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Abstract: We give a representation of solutions to linear nonhomogeneous W-fractional delayed
differential equations with noncommutative matrices. We newly define W-delay perturbation of Mittag-
Leffler type matrix function with two parameters and apply the method of variation of constants to
obtain the representation of the solutions. We investigate the existence and uniqueness of solutions for
a class of W-fractional delayed semilinear differential equations by using Banach Fixed Point Theorem.
Further, we establish the Ulam-Hyers stability result for the analyzed problem. Finally, we provide
some examples to illustrate the applicability of our results.
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1. Introduction

The origins of fractional calculus may be traced back to the late seventeenth century, when
Newton’s and Leibniz’s work provided a foundation for the development of traditional calculus.
Leibniz created the notation % g(?) to symbolize the derivative of the function g of order n. When he
conveyed this to de I’Hopital, the second one enquired what happens if n = % This is at the turning
point for fractional calculus. The Riemann-Liouville fractional integral and derivative are the most
classical fractional calculus operators [1,2]. Caputo contributed significantly by proposing a new
concept of fractional derivatives that is more suited to specific physical circumstances [3, 4].
Moreover, numerous other fractional operator families have been introduced and researched up to this
point, out of which Prabhakar, Hadamard, Hilfer, Griinwald-Letnikov, Marchaud, and Erdélyi—Kober
are just a few to mention [1, 2,5, 6]. Owing to the vast number of definitions related to fractional
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operator , it is necessary to define so certain generalized fractional operators that the traditional ones
are special instances. This allows researchers to operate on a broad scale and demonstrate results that
may subsequently be applied to specific circumstances by applied researchers [7]. For example,
several generic classes of fractional operators were presented in [8].

The widespread usage of fractional differential equations (FDEs) in engineering, economics,
physics, and other research fields inspired us to work on this topic [1,3,5,9-11]. There are numerous
ways for solving FDEs analytically or numerically in the literature. One of the most difficult issues in
the field of fractional calculus is to create some adequate methods for obtaining analytic solutions for
specific kinds of FDEs numerically. Some academics have been occupied with adding fractional
extensions related to well-known integral transforms like the Fourier and the Laplace transforms, in
the last few years [12-17].

Over the last several decades, mathematical descriptions based on FDE linked to non-integral order
derivatives have shown a highly valuable stuff for describing many phenomena such as viscoelasticity,
anomalous diffusion, control and stability theory, etc. Delay (or retardation) is recognized to occur in
chemical processes and many areas. The rate of evolution of these processes is generally dependent
on prior history, which is a distinguishing property of the corresponding mathematical models.
Differential equations are used to represent these issues and are referred to as delayed differential
equations. The underlying qualitative theory about Eq (1.1), particularly in the linear case, is well
understood. Time-delay of FDE, which include both delays and non-integer derivatives, allow single
one of delayed differential equations. This method is valuable in technical applications for building
extremely realistic simulations of specific processes and systems having memory. One can use in
analysis and discussion of diverse time-delayed systems, as well as the stabilization and control of
these systems via state feedback. A linear system’s solution is well-known v'(#) = Av(t) ,t € R* has
the form v(t) = e*v(0), where e’ is known as fundamental matrix in the literature. We note that
finding a fundamental matrix associated with a delayed linear system becomes more complicated.

40 Av(t)+ Bv(t—h), t>0, h>0
(i) = n), -h<t<0

where A, B € M,,,,(R). Under the statement of permutation(commutation) of matrices A and B, the
authors in [18] offered an excellent solution for the system which is both delayed and homogeneous
and linear by defining the exponential delay matrix e;". In the work of [19], researchers discussed the
above problem with the fractional version when A = ®. Mahmudov in references [20,21] handled the
fractional delay differential equations with the classical Caputo and Riemann-Liouville derivative and
noncommutative coefficient matrices. Almeida in the study of [22] investigated Caputo type fractional
derivative with reference to further function and remarkable results relevant to this derivative.

Motivated by the pioneer works of [18-20, 22, 23], we consider the following nonhomogeneous
linear W-Caputo fractional delay differential system

_%Dg,(x)v(x) = Av(x)+Bv(x-h)+ f(x), 0<x<T, h>0,
v(x) nx), —h<x<0. (1.1)
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where h*Dg’(x) is W-Caputo fractional derivative, ¥(x) : R — R is increasing and ¥’'(x) # 0 for every

€ [-h,T], A and B are constant coefficient square matrices which do not have to be permutable,
f € C([0,T],R™), and n(x) € C' ([~h,0],R"). After obtaining a solution of the former system (1.1),
we can extend it to the following system (1.2). Here is that the nonlinear Y-Caputo fractional delay

differential system is

_%DE‘{,(X)V(x) = Av(x)+Bv(x—h)+ f(x,v(x)), 0<x<T, h>Q0,
v(x) = nx), -h<x<0. (1.2)

Each of details is as given in the system (1.1). Note that, by choosing W(x) = x and ¥(x) = In x we
observe the above differential equations reduces to Caputo fractional linear delay differential
equations (see [20]) and Hadamard fractional linear delay differential equations, respectively. It
should be stressed out that the P-fractional derivative is defined with respect to another function and
unifies several definitions of fractional derivatives available in the literature. Thus the Y-fractional
derivative covers a wide class of fractional derivatives and provides a platform to obtain a particular
one by fixing the function W. The function space and the physical meaning were recently provided
in [24,25].

Before finishing the introduction, we remind some notations which are valid in the rest of the paper.
Let a,b € R with a < b which is the set of all real numbers. Then R” is the well-known Euclidean
space whose dimension is n € {1,2,3,...}. Also, let

C(la,b],R") ={u : [a,b] — R" : u is continuous}
with the maximum norm ||.||,, which is
= t
llgelloo max e @I,

where ||.|| is an arbitrary norm on R". Let AC|a, b] be the space of functions which are absolutely
continuous on [a, b]. Forn € {1,2,3, ...} we denote by AC"[a, b] the space of complex-valued functions
f(x) which have continuous derivatives up to order n — 1 on [a, b] such that f"~V(x) € AC[a, b].

2. Preliminaries

Definition 2.1. Let a function f and an increasing function ¥ on [a, b] be integrable and continuously
differentiable, respectively and let W'(¢) # O ¢ € [a, b]. P-Riemann-Liouville (RL) fractional integrals
of f of order @ > 0 are given by [1]

1 1
a Tp f(O) = m f W'(s) (P(1) = P(5)* ™" fls)ds

= @ f (P(1) = P(s))*" f()dP(s),

and W-RL fractional derivatives of f of order @ > 0 are given by

1 4\
a D [(1) = (q,—(t@) o Ty F0)
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= ! ! i ’ t ’ _ n—a—1
- I'n-a) (\P'(I) dt) j; ¥'(s) (P (1) —¥(s)) f(s)ds

1
T(n—-a) (‘P’(t) dt)

f (W) = P(s)" " f($)d¥(s),

where n = [a] + 1.

Definition 2.2. Let « € R* andn € N [1]. If f,¥ € AC" ([a, b], R) with ¥ is increasing and ¥’ (x) # 0
for every x € [a, b], then the left W-Caputo fractional derivative of f of order « is defined as

d n

a Dy f(1) 1= 1@(3(\1,,(06{7) [ 2.1)

where n = [a] + 1. Shortly, we use the abbreviation symbol as

[n] 1 d
A (q,,(t) dt) £

Clearly,
—(1/;+D?P(z)c =0

where ¢ is a constant number.

Theorem 2.3. Let f € AC" ([a,b],R) and a € R* [1], then

&) - [k
( CD(I (t)f) (l_) RLDa\y(t) f(t) Z ( ( ) (a)) f (Cl)

k=0

Lemma 2.4. Let R(a) > 0 and R(B) > 0 [1], then we have

@ I'B) e
oDy (P(x) = P(@)Y " (1) = & (P(1) - P@)y .
" CEE)
Definition 2.5. Two parameters Mittag-Leffler type matrix function Y, z(A,?) : R — R™" is defined
by
Yop(t) ;=177 Ey p(ALY) := a,>0,teR
? ! Z L(ak +p)’

Definition 2.6. Delayed two parameters Mittag-Leffler type matrix Eﬁ «p - R = R"is given by

0, -0 <t<—h
B (h+t)f! _
Eh,a,ﬁ(f) = I. W h<t<0
I Bi=(j—Dh)yoB-
oo FHEEE—, (I-Dh<t<Ih

where [ € N* and © and [/ are the zero and identity matrices.
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Definition 2.7. The delayed perturbation of Mittag-Leffler type matrix function X}A; f 3 () : [0,00) > R"
generated by A, B is defined by [20]

0, —h<t<0,
1, =0,
XQ’B (1) := Jykatp-1
f (t-jh)
Okt (Jh) —————, ph<t=<(p+1Dh,
,Z;jz;‘ [ka+p) ’

where Qiy1 (Jh) = AQi (jh) + BOx (jh — h), Qo(s) = Ow(=h) = O, 01(0) = [ for k = 0,1,2,...
ands = 0, h,2h,... ® and [ are the zero and identity matrices.

Definition 2.8. If Ve > 0 and for any solution v € C ([0, T], R") of inequality
I(D5v) @ = Avt) = Byt = by — ft,v(0)|| < € (2.2)

then there exists a solution u € C ([0, T],R") of (1.2), and a u;, € R* such that
V(@) = p@Il < up.€ (2.3)

Vt € [0, T], then (1.2) is called Ulam-Hyers stable.

Remark 2.9. A function u € C' ([0, T1,R") is a solution of the inequality (2.2) if and only if there exist
at least h € C ([0, T],R") satisfying

o [|A()| < & (g >0),
o (D8, 1) (1) = Au(t) + Bu(t = h) + f(t, () + h(2)

3. Main contributions

Definition 3.1. W-delay perturbation of Mittag-Leffler type matrix function with two parameters
NABY R xR — R” is given as

haB
0, t—se€[-h0)
I, t=ys
NA B‘P(t §) =14 « p-l ()bt ] (3.1)
. 1)—r(s+
D Qi — 1= s e (p - Dh, ph]
i=0 j=0

where ¥(7) : R — R is an increasing function such that ¥(0) = 0 and ¥'(¥) # O for every ¢ € [-h, T],

O and I represent the zero matrix and identity matrix, respectively. From [20], the matrices Qy(s) are
defined for s = kh with k=0, 1,2, ... as

Qo(s) =0, 01(0)=1, OQu(=h) =0, Oki(s) =A0k(s) + BOk(s = h).

Remark 3.2. From Eq (3.1) choosing Y(t) = t, the Y-delay perturbation of Mittag-Leffler type matrix
with two parameters reduces to the traditional one which is introduced and investigated in [20].
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Figure 1. Comparison of functions NABY (1 6), XA (1), and Topt) fora = 09,5 =1,

h,a.B
h=03,A=1,B=1,5s=0,%() = 1.

haB

NAB‘P

Lemma 3.3. o B

(t, 5) is jointly continuous in ) < s < t < 0o,

Proof. Without loss of generality we consider the case s = 0. For (p — 1)h < t, < ph,p = 1,2,....

Then
o p-l [ Y(jh ia+p-1
;@W”umﬂIZ§pu> R
i=0 j=
SES [®() - P!
= i+1(jh) lim :
Z&OQKJ)W e th)
ileQ ¥ G
i+ ] ;
T C(ia + B)
= xgﬁf(tn, 0).
Fort, = ph,p=1,2,.... Then
}E}l NA B‘I’(t 0) = zEII}i}— N;"’f’f(t, 0)
7 ia+p-1
:1qupm(f(m+m
[P(t) — W) !
+ Qis1(h) ; +
; ! C(ia + B)

W@—%@—Dmmﬁv

- ;Qm((p - Dh) T(ia + B)
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P phy el
= 00

L ['(ia +p)
[ (ph) — P()] !
+ ZQHl(h) C(ia +p) "
[W(ph) - ¥((p - D)
S ;;Qm((l? - Dh) I'ia + B)
= NP (ph, 0) = N2 (1, 0).

| . o p \P(Z‘) \P( .h)]ia/+ﬂ—l
A.BY _
thrtr} N, 5 (1,0) = tl{gﬁ ZZQ‘“( Jhy I'(ia + B)

NS0 (i g L0 = YU
P Qi+1(]h)tL1?/}+ et h)

i=0 j=

+ lim ZQ,-H(ph)

i [P(ph) — W(jh)| "
e [(ia + B)

1
0
hnleB*ktO)_lnnxgjja(n.

[P(r) — P (ph)| !
I'ia +p)

p—

Qiv1(jh)

In brief, NA -B. T(t s) is continuous with respect to ¢ € (0, 00). O

Now, we give an explicit solution of homogenous part of (1.1), which is f = 0.

Lemma 3.4. NZ‘ Bl (t, s) is a solution of

G Dy N1, 5) = ANYE (1, 5) + BNy (1, s + ). (3.2)

Proof. We apply the mathematical induction method to prove that NA BF w1 (1, 8) satisfy the differential Eq
(3.2)forallt—se((p—1)h,ph]. Forp=1,0<t—s5s < h, we have that

[¥(1) = ¥()]”

A,BY _ N _
N (ts) = ZO] O

From the definition, we know that Q;,;(0) = A’. Therefore,

,[T(r) LLOI o
NP (1, 5) = ZA T - EAT¥O - ¥

and NA -B. lP(t s + h) = ©. By using these equalities, we get

[P() — ()]
Tlka + 1)

C A,B,Y C k
_SDY N1 5) = §.DY,, 1+—§:A
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1023

N _ a(k-1)
Zr((k_l) 5 [0 = ¥

Z F(k Ol
= ANAB;P(r 5) + BNAB]‘P(t s+ h).

Assume that the following relation

oo n—1 ka
ABY [Y(r) —Y(s + mh)]
NEE (1, 5) = kz(; mZO e~ T

holds for p — 1 = n— 1. Now, let p — 1 = n, we obtain

o0

o Y o [P0 = ¥(s + W]
5Dy N (1.5) = ) Z Qe (1) - Dy =7

k=0 1=0

[P(t) — W(s + ))&

[((k— Da+ 1)

[P(r) — (s + IW)]* D"
[((k—Da+1)

[P(1) = P(s + 1] “ D

L((k—Da+1)

[¥() — W(s + Ih)]* D
[((k-Da+1)

[P(t) — W(s + Ih)]*
ke + 1)

Qk+1 (lh)

=0

s |

[AQx(lh) + BOk((I = Dh)]

~

s

(=]

AQx(lh)

M=

—+

BO«((I - Dh)

~
]

1

AQp1(lh)

~
I S
—- o

BN
|

[¥(t) — W(s + Ih + b))
4 £ C(ka + 1)

= ANy 2 (5, 5) + BRE (8, s + h).

—+

7 Ie e 2] 2 KV
T
(=)

BQ.1(lh)

b
I
O

Then, the proof is completed.

Lemma 3.5. Let t — s € ((p — 1)h, ph]. We get the following equalities

(a) | ’+ @ YOI [P() — (s + miy] D d‘I’(r) = [P(t) — ¥(s + mh)]* B(1 — a,ia + a)

(b) [P = PO K2, 9)d¥(r) = T2 X070 Qi (i) [P(1) = W(s + jh)]* fm
where B(.,.) is the well-known beta function.

Proof. We apply simple substitution as z = W(r) — WY(s + mh), we get dz = dy(r) Thus, we have

f [F() =PI [P(r) = ¥(s +mm)] D d¥(r)

+mh

Electronic Research Archive Volume 30, Issue 3, 1016-1034.
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V(1) —¥(s+mh) |
- f [(W(r) = W(s + mh) — )] 2" D14y
0

V(1) (s+mh) . .
= f [W(t) — W(s + mh)]™” [1 - L a1 g,
0

Y(t) — Y(s + mh)

Again, if we apply one more substitution as y = m, then dy = m Then we get,

f [P(2) = Y] [P(r) = (s + m)] D d¥(r)
s+mh

1
[P(1) — (s + mh)]“ f (1 — yy oyl gy
0

[¥(t) — P(s + mh)]* B(1 — @, ia + @). (3.3)

By using the definition of NA B lIJ(t s), we have
!
f [¥() = P R $)d ¥ ()

o p-1 l}, _y ih (m+1)a+1
f () =¥ Y D" Qi) o r((f;j{);]) ¥ (r)
m=0 j=0

\

ZmZQmH(]h)f [P() - Y] [IP(I”) ‘I’(s+]h)](m+l)a+1 d¥(r)

- T + 1) - —a _ (m+Da+1
= mzzo F((m + Da) Qm+l(0)£ [¥() —P(N)]* [¥(r) — P(s)] d¥(r)

(o)

; t - @ _ (m+1Da+1
+ mzzo fn s Dy 2 ® f PO = YOI [0 = ¥ + ] d9(r)

(o)

1
+ mZ:o QOH((P - Dh)
X f [P() — P(r)] ™ [P(r) = P(s + (p — D] a (). (3.4)
s+(p—1)h

So, from Eqgs (3.3) and (3.4), we get
f [P(r) = W] Ry 20 (r, )W)

Y ! i .
) Z; MG+ Doy 2 O ¥0) ~ ¥ BU ~avia + )
Y ! i .
2 T @ DO~ ¥+ 1 B =i )
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Qin1((p — D) [(t) = P(s + (p — D] B(1 - @, i + @)

EZS.“

LIT((i + D)

o p-1 |
) ; S TG+ 1) )QHl(]h) [Y(@®) - ¥(s + jW]" B(1 - a,ia + @)

oo p-1
= ! o T — ) (ka + @)

Sy I'a-a
= ke 2\ — &)
_ ka 2. Qi (mh) [¥(0) = P(s + mh)]” = e (3.5)

O

Theorem 3.6. If we consider the problem in Eq (1.1) with zero initial condition, which is v(t) = 0,
€ [—h, 0], then the solution v(t) has a form

(t) = f Rt 9) f()d¥(s), 120
h

Proof. By variation of constants method, if v(¢) is any solution of nonhomogeneous system, then the
form of v(¢) must be satisfy the following form

t
v(t) = f N2V, $)c(s)d¥(s), 0<t (3.6)
—h
where v(0) = 0 and ¢ : [-h,f] — R", is a differentiable function which is not known. Applying the
Y-Caputo fractional derivative in Eq (3.6), we get:

1) For p = 1, we have 0 < t < h. It is clear that t — h < 0, by the zero initial condition we have
v(t — h) = 0. So, according to Eq (1.1) we get

5DVt = AV(1) + Bv(t — h) + f(1)
Av(t) + (1)

A f ) N (1, 9)c()dW(s) + (1),

On the other hand, by the assumption of zero initial condition we have v(—h) = 0. So, we get

(S-D4 V)0 = EEDg, (1) = v(=h))
= —%Dg'(z) (D)

!
= SDg, ( f K2V (1, 5)e(s)d¥(s) ).
—h
Now, according to Definition 2.1, we have
(S5 Dsyy) @

Electronic Research Archive Volume 30, Issue 3, 1016-1034.
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1 1 d
F(l — @) ‘P’(t) ar [‘P(t) Y™ (f Nﬁf’:(;’, s)c(S)d‘P(s)) d¥(r)

B i > [\P(r) _ \P(s)]i(t+(y—1
~Fi _a) ‘P’(t) ;A = f ) f [¥(r) —¥(r)] ( ot o) d‘P(r)) d¥(s)

If we use Lemma 3.5 (a) to inner integral, we get

( CD{;(,)V) (t)

1 (P(1) = W) :
1“(1 —a) ‘I”(t) Z a ), ( )WB(I —a,ia + a)d¥(s)

(‘P(l) ‘I’(S))m
‘P’(t)z dtf O Tiar D +1) a¥(s)

1 d (P(1) = ¥(s)™
"Wy dr ( JIEs) + ‘P’(t) dt gt Tarn T
_ ' i (‘P(t) - ‘I’(S))"’_l
o (l)c(t)‘l’ (t)+;A I R PR

_ IRSIVLTOTS ) s
=c(f) + f hA;A ot o) c(5)d¥(s)

=c() + A f K21, 5)c()d¥(s).
~h

Hence, we obtain the desired result c(r) = f(¢).
2) For p = n+ 1 according to Eq (1.1), we get, by remembering Qy(—h) = ® from Definition 3.1,

(5 D) @

=A f Rl (t, )c(s)d¥(s) + B f

-h

Y — ¥ h ka+a—1
A [0S Qs FOZ T WO sy + e

f—

h
N2t s + h)e(s)d¥(s) + f(1)

vl I'tka + @)
—h o n-l ka+a—1
[Y(t) —Y(s + h + mh)]
+B f ) mZO Qks1(mh) ot o) c($)d¥(s)
00 t—mh \P \I] h ka+a—1
A3 Quvs o) f - ré;"; ))] e(S)A¥(s) + [(0)
k=0 m=0
©0 t—mh [lP(t) lP(S + mh)]kcHa 1
+B ; ; Qps1((m — 1)h) f Fhat o c(5)d¥(s)
0 n t—mh \P _ \P h ka+a—1
=3 D Quatmiy [ EOZE I ()t + £
k=0 m=0 -

Electronic Research Archive Volume 30, Issue 3, 1016-1034.
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However, by the assumption of zero initial condition we have v(—h) = 0 and according to Theorem
2.3, we get

(5 Dsv) @
=RDg, ( f ) x;{;ﬁf (1, s)c(s)d‘P(s))

1 1 d
TA—o V(0 dt f Y@ - ¥ ( f h B (1, $)c()d¥(s) | d¥(r)

1 1
I“(l _ a,) \P/(t) dtf ( )f [lP(t) lP(I")] ang;{‘(r S)le(I’)d\P(S)

Now, if we apply Lemma 3.5 (b) on the above equality we get,
(—Ch+ D %)V) @)

B 1 1 d w T —a)
oo f ()kZ;mZOQkH(mh)[T(t) s+ mh) - 1)al‘I'(s)

= d (" Y@ - Y+ )]
Zol ]Z; Q,+1(Jh)— f c(s) T+ D) d¥(s)

1
¥ (1)

1 n ' d t—jh
:\P'(t) Ql(‘]h)a Ih C(S)d\P(S)

j=0
I &Y od T () - (s + )]
6 2 2 QD [ e e
[‘I’(t) — (s + mh)]“**!
=c(t) + kzz(; mZ:O Or+2(jh) f Tka + @) d¥(s).

So, c(t) = f(1).

Theorem 3.7. If f = 0, then a solution v € C (J,R") of (1.1) can be expressed by
v(t) = N2 e, —hyn(=h) + f N2, 5) [ SD%m) (5) — An(s)| d¥(s).

where J = (p — 1) h, ph] and p € [0,]] N N.

Proof. We will use the variation of constants method to prove this theorem again. In a similar way, the
solution v(¢) should search in the following form

ha,a

V(1) = Ny 2 (1, —h)e + f NEBY (1 9)g(5)d¥(s)

where c is a constant which is not known and g(¢) is a continuously differentiable function which is not
known. Note that, v(¢) satisfies the initial condition v(t) = n(¢) when ¢ € [-h, 0], i.e.,

h,a,a

0
V(1) = Ny o (1, —hyn(=h) + f NEBY ¢ 9)g()d¥(s) == n(t), te[-h,0].

Electronic Research Archive Volume 30, Issue 3, 1016-1034.
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Let t = —h, then we get

O, se(-h0
N (=, 5) = { > seth ol (3.7)
Therefore, ¢ = n(—h).
Now, let t € [—h, 0]. We have that
Ry2V(t,5) =0

when s € (¢,0] and _
(P(1) — P(s)) !
I'lia + @)

N2t 5)= ) A
i=0
when s € [—h, t]. Hence on the interval 1 € [—A, 0], we derive that

0
n(t) = N2 F (@, —hyn(=h) + f NS (1, $)g(5)dW(s)

h
t 0
= N (6, —hn(=h) + f NBY (2, 5)g(5)d¥(s) + f B (1, 5)g(5)d¥(s)
—h ¢
!
= 8PE (@ —hm(=h) + f N2 (1, 5)g(5)d¥(s).
—h

If we take W-Caputo fractional derivative on both sides for the above equality and employ Lemma
3.4 and Theorem 3.6, we get

(Do) @)
!
=G Dy (NEF (1, =) n(=h) + §. D, ( f N, s)g(s)d‘I’(s))
~h
t
=ARPE (1, —hn(=h) + A f RyT¥ (8, $)g(s)dP(s) + (1)
—h

=An(1) + g(0).

Therefore,
g(t) = (5. D) (6) = An(r)
which is the desired result. i

By combining Theorem 3.6 and Theorem 3.7, we get the below upshot.

Corollary 3.8. A solution v of system (1.1) is given by
0
(1) =R (6, —h)n(=h) + f N2 (2, 5) [ (e Do) (5) = An(s)| dW(s)
—h
!
+ f Rt 5) f()d¥(s)
0
which belongs to C ([—h, T],R").
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Remark 3.9. By taking Y(¢t) = t, the above corollary corresponds to that of [20].
Lemma 3.10. Ift € [0,T], T = lh where l € N and h € R*, then the next inequality is hold

ha,a ha,a

f [NE2¥ (@, 9)|| dPCs) < [P = POIRY AT, 0). (3.8)
0

Proof. Suppose that all said conditions hold.

1

Qi1 (G

t \IJ _lP h iata—1
1Qi G f O TUIL )
0 I'(

i+ )

b

f’ [W(r) — W(s + jh)] !
0

I'lia + @) a¥(s)

fo t ||><;jﬁj(r, 9)||d¥(s) <

~
_ O

S

~
—_ O

S

[P() = WG]~ [P() - Y(0)]
I'ia+ @)

Mo 1 1P
]

1Qin Gl

=]
(=]

j=

<[W(T) — P(0)] RMHBL¥ 7 (),

ha,a

Let:
By: f:10,T] xR" — R" is a continuous function.
B, : ALy > Osuch that ||[f(z, 1) — f(t,V)|| £ Lfllu — v|[ for all # € [0,T] and u,v € R".
By : LR (T,0) ((T) - W(0)] < 1.

Here is uniqueness and existence result of a solution of system (1.2).

Theorem 3.11. Assume that the conditions By — B3 are hold. Then the system (1.2) has a unique
solution in € C ([-h, T],R").

Proof. Let ¥ be an operator defined on C ([-h, T],R"):
0
Fu@ = Ny, —hm=h) + f Ny (1, ) | (G Do) (5) = An(s) | d¥(s)
—h

!
o [N o),
It is clear that the operator ¥ maps C ([—h, T],R") into itself, since NQ’ZB’T

iy (1, 5) is continuous with
respect to ¢. Suppose that u and v are continuous on [—h, T']. Consider

IA

IF () — F o) fo [IR72Y @, )| ILFCs, () = £, V(NI AP(s)

IA

Ly fo 822 )] ats) = sl o)
L;[W(T) - ¥(0)] NIIAII,IIBII,‘?(T’ Ollt = Vlleo.

ha,a

IA

So, ¥ is a contraction. In the light of Banach fixed point theorem, ¥ has a fixed point that it is
unique on [—A, T']. In other words, there exists u € C ([—h, T],R") that u = ¥ p. O
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The following theorem provides the stability of system (1.2) in the sense of Ulam-Hyers.

Theorem 3.12. The system given in system (1.2) is stable provided that all the statements of Theorem
3.11 are hold.

Proof. Suppose that v € C ([0, T'], R") satisfies inequality (2.2), that is,

(Dgv) @) - Avey = Bve =y - ft. v < e (3.9)
and u € C ([0, T],R") is a unique solution of system (1.2), so that

(“Dpm) (1) = Aule) + Bu(t = ) + f(1. (1))

Vte (0T]and a € (0,1); v(t) = u(®),t € [-h,0]. By Remark 2.9 and Eq (3.9), there exist so
h € C ([0, T],R") that & satisfies the inequality ||i(?)|| < € and the equation

(DY) () = Av(r) + Br(t — ) + £(1,v(D)) + h). (3.10)

By using above equality, we get the solution v(z):
W) = N —hyn(=h) + I z N2 (1, 5) (5 D) (9) = An(s)| d¥(s)
+ fo t Ryt 8) [f(s,v(5)) + h(s)] d¥(s)
= Ny (6 =hn(=h) + f Z Ny (1, )| (5 Digyn) () = Ans)| d¥(s)
+ fo t R (8, 9) f (s, v(s)d¥(s) + fo t N2 V(1 )h(s)d¥(s)

= Fv)+ f RV (1, $)h(s)dW(s).
0

Taking the norm on the both sides of the above equality, we get

IFv(@0) = vl < fo N2, )| ()N ¥ (s)
< €[¥(T) - POIN M (T, 0). (3.11)

One can easily infer 4 = # u from the end of the statement and proof of Theorem 3.11. So,

(@) = vl < llu(@) = Fy@)ll + IF v(e) = vl
= |F (@) = Fvll + 1IF (1) = vl
<Ly [W(T) = PO R, (T, 0) [Ju = Vil

+ € [W(T) — P(0)] NMAHBLE 7 ).

ha,a

Hence,

(1= Ly [9(T) = WOIRYH (T, 0)) Il = Vil < [T - POINI (T, 0)e

ha,a ha,a
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then we get
llu = Vil < up.€
where
[W(T) — PO N} M (T, 0)
= YTNTETS > 0.
1= Ly [¥(T) = PO 8T, 0)
O

This completes the proof.

4. Illustrated examples
Here are examples to illustrate theoretical results
Example 4.1. We now consider the following nonhomogeneous and nonlinear x“-Caputo fractional

©__ Gin((x), 0<x<08
T — v(x)), x<0.8,
25(1 + &%)
4.1

delay differential system
= v(x) +0.v(x-02)+

~o. 2)+D2 v(x) =
v(x) :2(x2 -1), -02<x<0.
With the aid of Corollary 3.8, a solution of the above system (4.1) is given by
. l4 Vsi-1 2(s23— D]

3 ,0,x2
v(x)——1822'<21 (x, 02)+2f 83211 V=
+2 83 T E———
‘fo 021, ;( )25 (1 &) sin (v(s)) sds,
x*—s ) ) The graph of the solution v(x) can be found in
Figure 2. One can easily see that f is continuous as well as being the Lipschitz function with the

where N%’f’fz (x,5) = (x2 - sz)ﬁ 'E. ﬁ( (
fo ey ](o 8,0)[0.8% - 0?] = 0.0269 < 1

Lipschitz constant Ly = 0.04 and
All of conditions B;_3; of Theorems 3.11 and 3.12 are satisfied, so system (4.1) is of an unique

solution in addition to being Ulam-Hyers stable

0.1

0.1 [e]

“To2 -
Figure 2. Graph of solution v(x) to system (4.1)
Volume 30, Issue 3, 1016-1034
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Example 4.2. We consider the following nonhomogeneous and nonlinear v/x-Caputo fractional delay
differential system

t
Coay DSv(x) =Av(x) + Bv(x = 0.1) + %ﬂvm 0<x<02,
v(x) =x° +sinx, —0.1 < x<0. “4.2)
where
L_[044 026] . _[03 o014
1 0.01 0.34 0.1 0.5

With the well-known maximum absolute row sum of the matrix ||.||.,, one can easily see ||A]|, = 0.7
and ||B||, = 0.6. Since arctan function is continuous, then f(x,v(x)) = arctanv(x)/2 is continuous.
With a simple calculation

arctan v(x)  arctan u(x)
2 2

1
< 3 [v(x) — u(x)|]o

(o)

which provides that f(x, v(x)) = arctan v(x) satisfies Lipschitz condition with L; = 0.5. We also have
LNGTO0V¥0.2,0)[ V02 - V0| = 0.3778 < 1.

According to Theorem 3.12, system (4.2) is Ulam-Hyers stable because B, B,, and B; are satisfied.
5. Conclusions

In this paper, W-delay perturbation of Mittag-Leffler type matrix function with two parameters are
defined and by using this definition, an explicit solution of nonhomogeneous linear W-Caputo fractional
delay differential system for noncommutative matrices are derived. Moreover, applying Banach Fixed
Point theorem, the uniqueness and existence result of the solutions of system is given. Ulam-Hyers
approach is used to provide the stability of the system.

The next further work can be devoted to study exponential stability, finite time stability, Lyapunov
type stability and also controllability of the ¥-Caputo fractional order time-delay differential linear
nonhomogeneous systems. The above mentioned system also can be extended by adding
multi-delayed terms, i.e., ¥-Caputo type fractional multi-delayed differential equations and it can be
reconsidered from the similar aspects. Moreover, asymptotic stability, Ulam-Hyers stability, and
approximate controllability results for multi-term fractional functional evolution equations can be
investigated.
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