Research article Special Issues

The Riccati-Bernoulli subsidiary ordinary differential equation method to the coupled Higgs field equation

  • Received: 06 September 2023 Revised: 06 October 2023 Accepted: 09 October 2023 Published: 19 October 2023
  • By using the Riccati-Bernoulli (RB) subsidiary ordinary differential equation method, we proposed to solve kink-type envelope solitary solutions, periodical wave solutions and exact traveling wave solutions for the coupled Higgs field (CHF) equation. We get many solutions by applying the Bäcklund transformations of the CHF equation. The proposed method is simple and efficient. In fact, we can deal with some other classes of nonlinear partial differential equations (NLPDEs) in this manner.

    Citation: Yi Wei. The Riccati-Bernoulli subsidiary ordinary differential equation method to the coupled Higgs field equation[J]. Electronic Research Archive, 2023, 31(11): 6790-6802. doi: 10.3934/era.2023342

    Related Papers:

  • By using the Riccati-Bernoulli (RB) subsidiary ordinary differential equation method, we proposed to solve kink-type envelope solitary solutions, periodical wave solutions and exact traveling wave solutions for the coupled Higgs field (CHF) equation. We get many solutions by applying the Bäcklund transformations of the CHF equation. The proposed method is simple and efficient. In fact, we can deal with some other classes of nonlinear partial differential equations (NLPDEs) in this manner.



    加载中


    [1] X. G. Zhang, L. X. Yu, J. Q. Jiang, Y. H. Wu, Y. J. Cui, Solutions for a singular Hadamard-type fractional differential equation by the spectral construct analysis, J. Funct. Space, 2020 (2020), 8392397. https://doi.org/10.1155/2020/8392397 doi: 10.1155/2020/8392397
    [2] Y. H. Yin, X. Lü, W. X. Ma, Bäcklund transformation, exact solutions and diverse interaction phenomena to a (3+1)-dimensional nonlinear evolution equation, Nonlinear Dyn., 108 (2022), 4181–4194. https://doi.org/10.1007/s11071-021-06531-y doi: 10.1007/s11071-021-06531-y
    [3] X. G. Zhang, D. Z. Kong, H. Tian, Y. H. Wu, B. Wiwatanapataphee, An upper-lower solution method for the eigenvalue problem of Hadamard-type singular fractional differential equation, Nonlinear Anal.-Model. Control, 27 (2022), 789–802. https://doi.org/10.15388/namc.2022.27.27491 doi: 10.15388/namc.2022.27.27491
    [4] C. J. Chen, K. Li, Y. P. Chen, Y. Q. Huang, Two-grid finite element methods combined with Crank-Nicolson scheme for nonlinear Sobolev equations, Adv. Comput. Math., 45 (2019), 611–630. https://doi.org/10.1007/s10444-018-9628-2 doi: 10.1007/s10444-018-9628-2
    [5] C. J. Chen, X. Y. Zhang, G. D. Zhang, Y. Y. Zhang, A two-grid finite element method for nonlinear parabolic integro-differential equations, Int. J. Comput. Math., 96 (2019), 2010–2023. https://doi.org/10.1080/00207160.2018.1548699 doi: 10.1080/00207160.2018.1548699
    [6] C. J. Chen, X. Zhao, A posteriori error estimate for finite volume element method of the parabolic equations, Numer. Methods Partial Differ. Equations, 33 (2017), 259–275. https://doi.org/10.1002/num.22085 doi: 10.1002/num.22085
    [7] B. Liu, X. E. Zhang, B. Wang, X. Lü, Rogue waves based on the coupled nonlinear Schrödinger option pricing model with external potential, Mod. Phys. Lett. B, 36 (2022), 2250057. https://doi.org/10.1142/S0217984922500579 doi: 10.1142/S0217984922500579
    [8] H. Tian, X. G. Zhang, Y. H. Wu, B. Wiwatanapataphee, Existence of positive solutions for a singular second-order changing-sign differential equation on time scales, Fractal Fract., 6 (2022), 315. https://doi.org/10.3390/fractalfract6060315 doi: 10.3390/fractalfract6060315
    [9] X. G. Zhang, L. X. Yu, J. Q. Jiang, Y. H. Wu, Y. J. Cui, Positive solutions for a weakly singular Hadamard-type fractional differential equation with changing-sign nonlinearity, J. Funct. Space, 2020(2020), 5623589. https://doi.org/10.1155/2020/5623589 doi: 10.1155/2020/5623589
    [10] C. J. Chen, H. Liu, X. C. Zheng, H. Wang, A two-grid MMOC finite element method for nonlinear variable-order time-fractional mobile/immobile advection-diffusion equations, Comput. Math. Appl., 79 (2020), 2771–2783. https://doi.org/10.1016/j.camwa.2019.12.008 doi: 10.1016/j.camwa.2019.12.008
    [11] W. X. Ma, Inverse scattering for nonlocal reverse-time nonlinear Schrödinger equations, Appl. Math. Lett., 102 (2020), 106161. https://doi.org/10.1016/j.aml.2019.106161 doi: 10.1016/j.aml.2019.106161
    [12] M. J. Ablowitz, P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press, Cambridge, UK, 1991. https://doi.org/10.1017/CBO9780511623998
    [13] X. G. Zhang, P. Chen, Y. H. Wu, B. Wiwatanapataphee, A necessary and sufficient condition for the existence of entire large solutions to a k-Hessian system, Appl. Math. Lett., 145 (2023), 108745. https://doi.org/10.1016/j.aml.2019.106161 doi: 10.1016/j.aml.2019.106161
    [14] X. G. Zhang, P. T. Xu, Y. H. Wu, B. Wiwatanapataphe, The uniqueness and iterative properties of solutions for a general Hadamard-type singular fractional turbulent flow model, Nonlinear Anal.-Model. Control, 27 (2022), 428–444. https://doi.org/10.15388/namc.2022.27.25473 doi: 10.15388/namc.2022.27.25473
    [15] K. W. Liu, X. Lü, F. Gao, J. Zhang, Expectation-maximizing network reconstruction and most applicable network types based on binary time series data, Physica D, 454 (2023), 133834. https://doi.org/10.1016/j.physd.2023.133834 doi: 10.1016/j.physd.2023.133834
    [16] X. G. Zhang, J. Q. Jiang, Y. H. Wu, B. Wiwatanapataphee, Iterative properties of solution for a general singular n-Hessian equation with decreasing nonlinearity, Appl. Math. Lett., 112 (2021), 106826. https://doi.org/10.1016/j.aml.2020.106826 doi: 10.1016/j.aml.2020.106826
    [17] S. J. Chen, Y. H. Yin, X. Lü, Elastic collision between one lump wave and multiple stripe waves of nonlinear evolution equations, Commun. Nonlinear Sci., 121 (2023), 107205. https://doi.org/10.1016/j.cnsns.2023.107205 doi: 10.1016/j.cnsns.2023.107205
    [18] S. J. Chen, X. Lü, Y. H. Yin, Dynamic behaviors of the lump solutions and mixed solutions to a (2+1)-dimensional nonlinear model, Commun. Theor. Phys., 75 (2023), 055005. https://doi.org/10.1088/1572-9494/acc6b8 doi: 10.1088/1572-9494/acc6b8
    [19] V. O. Vakhnenko, E. J. Parkes, A. J. Morrison, A Bäcklund transformation and the inverse scattering transform method for the generalised Vakhnenko equation, Chaos Soliton Fractals, 17 (2003), 683–692. https://doi.org/10.1016/S0960-0779(02)00483-6 doi: 10.1016/S0960-0779(02)00483-6
    [20] Y. Chen, X. Lü, X. L. Wang, Bäcklun transformation, Wronskian solutions and interaction solutions to the (3+1)-dimensional generalized breaking soliton equation, Eur. Phys. J. Plus, 138 (2023), 492. https://doi.org/10.1140/epjp/s13360-023-04063-5 doi: 10.1140/epjp/s13360-023-04063-5
    [21] R. Conte, M. Musette, Link between solitary waves and projective Riccati equations, J. Phys. A: Math. Gen., 25 (1992), 5609–5623. https://doi.org/10.1088/0305-4470/25/21/019 doi: 10.1088/0305-4470/25/21/019
    [22] S. L. Xu, J. C. Liang, Exact soliton solutions to a generalized nonlinear Schrödinger equation, Commun. Theor. Phys., 53 (2010), 159–165. https://doi.org/10.1088/0253-6102/53/1/33 doi: 10.1088/0253-6102/53/1/33
    [23] W. B. Rabie, H. M. Ahmed, Construction cubic-quartic solitons in optical metamaterials for the perturbed twin-core couplers with Kudryashov's sextic power law using extended F-expansion method, Chaos Soliton Fractals, 160 (2022), 112289. https://doi.org/10.1016/j.chaos.2022.112289 doi: 10.1016/j.chaos.2022.112289
    [24] Y. H. Yin, X. Lü, Dynamic analysis on optical pulses via modified PINNs: Soliton solutions, rogue waves and parameter discovery of the CQ-NLSE, Commun. Nonlinear Sci., 126 (2023), 107441. https://doi.org/10.1016/j.cnsns.2023.107441 doi: 10.1016/j.cnsns.2023.107441
    [25] D. Gao, X. Lü, M. S. Peng, Study on the (2+1)-dimensional extension of Hietarinta equation: soliton solutions and Bäcklund transformation, Phys. Scr., 98 (2023), 095225. https://doi.org/10.1088/1402-4896/ace8d0 doi: 10.1088/1402-4896/ace8d0
    [26] M. Gürses, A. Pekcan, Nonlocal modified KdV equations and their soliton solutions by Hirota Method, Commun. Nonlinear Sci., 67 (2019), 427–448. https://doi.org/10.1016/j.cnsns.2018.07.013 doi: 10.1016/j.cnsns.2018.07.013
    [27] A. M. Wazwaz, S. A. El-Tantawy, Solving the (3+1)-dimensional KP-Boussinesq and BKP-Boussinesq equations by the simplified Hirota's method, Nonlinear Dyn., 88 (2017), 3017–3021. https://doi.org/10.1007/s11071-017-3429-x doi: 10.1007/s11071-017-3429-x
    [28] R. Hirota, Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Lett., 27 (1971), 1192–1194. https://doi.org/10.1103/PhysRevLett.27.1192 doi: 10.1103/PhysRevLett.27.1192
    [29] C. Bai, Extended homogeneous balance method and Lax pairs, Bäcklund transformation, Commun. Theor. Phys., 37 (2002), 645. https://doi.org/10.1088/0253-6102/37/6/645 doi: 10.1088/0253-6102/37/6/645
    [30] X. F. Yang, Y. Wei, Bilinear equation of the nonlinear partial differential equation and its application, J. Funct. Space, 2020 (2020), 4912159. https://doi.org/10.1155/2020/4912159 doi: 10.1155/2020/4912159
    [31] X. P. Wang, Y. R. Yang, W. Kou, R. Wang, X. R. Chen, Analytical solution of Balitsky-Kovchegov equation with homogeneous balance method, Phys. Rev. D, 103 (2021), 056008. https://doi.org/10.1103/PhysRevD.103.056008 doi: 10.1103/PhysRevD.103.056008
    [32] H. Rezazadeh, A. G. Davodi, D. Gholami, Combined formal periodic wave-like and soliton-like solutions of the conformable Schrödinger-KdV equation using the (G'/G)-expansion technique, Results Phys., 47 (2023), 106352. https://doi.org/10.1016/j.rinp.2023.106352 doi: 10.1016/j.rinp.2023.106352
    [33] A. Aniqa, J. Ahmad, Soliton solution of fractional Sharma-Tasso-Olever equation via an efficient (G'/G)-expansion method, Ain Shams Eng. J., 13 (2022), 101528. https://doi.org/10.1016/j.asej.2021.06.014 doi: 10.1016/j.asej.2021.06.014
    [34] B. Lu, The first integral method for some time fractional differential equations, J. Math. Anal. Appl., 395 (2012), 684–693. https://doi.org/10.1016/j.jmaa.2012.05.066 doi: 10.1016/j.jmaa.2012.05.066
    [35] S. Arshed, A. Biswas, A. K. Alzahrani, M. R. Belic, Solitons in nonlinear directional couplers with optical metamaterials by first integral method, Optik, 218 (2020), 165208. https://doi.org/10.1016/j.ijleo.2020.165208 doi: 10.1016/j.ijleo.2020.165208
    [36] A. M. Wazwaz, The tanh method: exact solutions of the sine-Gordon and the sinh-Gordon equations, Appl. Math. Comput., 167 (2005), 1196–1210. https://doi.org/10.1016/j.amc.2004.08.005 doi: 10.1016/j.amc.2004.08.005
    [37] O. Guner, A. Bekir, A. Korkmaz, Tanh-type and sech-type solitons for some space-time fractional PDE models, Eur. Phys. J. Plus, 132 (2017), 92. https://doi.org/10.1140/epjp/i2017-11370-7 doi: 10.1140/epjp/i2017-11370-7
    [38] X. B. Wang, S. F. Tian, H. Yan, T. T. Zhang, On the solitary waves, breather waves and rogue waves to a generalized (3+1)-dimensional Kadomtsev-Petviashvili equation, Comput. Math. Appl., 74 (2017), 556–563. https://doi.org/10.1016/j.camwa.2017.04.034 doi: 10.1016/j.camwa.2017.04.034
    [39] Z. Lan, Periodic, breather and rogue wave solutions for a generalized (3+1)-dimensional variable-coefficient B-type Kadomtsev-Petviashvili equation in fluid dynamics, Appl. Math. Lett., 94 (2019), 126–132. https://doi.org/10.1016/j.aml.2018.12.005 doi: 10.1016/j.aml.2018.12.005
    [40] S. Tarla, K. K. Ali, R. Yilmazer, M. S. Osman, New optical solitons based on the perturbed Chen-Lee-Liu model through Jacobi elliptic function method, Opt. Quantum Electron., 54 (2022), 131. https://doi.org/10.1007/s11082-022-03527-9 doi: 10.1007/s11082-022-03527-9
    [41] I. Kovacic, L. Cveticanin, M. Zukovic, Z. Rakaric, Jacobi elliptic functions: A review of nonlinear oscillatory application problems, J. Sound Vib., 380 (2016), 1–36. https://doi.org/10.1016/j.jsv.2016.05.051 doi: 10.1016/j.jsv.2016.05.051
    [42] X. F. Yang, Z. C. Deng, Y. Wei, A Riccati-Bernoulli sub-ODE method for nonlinear partial differential equations and its application, Adv. Differ. Equations, 2015 (2015), 1–17. https://doi.org/10.1186/s13662-015-0452-4 doi: 10.1186/s13662-015-0452-4
    [43] M. A. E. Abdelrahman, W. W. Mohammed, M. Alesemi, S. Albosaily, The effect of multiplicative noise on the exact solutions of nonlinear Schrödinger equation, AIMS Math., 6 (2021), 2970–2980. https://doi.org/10.3934/math.2021180 doi: 10.3934/math.2021180
    [44] M. O. Ahmed, R. Naeem, M. A. Tarar, M. S. Iqbal, F. Afzal, Existence theories and exact solutions of nonlinear PDEs dominated by singularities and time noise, Nonlinear Anal.-Model. Control, 28 (2023), 1–15. https://doi.org/10.15388/namc.2023.28.30563 doi: 10.15388/namc.2023.28.30563
    [45] W. W. Mohammed, F. M. Al-Askar, M. El-Morshedy, Impacts of Brownian motion and fractional derivative on the solutions of the stochastic fractional Davey-Stewartson equations, Demonstr. Math., 56 (2023), 20220233. https://doi.org/10.1515/dema-2022-0233 doi: 10.1515/dema-2022-0233
    [46] X. G. Zhang, P. T. Xu, Y. H. Wu, he eigenvalue problem of a singular k-Hessian equation, Appl. Math. Lett., 124 (2022), 107666. https://doi.org/10.1016/j.aml.2021.107666 doi: 10.1016/j.aml.2021.107666
    [47] X. G. Zhang, H. Tain, Y. H. Wu, B. Wiwatanapataphee, The radial solution for an eigenvalue problem of singular augmented Hessian equation, Appl. Math. Lett., 134 (2022), 108330. https://doi.org/10.1016/j.aml.2022.108330 doi: 10.1016/j.aml.2022.108330
    [48] X. G. Zhang, J. Q. Jiang, Y. H. Wu, Y. J. Cui, The existence and nonexistence of entire large solutions for a quasilinear Schrödinger elliptic system by dual approach, Appl. Math. Lett., 100 (2020), 106018. https://doi.org/10.1016/j.aml.2019.106018 doi: 10.1016/j.aml.2019.106018
    [49] M. Tajiri, On N-soliton solutions of coupled Higgs field equations, J. Phys. Soc. Jpn., 52 (1983), 2277. https://doi.org/10.1143/JPSJ.52.2277 doi: 10.1143/JPSJ.52.2277
    [50] X. B. Hu, B. L. Guo, H. W. Tam, Homoclinic orbits for the coupled Schrödinger-Boussinesq equation and coupled Higgs equation, J. Phys. Soc. Jpn., 72 (2003), 189–190. https://doi.org/10.1143/JPSJ.72.189 doi: 10.1143/JPSJ.72.189
    [51] N. Taghizadeh, M. Mirzazadeh, The first integral method to some complex nonlinear partial differential equations, J. Comput. Appl. Math., 235 (2011), 4871–4877. https://doi.org/10.1016/j.cam.2011.02.021 doi: 10.1016/j.cam.2011.02.021
    [52] Y. C. Hon, E. G. Fan, A series of exact solutions for coupled Higgs equation and coupled Schrödinger-Boussinesq equation, Nonlinear Anal. Theory Methods Appl., 71 (2009), 3501–3508. https://doi.org/10.1016/j.na.2009.02.029 doi: 10.1016/j.na.2009.02.029
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1057) PDF downloads(53) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog