Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

The Riccati-Bernoulli subsidiary ordinary differential equation method to the coupled Higgs field equation

  • By using the Riccati-Bernoulli (RB) subsidiary ordinary differential equation method, we proposed to solve kink-type envelope solitary solutions, periodical wave solutions and exact traveling wave solutions for the coupled Higgs field (CHF) equation. We get many solutions by applying the Bäcklund transformations of the CHF equation. The proposed method is simple and efficient. In fact, we can deal with some other classes of nonlinear partial differential equations (NLPDEs) in this manner.

    Citation: Yi Wei. The Riccati-Bernoulli subsidiary ordinary differential equation method to the coupled Higgs field equation[J]. Electronic Research Archive, 2023, 31(11): 6790-6802. doi: 10.3934/era.2023342

    Related Papers:

    [1] Wenjing Wang, Jingjing Dong, Dong Xu, Zhilian Yan, Jianping Zhou . Synchronization control of time-delay neural networks via event-triggered non-fragile cost-guaranteed control. Mathematical Biosciences and Engineering, 2023, 20(1): 52-75. doi: 10.3934/mbe.2023004
    [2] Pan Wang, Xuechen Li, Qianqian Zheng . Synchronization of inertial complex-valued memristor-based neural networks with time-varying delays. Mathematical Biosciences and Engineering, 2024, 21(2): 3319-3334. doi: 10.3934/mbe.2024147
    [3] Biwen Li, Xuan Cheng . Synchronization analysis of coupled fractional-order neural networks with time-varying delays. Mathematical Biosciences and Engineering, 2023, 20(8): 14846-14865. doi: 10.3934/mbe.2023665
    [4] Ruoyu Wei, Jinde Cao . Prespecified-time bipartite synchronization of coupled reaction-diffusion memristive neural networks with competitive interactions. Mathematical Biosciences and Engineering, 2022, 19(12): 12814-12832. doi: 10.3934/mbe.2022598
    [5] Bingrui Zhang, Jin-E Zhang . Fixed-deviation stabilization and synchronization for delayed fractional-order complex-valued neural networks. Mathematical Biosciences and Engineering, 2023, 20(6): 10244-10263. doi: 10.3934/mbe.2023449
    [6] Trayan Stamov, Gani Stamov, Ivanka Stamova, Ekaterina Gospodinova . Lyapunov approach to manifolds stability for impulsive Cohen–Grossberg-type conformable neural network models. Mathematical Biosciences and Engineering, 2023, 20(8): 15431-15455. doi: 10.3934/mbe.2023689
    [7] Hai Lin, Jingcheng Wang . Pinning control of complex networks with time-varying inner and outer coupling. Mathematical Biosciences and Engineering, 2021, 18(4): 3435-3447. doi: 10.3934/mbe.2021172
    [8] Zhen Yang, Zhengqiu Zhang, Xiaoli Wang . New finite-time synchronization conditions of delayed multinonidentical coupled complex dynamical networks. Mathematical Biosciences and Engineering, 2023, 20(2): 3047-3069. doi: 10.3934/mbe.2023144
    [9] Karim El Laithy, Martin Bogdan . Synaptic energy drives the information processing mechanisms in spiking neural networks. Mathematical Biosciences and Engineering, 2014, 11(2): 233-256. doi: 10.3934/mbe.2014.11.233
    [10] Guowei Wang, Yan Fu . Spatiotemporal patterns and collective dynamics of bi-layer coupled Izhikevich neural networks with multi-area channels. Mathematical Biosciences and Engineering, 2023, 20(2): 3944-3969. doi: 10.3934/mbe.2023184
  • By using the Riccati-Bernoulli (RB) subsidiary ordinary differential equation method, we proposed to solve kink-type envelope solitary solutions, periodical wave solutions and exact traveling wave solutions for the coupled Higgs field (CHF) equation. We get many solutions by applying the Bäcklund transformations of the CHF equation. The proposed method is simple and efficient. In fact, we can deal with some other classes of nonlinear partial differential equations (NLPDEs) in this manner.



    Due to the wide variety of applications in fields including associative memories, signal processing, parallel computation, pattern recognition, neural networks have drawn a lot of interest in recent years. In many real-world systems, artificial neural networks, neural networks, biological systems have inevitable applications. [1,2,3,4,5,6,7]. Due to the obvious transmission frequency of interconnected neurons and the finite switching speeds of the amplifiers, time delays are ineluctably given. Their presence might affect a system's stability by causing oscillation and instability features [8,9,10,11,12,13,14,15,16,17,18]. Delayed dynamical networks and many time-delay system kinds have been studied, and numerous important outcomes have been presented [19,20,21,22,23,24,25].

    Kosko was the first person to propose that BAM-NNs could be important to the NNs theory [26]. Furthermore, BAM neural frameworks involving delays attracted significant thought and underwent in-depth research. While there is no connection between neurons in the same layer, neurons in another layer are entirely interconnected to those in the first layer. It performs a two-way affiliated hunt to store bipolar vector combines by cycles of forward and backward propagation information streams between the two layers, and it sums up the single-layer auto-cooperative Hebbian connection to a two-layer design coordinated hetero acquainted circuits. As a result, it has numerous applications in the fields of artificial intelligence and pattern identification [27,28,29,30,31,32,33,34,35]. Appropriately, the BAM neural system has been generally concentrated on both in principle and applications. This makes focusing on the stability of the BAM neural framework, which has largely been studied, fascinating and fundamental [36,37,38,39,40,41,42,43,44].

    The synchronization control of chaotic networks plays vital role in applications such as image encryption, secure communication, DC-DC motor and etc. [45,46,47,48]. Satellites play a significant part in the advancement of space technology, civic, military, and scientific endeavors. In particular, feedback control, adaptive control, sampled-data control, and other strategies have been employed to synchronize and regulate the satellite systems [49,50]. Recently, the issue of memristive BAM networks synchronization with stochastic feedback gain variations in [50].

    It is inferred that in real-world scenarios, a nearby float framework as noted in practical model controller does not avoid the proceed out of coefficient uncertainty, leading to the murkiness in controller execution caused by the required word length in any updated structures or additional parameter turning in the final controller use. Along the same ideas, it is crucial to design a non-fragile controller such that it is insensitive to uncertainty. Non-fragile control has developed into a fascinating topic in both theory and practical application. There has been extensive research into the use of non-fragile controllers in recent years [51,52]. However, the problem of non-fragile control of a BAM delayed neural network and controller gain fluctuation has not been thoroughly examined.

    This study examines the non-fragile synchronization for a BAM delayed neural network and a randomly occurring controller gain fluctuation, which is motivated by the studies. New stability requirements for BAM neural networks with arbitrarily occurring controller gain fluctuation are derived in terms of LMI by building an appropriate Lyapunov-Krasovskii functional (LKF) and using conventional integral inequality techniques. Solving the suggested LMI condition yields the gain matrices for the proposed controller design. Finally, a numerical example is used to illustrate the proposed strategy.

    Notations: In this work, Rp represents Euclidean space of p dimension. Rp×q denotes the set of all p×q real matrices. The identity matrix is denoted by I. Here R>0(<0) represents R is a symmetric positive (negative) definite matrices. The elements below the main diagonal of a symmetric matrixl is given by '*'.

    In this study, we will investigate the synchronization of BAM delayed neural network with randomly occurring. The BAM NNs with time-varying delay components can be modeled as follows

    ˙θi()=aiθi()+nj=1w(1)ij˜fj(λj())+nj=1w(2)ij˜fj(λj(σ()))+Ii,˙λj()=bjλj()+ni=1v(1)ji˜gi(θi())+ni=1v(2)ji˜gi(θi(κ()))+Jj,} (2.1)

    where γi() and δj() are the state variables of the neuron at time respectively. The non linear functions ˜fj(), ˜gi() are neuron activation functions. The positive constants ai,bj denote the time scales of the respective layers of the neurons. w(1)ij, w(2)ij, v(1)ji, v(2)ji are connection weights of the network. Ii and Jj denotes the external inputs. σ(),κ() are time varying delays satisfying

    0σ()σ,  ˙σ()=μ1<1, 0κ()κ,  ˙κ()=μ2<2, (2.2)

    and, σ, κ, μ1, and μ2 are constants.

    Consequently, the corresponding compact matrix form can be used to describe the master system (2.1) as,

    M:{˙θ()=Aθ()+W1˜f(λ())+W2˜f(λ(σ())),˙λ()=Bλ()+V1˜g(θ())+V2˜g(θ(κ())), (2.3)

    where, B=diag[b1,b2,...,bn]>0,  A=diag[a1,a2,...,an]>0, Wk=(w(k)ij)(n×n), Vk=(v(k)ij)(n×n),k=1,2.

    Assumption (1). ˜gj(),˜fi() are neuron activation functions, which is bounded, then there exist constants Hi, H+i, Lj, L+j such that

    Lj˜gj(ϕ)˜gj(ϱ)ϕϱL+j,Hi˜fi(ϕ)˜fi(ϱ)ϕϱH+i, (2.4)

    where, j=1,..,n,i=1,...m, and ϱ,ϕR with ϕϱ. We define the subsequent matrices for ease of notation:

    H1=diag{H+1H1,H+2H2,...,H+mHm},H2=diag{H1+H+12,H+2+H22,...,H+m+Hm2},L1=diag{L+1L1,L+2L2,...,L+nLn},L2=diag{L+1+L12,L+2+L22,...,L+n+Ln2}.

    Master system and slave system state variables are represented by θ(),λ() and ˆθ() and ˆλ(), respectively. We take into account the master system's slave system in the follows.

    S:{˙ˆθ()=Aˆθ()+W1˜f(ˆλ())+W2˜f(ˆλ(σ()))+u(),˙ˆλ()=Bˆλ()+V1˜g(ˆθ())+V2˜g(ˆθ(κ()))+v() (2.5)

    We choose the following non-fragile controller:

    u()=(K1+ϕ()ΔK1())ζ(), v()=(K2+ϱ()ΔK2())ϖ(), (2.6)

    Here the controller gain matrices are given by K1,K2. The matrix ΔKi()(i=1,2) satisfy

    ΔKi()=HiΔ()Ei  (i=1,2) (2.7)

    and

    ΔT()Δ()I, (2.8)

    where Hi,Ei are known constant matrices. To desribe randomly accuring control gain fluctuation we introduced the stachastic variables ϕ(),ϱ()R. It is a sequence of white noise generated by Bernoulli distribution with values of zero or one

    Pr{ϱ()=0}=1ϱ,  Pr{ϱ()=1}=ϱ,Pr{ϕ()=0}=1ϕ,  Pr{ϕ()=1}=ϕ, (2.9)

    where 0ϱ,ϕ1 is constant.

    Set the synchronization error signals ϖ()=ˆλ()λ() and ζ()=ˆθ()θ(). Error dynamics between systems (2.3) and (2.5) can therefore be written as follows:

    ˙ζ()=(A+(K1+ϕ()ΔK1()))ζ()+W1f(ϖ())+W2f(ϖ(σ())),˙ϖ()=(B+(K2+ϱ()ΔK2()))ϖ()+V1g(ζ())+V2g(ζ(κ()))}. (2.10)

    where g(ζ())=˜g(ˆθ())˜g(θ()), and f(ϖ())=˜f(ˆλ())˜f(λ()).

    The following crucial conditions are used to obtain our main findings:

    Lemma 2.1. [53] (Schur complement) Let Z, V,O be given matrices such that Z>0, then

    [OVTvZ]<0iffO+VTZ1V<0.

    Lemma 2.2. [54] Given matrices Z=ZT,R,O and Q=QT>0 with appropriate dimensions

    Z+RL()O+OTLT()RT<0,

    for all L() satisfying LT()L()I if and only if there exists a scalar ε>0 such that

    Z+ε1RRT+εOTQO<0.

    Lemma 2.3. [55] For a given matrix ZS+n and a function ς:[c,d]Rn whose derivative ˙ςPC([c,d],Rn), the following inequalities hold: dc˙ςT(r)Z˙ς(r)dr1dc ˆφ¯Zˆφ, where ¯Z=diag{Z,3Z,5Z}, ˆφ=[φT1 φT2 φT3]T, φ1=ς(d)ς(c), φ2=ς(d)+ς(c)2dcdcς(r)dr, φ3=ς(d)ς(c)+6dcdcς(r)dr12(dc)2dcdcς(u)duds.

    The necessary requirements for guaranteeing the stability of system (2.10) are established in this part.

    Theorem 3.1. From Assumption (A), ϕ,ϱ, and ϵi are positive scalars, if there exist symmetric matrices Pi>0, Qi>0, Ri>0, Zi>0, any matrices Ji and Gi, diagonal matrices Si>0 (i=1,2) satisfying

    Ξ=[ΠΩΛ]<0, (3.1)

    where

    Π=[Π113Z1κS2L2024Z1κ260Z1κ3Π17Π220036Z1κ260Z1κ30Π330000Π44000192Z1κ3360Z1κ40720Z1κ50Π77],Ω=[00J1W1J1W20000000000VT1JT200000VT1JT2VT2JT200000VT2JT20000000000000000J1W1J1W2000],Λ=[Λ113Z2σS1H2024Z2σ260Z2σ3Λ17Λ220036Z2σ260Z2σ30Λ330000Λ44000192Z2σ3360Z2σ40720Z2σ50Λ77],
    Π11=R1S2L19Z1κJ1A+G1+ϕJ1ΔK1()+GT1ATJT1+ϕΔKT1()JT1,Π17=J1ϵ1ATJT1+ϵ1GT1+ϵ1ϕΔKT1()JT1+P1,Π22=R19Z1κ,Π33=Q2S2,Π44=(1μ2)Q2,Π77=ϵ1J1+κZ1ϵ1JT1,Λ11=R2S1H1J2B+G2+ϱJ2ΔK2()9Z2σBTJT+GT2+ϱΔKT2()JT2,Λ17=J2ϵ2BTJT2+ϵ2GT2+ϵ2ϱΔKT2()JT2+P2,Λ22=R29Z2σ,Λ33=Q1S1,Λ44=(1μ1)Q1,Λ77=σZ2ϵ2J2ϵ2JT2,

    When this happens, the system (2.10) is asymptotically stable and Ki=J1iGi. are control gain matrices.

    Proof. Take into account the LKF candidate below:

    V(ζ,ϖ,)=4i=1Vi(ζ,ϖ,), (3.2)

    where

    V1(ζ,ϖ,)=ζT()P1ζ()+ϖT()P2ϖ(),V2(ζ,ϖ,)=σ()fT(ϖ(s))Q1f(ϖ(s))ds+κ()gT(ζ(s))Q2g(ζ(s))ds,V3(ζ,ϖ,)=κζT(s)R1ζ(s)ds+σϖT(s)R2ϖ(s)ds,V4(ζ,ϖ,)=0κ+θ˙ζT(s)Z1˙ζ(s)dsdθ+0σ+θ˙ϖT(s)Z2˙ϖ(s)dsdθ.

    The infinitesimal operator L ofV(ζ,ϖ,) is:

    LV(ζ,ϖ,)=limΔ01Δ{E{V(ζ+Δ,y+Δ,)|(ζ,ϖ,)}V(ζ,ϖ,)},E{LV(ζ,ϖ,)}=4i=1E{LVi(ζ,ϖ,)}. (3.3)

    Using the stochastic derivative of V(ζ,ϖ,), we can determine:

    E{LV1(ζ,ϖ,)}=2ζT()P1˙ζ()+2ϖT()P2˙ϖ(), (3.4)
    E{LV2(ζ,ϖ,)}fT(ϖ())Q1f(ϖ())(1μ1)fT(ϖ(σ()))Q1f(ϖ(σ()))+gT(ζ())Q2g(ζ())(1μ2)gT(ζ(κ()))Q2g(ζ(κ())), (3.5)
    E{LV3(ζ,ϖ,)}=ζT()R1ζ()ζT(κ)R1ζ(κ)+ϖT()R2ϖ()ϖT(σ)R2ϖ(σ), (3.6)
    E{LV4(ζ,ϖ,)}=κ˙ζT()Z1˙ζ()κ˙ζT(s)Z1˙ζ(s)ds+σ˙ϖT()Z2˙ϖ()σ˙ϖT(s)Z2˙ϖ(s)ds, (3.7)

    By applying Lemma 2.3 in (2.17), we can obtain

    κ˙ζT(s)Z1˙ζ(s)ds1κηT1()[Z10003Z10005Z1]η1(), (3.8)
    σ˙ϖT(s)Z2˙ϖ(s)ds1σηT2()[Z20003Z20005Z2]η2(), (3.9)

    where

    η1()=[ζT()ζT(κ)ζT()+ζT(κ)2κκζT(s)dsζT()ζT(κ)+6κκζT(s)ds12κ2κtsζT(u)duds]T,η2()=[ϖT()ϖT(σ)ϖT()+ϖT(σ)2σσϖT(s)dsϖT()ϖT(σ)+6σσϖT(s)ds12σ2κtsϖT(u)duds]T.

    From the assumption (A), there exists a diagonal matrices S1>0, S2>0 and Hi, Li(i=1,2), the following inequalities hold:

    0[ϖ()f(ϖ())]T[S1H1S1H2S1][ϖ()f(ϖ())], (3.10)
    0[ζ()g(ζ())]T[S2L1S2L2S2][ζ()g(ζ())]. (3.11)

    The following equations satisfy for any matrices J1,J2 and scalar ϵ1,ϵ2:

    0=2[ζT()+ϵ1˙ζ()]J1[˙ζ()+(A+(K1+ϕ()ΔK1()))ζ()+W1f(ϖ())+W2f(ϖ(σ()))], (3.12)
    0=2[ϖT()+ϵ2˙ϖ()]J2[˙ϖ()+(B+(K2+ϱ()ΔK2()))ϖ()+V1g(ζ())+V2g(ζ(κ()))], (3.13)

    substituting (3.4)(3.6), and (3.7)(3.23) in (3.3), we get

    E{LV(ζ,ϖ,)}ξT() Ξ ξ(), (3.14)

    where ξ()=[ζT() ζT(κ) gT(ζ()) gT(ζ(κ())) κζT(s)ds κsζT(s)duds ˙ζT() ϖT()ϖT(σ) fT(ϖ()) fT(ϖ(κ())) σϖT(s)ds σsϖT(s)duds ˙ϖT()]T.

    It gives that Ξ <0. This demonstrates that the system (2.10) is asymptotically stable using the Lyapunov stability theory. The proof is now complete.

    Theorem 3.2. Under Assumption (A), ϕ,ϱ and ϵi are positive scalars, then there exist symmetric matrices Pi>0, Qi>0, Ri>0, Zi>0, diagonal matrices Si>0, for any matrices Ji, Gi, and scalars ρi>0 (i=1,2) such that

    ˜Ξ=[ˆΞΥ1ρ1Υ2Ψ1Ψ2ρ1I000ρ1I00ρ2I0ρ2I]<0, (3.15)

    where

    ˆΞ=[ˆΠΩˆΛ],ˆΠ=[ˆΠ113Z1κS2L2024Z1κ260Z1κ3ˆΠ17Π220036Z1κ260Z1κ30Π330000Π44000192Z1κ3360Z1κ40720Z1κ50Π77],ˆΛ=[ˆΛ113Z2σS1H2024Z2σ260Z2σ3ˆΛ17Λ220036Z2σ260Z2σ30Λ330000Λ44000192Z2σ3360Z2σ40720Z2σ50Λ77],
    ˆΠ11=R1S2L19Z1κJ1A+G1+GT1ATJT1,ˆΠ17=J1ϵ1ATJT1+ϵ1GT1+P1,ˆΛ11=R2S1H1J2B+G29Z2σBTJT+GT2,ˆΛ17=J2ϵ2BTJT2+ϵ2GT2+P2,Υ1=[ϕHT1JT1 0,...,05elements ϕϵ1HT1JT1 0,...,07elements]T,Υ2=[E1 0,...,013elements]T,Ψ1=[0,...,07elements ϱHT2JT2 0,...,05elements ϱϵ2HT2JT2]T,Ψ2=[0,...,07elements ρ2E2 0,...,06elements]T

    The controller gain matrices are also provided by in equation (2.6) are given by Ki=J1iGi.

    Proof. By using Schur complement,

    [ˆΞ]+Υ1ΔK1()ΥT2+Υ2ΔKT1()ΥT1+Ψ1ΔK2()ΨT2+Ψ2ΔKT2()ΨT1<0.

    From Lemma 2, we get

    ˜Ξ=[ˆΞΥ1ρ1Υ2Ψ1Ψ2ρ1I000ρ1I00ρ2I0ρ2I]<0

    It is clear that the disparities in (3.15) still exist. The evidence is now complete.

    Two examples are provided in this part to show the applicability of our findings.

    Example 4.1. The following BAM neural network with time varying delays:

    ˙ζ()=(A+(K1+ϕ()ΔK1()))ζ()+W1f(ϖ())+W2f(ϖ(σ())),˙ϖ()=(B+(K2+ϱ()ΔK2()))ϖ()+V1g(ζ())+V2g(ζ(κ())),} (4.1)

    with the following parameters:

    A=[1001], W1=[20.1153.2],W2=[1.60.80.182.5], H1=[0.45000.45],E1=[0.35000.35], B=[3002], V1=[11.1121.2],V2=[0.61.80.680.5],H2=[0.25000.25], E2=[0.15000.15], H1=L1=0, H2=L2=I.

    Additionally, we take κ=3.2, σ=3.2, μ1=0.9, μ2=0.9, ϕ=0.9, ϱ=0.9, ϵ1=0.5, and ϵ2=0.5. By solving the LMIs in Theorem 3.2, we get

    P1=[48.38230.57070.570749.5117], P2=[46.62800.25890.258950.0702],Q1=[19.28354.76024.760228.1068], Q2=[19.03795.74755.747525.7761],R1=[35.03181.41081.410831.6352],R2=[35.27981.52881.528833.4075],Z1=[0.01670.00090.00090.0116], Z2=[0.03320.01960.01960.0971],G1=[96.51481.09481.094899.3356],G2=[91.47451.38211.382196.5435],J1=[0.15710.03320.03320.1827], J2=[0.39030.18070.18070.9874]ρ1=42.3781, ρ2=44.9762.

    As well as the following non-fragile controller gains matrices:

    K1=[639.9952126.6829122.2775566.6860], K2=[256.750653.331248.3949107.5330].

    In this scenario is proved the given system is asymptotically stable. In Figure 1, state response are depicted.

    Figure 1.  The dynamical behavior of the system in Example 4.1.

    The issue of BAM delayed neural networks with non-fragile control and controller gain fluctuation has been examined in this article. To ensure the stability of the aforementioned systems, delay-dependent conditions are established. In terms of linear matrix inequalities (LMIs), necessary conditions are obtained by building an L-K functional and utilizing the traditional integral inequality technique. This technique ensures asymptotically stability of addressed to the concerned neural networks. Lastly, a numerical example is provided to demonstrate the viability of the findings in this study. Stochastic differential equations and complex networks both respond well to this approach in future research.



    [1] X. G. Zhang, L. X. Yu, J. Q. Jiang, Y. H. Wu, Y. J. Cui, Solutions for a singular Hadamard-type fractional differential equation by the spectral construct analysis, J. Funct. Space, 2020 (2020), 8392397. https://doi.org/10.1155/2020/8392397 doi: 10.1155/2020/8392397
    [2] Y. H. Yin, X. Lü, W. X. Ma, Bäcklund transformation, exact solutions and diverse interaction phenomena to a (3+1)-dimensional nonlinear evolution equation, Nonlinear Dyn., 108 (2022), 4181–4194. https://doi.org/10.1007/s11071-021-06531-y doi: 10.1007/s11071-021-06531-y
    [3] X. G. Zhang, D. Z. Kong, H. Tian, Y. H. Wu, B. Wiwatanapataphee, An upper-lower solution method for the eigenvalue problem of Hadamard-type singular fractional differential equation, Nonlinear Anal.-Model. Control, 27 (2022), 789–802. https://doi.org/10.15388/namc.2022.27.27491 doi: 10.15388/namc.2022.27.27491
    [4] C. J. Chen, K. Li, Y. P. Chen, Y. Q. Huang, Two-grid finite element methods combined with Crank-Nicolson scheme for nonlinear Sobolev equations, Adv. Comput. Math., 45 (2019), 611–630. https://doi.org/10.1007/s10444-018-9628-2 doi: 10.1007/s10444-018-9628-2
    [5] C. J. Chen, X. Y. Zhang, G. D. Zhang, Y. Y. Zhang, A two-grid finite element method for nonlinear parabolic integro-differential equations, Int. J. Comput. Math., 96 (2019), 2010–2023. https://doi.org/10.1080/00207160.2018.1548699 doi: 10.1080/00207160.2018.1548699
    [6] C. J. Chen, X. Zhao, A posteriori error estimate for finite volume element method of the parabolic equations, Numer. Methods Partial Differ. Equations, 33 (2017), 259–275. https://doi.org/10.1002/num.22085 doi: 10.1002/num.22085
    [7] B. Liu, X. E. Zhang, B. Wang, X. Lü, Rogue waves based on the coupled nonlinear Schrödinger option pricing model with external potential, Mod. Phys. Lett. B, 36 (2022), 2250057. https://doi.org/10.1142/S0217984922500579 doi: 10.1142/S0217984922500579
    [8] H. Tian, X. G. Zhang, Y. H. Wu, B. Wiwatanapataphee, Existence of positive solutions for a singular second-order changing-sign differential equation on time scales, Fractal Fract., 6 (2022), 315. https://doi.org/10.3390/fractalfract6060315 doi: 10.3390/fractalfract6060315
    [9] X. G. Zhang, L. X. Yu, J. Q. Jiang, Y. H. Wu, Y. J. Cui, Positive solutions for a weakly singular Hadamard-type fractional differential equation with changing-sign nonlinearity, J. Funct. Space, 2020(2020), 5623589. https://doi.org/10.1155/2020/5623589 doi: 10.1155/2020/5623589
    [10] C. J. Chen, H. Liu, X. C. Zheng, H. Wang, A two-grid MMOC finite element method for nonlinear variable-order time-fractional mobile/immobile advection-diffusion equations, Comput. Math. Appl., 79 (2020), 2771–2783. https://doi.org/10.1016/j.camwa.2019.12.008 doi: 10.1016/j.camwa.2019.12.008
    [11] W. X. Ma, Inverse scattering for nonlocal reverse-time nonlinear Schrödinger equations, Appl. Math. Lett., 102 (2020), 106161. https://doi.org/10.1016/j.aml.2019.106161 doi: 10.1016/j.aml.2019.106161
    [12] M. J. Ablowitz, P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press, Cambridge, UK, 1991. https://doi.org/10.1017/CBO9780511623998
    [13] X. G. Zhang, P. Chen, Y. H. Wu, B. Wiwatanapataphee, A necessary and sufficient condition for the existence of entire large solutions to a k-Hessian system, Appl. Math. Lett., 145 (2023), 108745. https://doi.org/10.1016/j.aml.2019.106161 doi: 10.1016/j.aml.2019.106161
    [14] X. G. Zhang, P. T. Xu, Y. H. Wu, B. Wiwatanapataphe, The uniqueness and iterative properties of solutions for a general Hadamard-type singular fractional turbulent flow model, Nonlinear Anal.-Model. Control, 27 (2022), 428–444. https://doi.org/10.15388/namc.2022.27.25473 doi: 10.15388/namc.2022.27.25473
    [15] K. W. Liu, X. Lü, F. Gao, J. Zhang, Expectation-maximizing network reconstruction and most applicable network types based on binary time series data, Physica D, 454 (2023), 133834. https://doi.org/10.1016/j.physd.2023.133834 doi: 10.1016/j.physd.2023.133834
    [16] X. G. Zhang, J. Q. Jiang, Y. H. Wu, B. Wiwatanapataphee, Iterative properties of solution for a general singular n-Hessian equation with decreasing nonlinearity, Appl. Math. Lett., 112 (2021), 106826. https://doi.org/10.1016/j.aml.2020.106826 doi: 10.1016/j.aml.2020.106826
    [17] S. J. Chen, Y. H. Yin, X. Lü, Elastic collision between one lump wave and multiple stripe waves of nonlinear evolution equations, Commun. Nonlinear Sci., 121 (2023), 107205. https://doi.org/10.1016/j.cnsns.2023.107205 doi: 10.1016/j.cnsns.2023.107205
    [18] S. J. Chen, X. Lü, Y. H. Yin, Dynamic behaviors of the lump solutions and mixed solutions to a (2+1)-dimensional nonlinear model, Commun. Theor. Phys., 75 (2023), 055005. https://doi.org/10.1088/1572-9494/acc6b8 doi: 10.1088/1572-9494/acc6b8
    [19] V. O. Vakhnenko, E. J. Parkes, A. J. Morrison, A Bäcklund transformation and the inverse scattering transform method for the generalised Vakhnenko equation, Chaos Soliton Fractals, 17 (2003), 683–692. https://doi.org/10.1016/S0960-0779(02)00483-6 doi: 10.1016/S0960-0779(02)00483-6
    [20] Y. Chen, X. Lü, X. L. Wang, Bäcklun transformation, Wronskian solutions and interaction solutions to the (3+1)-dimensional generalized breaking soliton equation, Eur. Phys. J. Plus, 138 (2023), 492. https://doi.org/10.1140/epjp/s13360-023-04063-5 doi: 10.1140/epjp/s13360-023-04063-5
    [21] R. Conte, M. Musette, Link between solitary waves and projective Riccati equations, J. Phys. A: Math. Gen., 25 (1992), 5609–5623. https://doi.org/10.1088/0305-4470/25/21/019 doi: 10.1088/0305-4470/25/21/019
    [22] S. L. Xu, J. C. Liang, Exact soliton solutions to a generalized nonlinear Schrödinger equation, Commun. Theor. Phys., 53 (2010), 159–165. https://doi.org/10.1088/0253-6102/53/1/33 doi: 10.1088/0253-6102/53/1/33
    [23] W. B. Rabie, H. M. Ahmed, Construction cubic-quartic solitons in optical metamaterials for the perturbed twin-core couplers with Kudryashov's sextic power law using extended F-expansion method, Chaos Soliton Fractals, 160 (2022), 112289. https://doi.org/10.1016/j.chaos.2022.112289 doi: 10.1016/j.chaos.2022.112289
    [24] Y. H. Yin, X. Lü, Dynamic analysis on optical pulses via modified PINNs: Soliton solutions, rogue waves and parameter discovery of the CQ-NLSE, Commun. Nonlinear Sci., 126 (2023), 107441. https://doi.org/10.1016/j.cnsns.2023.107441 doi: 10.1016/j.cnsns.2023.107441
    [25] D. Gao, X. Lü, M. S. Peng, Study on the (2+1)-dimensional extension of Hietarinta equation: soliton solutions and Bäcklund transformation, Phys. Scr., 98 (2023), 095225. https://doi.org/10.1088/1402-4896/ace8d0 doi: 10.1088/1402-4896/ace8d0
    [26] M. Gürses, A. Pekcan, Nonlocal modified KdV equations and their soliton solutions by Hirota Method, Commun. Nonlinear Sci., 67 (2019), 427–448. https://doi.org/10.1016/j.cnsns.2018.07.013 doi: 10.1016/j.cnsns.2018.07.013
    [27] A. M. Wazwaz, S. A. El-Tantawy, Solving the (3+1)-dimensional KP-Boussinesq and BKP-Boussinesq equations by the simplified Hirota's method, Nonlinear Dyn., 88 (2017), 3017–3021. https://doi.org/10.1007/s11071-017-3429-x doi: 10.1007/s11071-017-3429-x
    [28] R. Hirota, Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Lett., 27 (1971), 1192–1194. https://doi.org/10.1103/PhysRevLett.27.1192 doi: 10.1103/PhysRevLett.27.1192
    [29] C. Bai, Extended homogeneous balance method and Lax pairs, Bäcklund transformation, Commun. Theor. Phys., 37 (2002), 645. https://doi.org/10.1088/0253-6102/37/6/645 doi: 10.1088/0253-6102/37/6/645
    [30] X. F. Yang, Y. Wei, Bilinear equation of the nonlinear partial differential equation and its application, J. Funct. Space, 2020 (2020), 4912159. https://doi.org/10.1155/2020/4912159 doi: 10.1155/2020/4912159
    [31] X. P. Wang, Y. R. Yang, W. Kou, R. Wang, X. R. Chen, Analytical solution of Balitsky-Kovchegov equation with homogeneous balance method, Phys. Rev. D, 103 (2021), 056008. https://doi.org/10.1103/PhysRevD.103.056008 doi: 10.1103/PhysRevD.103.056008
    [32] H. Rezazadeh, A. G. Davodi, D. Gholami, Combined formal periodic wave-like and soliton-like solutions of the conformable Schrödinger-KdV equation using the (G'/G)-expansion technique, Results Phys., 47 (2023), 106352. https://doi.org/10.1016/j.rinp.2023.106352 doi: 10.1016/j.rinp.2023.106352
    [33] A. Aniqa, J. Ahmad, Soliton solution of fractional Sharma-Tasso-Olever equation via an efficient (G'/G)-expansion method, Ain Shams Eng. J., 13 (2022), 101528. https://doi.org/10.1016/j.asej.2021.06.014 doi: 10.1016/j.asej.2021.06.014
    [34] B. Lu, The first integral method for some time fractional differential equations, J. Math. Anal. Appl., 395 (2012), 684–693. https://doi.org/10.1016/j.jmaa.2012.05.066 doi: 10.1016/j.jmaa.2012.05.066
    [35] S. Arshed, A. Biswas, A. K. Alzahrani, M. R. Belic, Solitons in nonlinear directional couplers with optical metamaterials by first integral method, Optik, 218 (2020), 165208. https://doi.org/10.1016/j.ijleo.2020.165208 doi: 10.1016/j.ijleo.2020.165208
    [36] A. M. Wazwaz, The tanh method: exact solutions of the sine-Gordon and the sinh-Gordon equations, Appl. Math. Comput., 167 (2005), 1196–1210. https://doi.org/10.1016/j.amc.2004.08.005 doi: 10.1016/j.amc.2004.08.005
    [37] O. Guner, A. Bekir, A. Korkmaz, Tanh-type and sech-type solitons for some space-time fractional PDE models, Eur. Phys. J. Plus, 132 (2017), 92. https://doi.org/10.1140/epjp/i2017-11370-7 doi: 10.1140/epjp/i2017-11370-7
    [38] X. B. Wang, S. F. Tian, H. Yan, T. T. Zhang, On the solitary waves, breather waves and rogue waves to a generalized (3+1)-dimensional Kadomtsev-Petviashvili equation, Comput. Math. Appl., 74 (2017), 556–563. https://doi.org/10.1016/j.camwa.2017.04.034 doi: 10.1016/j.camwa.2017.04.034
    [39] Z. Lan, Periodic, breather and rogue wave solutions for a generalized (3+1)-dimensional variable-coefficient B-type Kadomtsev-Petviashvili equation in fluid dynamics, Appl. Math. Lett., 94 (2019), 126–132. https://doi.org/10.1016/j.aml.2018.12.005 doi: 10.1016/j.aml.2018.12.005
    [40] S. Tarla, K. K. Ali, R. Yilmazer, M. S. Osman, New optical solitons based on the perturbed Chen-Lee-Liu model through Jacobi elliptic function method, Opt. Quantum Electron., 54 (2022), 131. https://doi.org/10.1007/s11082-022-03527-9 doi: 10.1007/s11082-022-03527-9
    [41] I. Kovacic, L. Cveticanin, M. Zukovic, Z. Rakaric, Jacobi elliptic functions: A review of nonlinear oscillatory application problems, J. Sound Vib., 380 (2016), 1–36. https://doi.org/10.1016/j.jsv.2016.05.051 doi: 10.1016/j.jsv.2016.05.051
    [42] X. F. Yang, Z. C. Deng, Y. Wei, A Riccati-Bernoulli sub-ODE method for nonlinear partial differential equations and its application, Adv. Differ. Equations, 2015 (2015), 1–17. https://doi.org/10.1186/s13662-015-0452-4 doi: 10.1186/s13662-015-0452-4
    [43] M. A. E. Abdelrahman, W. W. Mohammed, M. Alesemi, S. Albosaily, The effect of multiplicative noise on the exact solutions of nonlinear Schrödinger equation, AIMS Math., 6 (2021), 2970–2980. https://doi.org/10.3934/math.2021180 doi: 10.3934/math.2021180
    [44] M. O. Ahmed, R. Naeem, M. A. Tarar, M. S. Iqbal, F. Afzal, Existence theories and exact solutions of nonlinear PDEs dominated by singularities and time noise, Nonlinear Anal.-Model. Control, 28 (2023), 1–15. https://doi.org/10.15388/namc.2023.28.30563 doi: 10.15388/namc.2023.28.30563
    [45] W. W. Mohammed, F. M. Al-Askar, M. El-Morshedy, Impacts of Brownian motion and fractional derivative on the solutions of the stochastic fractional Davey-Stewartson equations, Demonstr. Math., 56 (2023), 20220233. https://doi.org/10.1515/dema-2022-0233 doi: 10.1515/dema-2022-0233
    [46] X. G. Zhang, P. T. Xu, Y. H. Wu, he eigenvalue problem of a singular k-Hessian equation, Appl. Math. Lett., 124 (2022), 107666. https://doi.org/10.1016/j.aml.2021.107666 doi: 10.1016/j.aml.2021.107666
    [47] X. G. Zhang, H. Tain, Y. H. Wu, B. Wiwatanapataphee, The radial solution for an eigenvalue problem of singular augmented Hessian equation, Appl. Math. Lett., 134 (2022), 108330. https://doi.org/10.1016/j.aml.2022.108330 doi: 10.1016/j.aml.2022.108330
    [48] X. G. Zhang, J. Q. Jiang, Y. H. Wu, Y. J. Cui, The existence and nonexistence of entire large solutions for a quasilinear Schrödinger elliptic system by dual approach, Appl. Math. Lett., 100 (2020), 106018. https://doi.org/10.1016/j.aml.2019.106018 doi: 10.1016/j.aml.2019.106018
    [49] M. Tajiri, On N-soliton solutions of coupled Higgs field equations, J. Phys. Soc. Jpn., 52 (1983), 2277. https://doi.org/10.1143/JPSJ.52.2277 doi: 10.1143/JPSJ.52.2277
    [50] X. B. Hu, B. L. Guo, H. W. Tam, Homoclinic orbits for the coupled Schrödinger-Boussinesq equation and coupled Higgs equation, J. Phys. Soc. Jpn., 72 (2003), 189–190. https://doi.org/10.1143/JPSJ.72.189 doi: 10.1143/JPSJ.72.189
    [51] N. Taghizadeh, M. Mirzazadeh, The first integral method to some complex nonlinear partial differential equations, J. Comput. Appl. Math., 235 (2011), 4871–4877. https://doi.org/10.1016/j.cam.2011.02.021 doi: 10.1016/j.cam.2011.02.021
    [52] Y. C. Hon, E. G. Fan, A series of exact solutions for coupled Higgs equation and coupled Schrödinger-Boussinesq equation, Nonlinear Anal. Theory Methods Appl., 71 (2009), 3501–3508. https://doi.org/10.1016/j.na.2009.02.029 doi: 10.1016/j.na.2009.02.029
  • This article has been cited by:

    1. Chengqiang Wang, Xiangqing Zhao, Can Wang, Zhiwei Lv, Synchronization of Takagi–Sugeno Fuzzy Time-Delayed Stochastic Bidirectional Associative Memory Neural Networks Driven by Brownian Motion in Pre-Assigned Settling Time, 2023, 11, 2227-7390, 3697, 10.3390/math11173697
    2. A. Karnan, G. Nagamani, Event-triggered extended dissipative synchronization for delayed neural networks with random uncertainties, 2023, 175, 09600779, 113982, 10.1016/j.chaos.2023.113982
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1405) PDF downloads(58) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog