Tmax − τ).

Proof. By simple computations, we have

1
2

d
dt

∫
Ω

|∇v|2 =
∫
Ω

∇v · ∇vt

=

∫
Ω

∇v · ∇(D∆v − v + u)

= − D
∫
Ω

|∆v|2 −
∫
Ω

|∇v|2 −
∫
Ω

u∆v

≤ −
D
2

∫
Ω

|∆v|2 −
∫
Ω

|∇v|2 +
1

2D

∫
Ω

u2

which leads to
d
dt

∫
Ω

|∇v|2 + D
∫
Ω

|∆v|2 + 2
∫
Ω

|∇v|2 ≤
1
D

∫
Ω

u2.

An application of the Grönwall inequality along with Lemma 2.2 and Lemma 3.8 gives a constant
C1 > 0 such that ∫

Ω

|∇v|2 +
∫ t+τ

t

∫
Ω

|∆v|2 ≤ C1.

Therefore, we finish the proof of this lemma. □

Lemma 3.10. Let (u, v,w) be a solution of (1.3). There exist constants c,C > 0 such that for any
p ≥ 2, we have

d
dt

∫
Ω

up + cp(p − 1)
∫
Ω

up−2|∇u|2

≤Cp(p − 1)
∫
Ω

up|∇v|2 +Cp(p − 1)
∫
Ω

up for all t ∈ (0,Tmax).

Proof. According to Lemma 2.1, Lemma 3.2 and the hypothesis on F, we can find a constant C1 > 0
such that

F(w) ≤ C1.
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Noticing Lemma 3.3, Lemma 3.6 and the smoothing property of γ, there exist constants C2,C3 > 0
such that

γ(v) ≥ C2 (3.18)

and

|γ′(v)|2

γ(v)
≤ C3. (3.19)

Using up−1 with p ≥ 2 as a test function for the first equation in (1.3), integrating the resulting equation
by parts and using Young’s inequality, we obtain

1
p

d
dt

∫
Ω

up =

∫
Ω

up−1∆(γ(v)u) + α
∫
Ω

upF(w)

≤ − (p − 1)
∫
Ω

γ(v)up−2|∇u|2 + (p − 1)
∫
Ω

γ′(v)up−1∇u · ∇v +C1α

∫
Ω

up

≤ −
p − 1

2

∫
Ω

γ(v)up−2|∇u|2 +
p − 1

2

∫
Ω

|γ′(v)|2

γ(v)
up|∇v|2 +C1α

∫
Ω

up

which, combined with (3.18) and (3.19), yields that

d
dt

∫
Ω

up +
p(p − 1)

2
C2

∫
Ω

up−2|∇u|2

≤
p(p − 1)

2
C3

∫
Ω

up|∇v|2 +C1αp
∫
Ω

up.

This finishes the proof of this lemma. □

Now the uniform-in-time boundedness of u in L2(Ω) can be established.

Lemma 3.11. Let (u, v,w) be a solution of (1.3). Then there is a constant C > 0 such that

∫
Ω

u2 ≤ C for all t ∈ (0,Tmax).

Proof. Taking p = 2 in Lemma 3.10, we get the following estimate

d
dt

∫
Ω

u2 +C1

∫
Ω

|∇u|2 ≤ C2

∫
Ω

u2|∇v|2 +C2

∫
Ω

u2 (3.20)

for some constants C1,C2 > 0. Using Lemma 3.9, the Gagliardo-Nirenberg inequality (see [7, Lemma
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2.5]) and Young’s inequality, we can find constants C3,C4,C5 > 0 such that

C2

∫
Ω

u2|∇v|2 ≤C2∥u∥2L4∥∇v∥2L4

≤C3

(
∥∇u∥

n
4
L2∥u∥

4−n
4

L2 + ∥u∥L2

)2 (
∥∆v∥

n
4
L2∥∇v∥

4−n
4

L2 + ∥∇v∥L2

)2

≤4C3

(
∥∇u∥

n
2
L2∥u∥

4−n
2

L2 ∥∆v∥
n
2
L2∥∇v∥

4−n
2

L2 + ∥∇u∥
n
2
L2∥u∥

4−n
2

L2 ∥∇v∥2L2

+∥u∥2L2∥∆v∥
n
2
L2∥∇v∥

4−n
2

L2 + ∥u∥
2
L2∥∇v∥2L2

)
≤C4

(
∥∇u∥

n
2
L2∥u∥

4−n
2

L2 ∥∆v∥
n
2
L2 + ∥∇u∥

n
2
L2∥u∥

4−n
2

L2

+∥u∥2L2∥∆v∥
n
2
L2 + ∥u∥

2
L2

)
≤

C1

2
∥∇u∥2L2 +C5

(
1 + ∥∆v∥

2n
4−n

L2 + ∥∆v∥
n
2
L2

)
∥u∥2L2

≤
C1

2
∥∇u∥2L2 +C5

(
1 + ∥∆v∥2L2

)
∥u∥2L2

where in the last inequality we have used the fact n ≤ 2 so that 2n
4−n ≤ 2. This along with (3.20) implies

there exists a constant C6 > 0 such that

d
dt

∫
Ω

u2 +
C1

2

∫
Ω

|∇u|2 ≤ C6

(
1 + ∥∆v∥2L2

) ∫
Ω

u2.

An application of Lemma 3.9 and Lemma 2.3 gives the desired result. □

3.4.3. L∞-estimate of u

Lemma 3.12. Let (u, v,w) be a solution of (1.3). For any 1 ≤ p < +∞, there exists a constant C > 0
such that ∫

Ω

|∇v|p ≤ C for all t ∈ (0,Tmax).

Moreover, if n = 1, then we can find a constant C > 0 such that

∥∇v∥L∞ ≤ C for all t ∈ (0,Tmax).

Proof. Applying Lemma 2.4 and Lemma 3.11, the desired result is obtained. □

Combining Lemma 3.10 and Lemma 3.12, we get the following result.

Lemma 3.13. Let (u, v,w) be a solution of (1.3). There exists a constant C > 0 such that for any p ≥ 2,
we have

d
dt

∫
Ω

up + p(p − 1)
∫
Ω

up ≤ Cp(p − 1) (1 + p)
6n

4−n

(∫
Ω

u
p
2

)2

for all t ∈ (0,Tmax).
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Proof. From Lemma 3.10, we can find constants C1,C2 > 0 such that

d
dt

∫
Ω

up +C1
p − 1

p

∫
Ω

|∇u
p
2 |2 ≤ C2 p(p − 1)

∫
Ω

up|∇v|2 +C2 p(p − 1)
∫
Ω

up. (3.21)

By means of Lemma 3.12 and Young’s inequality, there exists a constant C3 > 0 such that

C2 p(p − 1)
∫
Ω

up|∇v|2 ≤ C2 p(p − 1)
(∫
Ω

u2p

) 1
2
(∫
Ω

|∇v|4
) 1

2

≤ C3 p(p − 1)
(∫
Ω

u2p

) 1
2

and

(C2 + 1)p(p − 1)
∫
Ω

up ≤ C3 p(p − 1)
(∫
Ω

u2p

) 1
2

,

which combined with (3.21) gives that

d
dt

∫
Ω

up +C1
p − 1

p

∫
Ω

|∇u
p
2 |2 + p(p − 1)

∫
Ω

up ≤ 2C3 p(p − 1)
(∫
Ω

u2p

) 1
2

. (3.22)

The Gagliardo-Nirenberg inequality and Young’s inequality with ε provide constants C4,C5 > 0 such
that

2C3

(∫
Ω

u2p

) 1
2

=2C3∥u
p
2 ∥2L4

≤C4

(
∥∇u

p
2 ∥

3n
2(n+2)

L2 ∥u
p
2 ∥

4−n
2(n+2)

L1 + ∥u
p
2 ∥L1

)2

≤2C4

(
∥∇u

p
2 ∥

3n
n+2

L2 ∥u
p
2 ∥

4−n
n+2

L1 + ∥u
p
2 ∥21

)
≤C1

1
2p2 ∥∇u

p
2 ∥2L2 +C5

(
1 + p

6n
4−n

)
∥u

p
2 ∥2L1 .

(3.23)

Substituting (3.23) into (3.22) and noting 1 + p
6n

4−n ≤ (1 + p)
6n

4−n , we obtain

d
dt

∫
Ω

up + p(p − 1)
∫
Ω

up ≤ C5 p(p − 1) (1 + p)
6n

4−n

(∫
Ω

u
p
2

)2

.

Then we get the desired result. □

Now we can obtain the uniform-in-time boundedness of u in L∞(Ω).

Lemma 3.14. Let (u, v,w) be a solution of (1.3). There exists a constant C > 0 such that

∥u∥L∞ ≤ C for all t ∈ (0,Tmax).

Proof. According to Lemma 3.13, there exists a constant C1 > 0 such that for any p ≥ 2

d
dt

∫
Ω

up + p(p − 1)
∫
Ω

up ≤ C1 p(p − 1) (1 + p)
6n

4−n

(∫
Ω

u
p
2

)2
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which gives
d
dt

[
ep(p−1)t

∫
Ω

up

]
≤ C1ep(p−1)t p(p − 1)(1 + p)6

(∫
Ω

u
p
2

)2

. (3.24)

Integrating (3.24) over the time interval [0, t] for 0 < t < Tmax, we get∫
Ω

up ≤

∫
Ω

up
0 +C1(1 + p)6 sup

0≤t≤Tmax

(∫
Ω

u
p
2

)2

.

Then, employing a standard Moser iteration (cf. [37]) or the similar argument as in [38], the desired
result can be obtained. □

4. Proof of Theorem 1.1

Proof of Theorem 1.1. Theorem 1.1 is a consequence of Lemma 3.14, Lemma 2.4 and the extensibility
criterion Lemma 2.1. □
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23. M. Burger, P. Lanrençot, A. Trescases, Delayed blow-up for chemotaxis models with local sensing,
J. Lond. Math. Soc., 103 (2021), 1596–1617. https://doi.org/10.1112/jlms.12420

24. J. Smith-Roberge, D. Iron, T. Kolokolnikov, Pattern formation in bacterial colonies
with density-dependent diffusion, Eur. J. Appl. Math., 30 (2019), 196–218.
https://doi.org/10.1017/S0956792518000013

25. R. Lui, H. Ninomiya, Traveling wave solutions for a bacteria system with density-suppressed
motility, Discrete. Cont. Dyn. Syst.-B, 24 (2018), 931–940. https://doi.org/10.3934/dcdsb.2018213

26. J. Li, Z. A. Wang, Traveling wave solutions to the density-suppressed motility model, J. Differ.
Equ., 301 (2021), 1–36. https://doi.org/10.1016/j.jde.2021.07.038

27. H. Y. Jin, S. J. Shi, Z. A. Wang, Boundedness and asymptotics of a reaction-
diffusion system with density-dependent motility, J. Differ. Equ., 269 (2020), 6758–6793.
https://doi.org/10.1016/j.jde.2020.05.018

28. K. Fujie, Boundedness in a fully parabolic chemotaxis system with singular sensitivity, J. Math.
Anal. Appl., 424 (2015), 675–684. https://doi.org/10.1016/j.jmaa.2014.11.045

29. H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value prob-
lems, Teubner, Stuttgart, 1993. https://doi.org/10.1007/978-3-663-11336-2 1

30. C. Stinner, C. Surulescu, M. Winkler, Global weak solutions in a PDE-ODE system
modeling multiscale cancer cell invasion, SIAM J. Math. Anal., 46 (2014), 1969–2007.
https://doi.org/10.1137/13094058X

31. R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Springer-Verlag,
New York, 1988. https://doi.org/10.1007/978-1-4612-0645-3
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