In the present paper, by the complex method, the meromorphic solutions of the higher order ordinary differential equation $ w^{(5)}+aw^{''}+bw^2-cw+d = 0 $ are investigated, where $ a, b, c, d $ are constant complex numbers, and $ b \neq0 $. Furthermore, by Theorem 1.1, we built elliptic and multiple-valued solutions for the higher order ordinary differential equations $ u^{(6)}-u^{(5)}+u'^2-2u'u+u^2+2u'-2u+1 = 0 $ and $ u^{(6)}-u^{(5)}+au^{'''}-au''+bu'^2-2bu'u+bu^2-cu'+cu+d = 0 $. At the end, we give some new meromorphic solutions for two higher-order KdV-like equations.
Citation: Guoqiang Dang. Elliptic and multiple-valued solutions of some higher order ordinary differential equations[J]. Electronic Research Archive, 2023, 31(10): 5946-5958. doi: 10.3934/era.2023302
In the present paper, by the complex method, the meromorphic solutions of the higher order ordinary differential equation $ w^{(5)}+aw^{''}+bw^2-cw+d = 0 $ are investigated, where $ a, b, c, d $ are constant complex numbers, and $ b \neq0 $. Furthermore, by Theorem 1.1, we built elliptic and multiple-valued solutions for the higher order ordinary differential equations $ u^{(6)}-u^{(5)}+u'^2-2u'u+u^2+2u'-2u+1 = 0 $ and $ u^{(6)}-u^{(5)}+au^{'''}-au''+bu'^2-2bu'u+bu^2-cu'+cu+d = 0 $. At the end, we give some new meromorphic solutions for two higher-order KdV-like equations.
[1] | M. A. Abdou, The extended F-expansion method and its application for a class of nonlinear evolution equations, Chaos, Solitons Fractals, 31 (2007), 95–104. https://doi.org/10.1016/j.chaos.2005.09.030 doi: 10.1016/j.chaos.2005.09.030 |
[2] | J. H. He, M. A. Abdou, New periodic solutions for nonlinear evolution equations using exp-function method, Chaos, Solitons Fractals, 34 (2007), 1421–1429. https://doi.org/10.1016/j.chaos.2006.05.072 doi: 10.1016/j.chaos.2006.05.072 |
[3] | J. H. He, X. H. Wu, Exp-function method for nonlinear wave equations, Chaos, Solitons Fractals, 30 (2006), 700–708. https://doi.org/10.1016/j.chaos.2006.03.020 doi: 10.1016/j.chaos.2006.03.020 |
[4] | W. Malfliet, W. Hereman, The tanh method: I. exact solutions of nonlinear evolution and wave equations, Phys. Scr., 54 (1996), 563–568. https://doi.org/10.1088/0031-8949/54/6/003 doi: 10.1088/0031-8949/54/6/003 |
[5] | M. J. Ablowitz, P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press, 1991. |
[6] | N. Taghizadeh, A. Neirameh, New complex solutions for some special nonlinear partial differential systems, Comput. Math. Appl., 62 (2011), 2037–2044. https://doi.org/10.1016/j.camwa.2011.06.046 doi: 10.1016/j.camwa.2011.06.046 |
[7] | A. M. Wazwaz, A sine-cosine method for handling nonlinear wave equations, Math. Comput. Modell., 40 (2004), 499–508. https://doi.org/10.1016/j.mcm.2003.12.010 doi: 10.1016/j.mcm.2003.12.010 |
[8] | M. Eslami, M. A. Mirzazadeh, A. Neirameh, New exact wave solutions for Hirota equation, Pramana, 84 (2015), 3–8. https://doi.org/10.1007/s12043-014-0837-z doi: 10.1007/s12043-014-0837-z |
[9] | W. X. Ma, J. H. Lee, A transformed rational function method and exact solutions to the 3+1 dimensional Jimbo-Miwa equation, Chaos, Solitons Fractals, 42 (2009), 1356–1363. https://doi.org/10.1016/j.chaos.2009.03.043 doi: 10.1016/j.chaos.2009.03.043 |
[10] | B. Li, Y. Chen, H. Zhang, Auto-Bäcklund transformation and exact solutions for compound KdV-type and compound KdV-Burgers-type equations with nonlinear terms of any order, Phys. Lett. A, 305 (2002), 377–382. https://doi.org/10.1016/S0375-9601(02)01515-3 doi: 10.1016/S0375-9601(02)01515-3 |
[11] | H. Zhang, New application of the $(\frac{G'}{G})$-expansion method, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 3220–3225. https://doi.org/10.1016/j.cnsns.2009.01.006 doi: 10.1016/j.cnsns.2009.01.006 |
[12] | C. Tian, Lie Group and Its Applications in Partial Differential Equations, Beijing Science Press, 2001. |
[13] | W. J. Yuan, Y. Z. Li, J. M. Lin, Meromorphic solutions of an auxiliary ordinary differential equation using complex method, Math. Methods Appl. Sci., 36 (2013), 1776–1782. https://doi.org/10.1002/mma.2723 doi: 10.1002/mma.2723 |
[14] | G. Dang, Meromorphic solutions of the (2+1)- and the (3+1)-dimensional BLMP equations and the (2+1)-dimensional KMN equation, Demonstratio Math., 54 (2021), 129–139. https://doi.org/10.1515/dema-2021-0009 doi: 10.1515/dema-2021-0009 |
[15] | G. Dang, New exact solutions of the sixth-order thin-film equation with complex method, Partial Differ. Equations Appl. Math., 4 (2021), 100116. https://doi.org/10.1016/j.padiff.2021.100116 doi: 10.1016/j.padiff.2021.100116 |
[16] | G. Dang, Meromorphic solutions of the seventh-order KdV equation by using an extended complex method and Painlevé analysis, ScienceAsia, 49 (2023), 108–115. https://doi.org/10.2306/scienceasia1513-1874.2023.133 doi: 10.2306/scienceasia1513-1874.2023.133 |
[17] | G. Dang, Q. Liu, Solving the conformable Huxley equation using the complex method, Electron. Res. Arch., 31 (2023), 1303–1322. https://doi.org/10.3934/era.2023067 doi: 10.3934/era.2023067 |
[18] | A. Eremenko, Meromorphic traveling wave solutions of the Kuramoto-Sivashinsky equation, preprint, arXiv: nlin/0504053. |
[19] | R. Conte, T. W. Ng, Meromorphic solutions of a third order nonlinear differential equation, J. Math. Phys., 51 (2010), 033518. https://doi.org/10.1063/1.3319568 doi: 10.1063/1.3319568 |
[20] | M. V. Demina, N. A. Kudryashov, From Laurent series to exact meromorphic solutions: the Kawahara equation, Phys. Lett. A, 374 (2010), 4023–4029. https://doi.org/10.1016/j.physleta.2010.08.013 doi: 10.1016/j.physleta.2010.08.013 |
[21] | S. Lang, Elliptic Functions, 2nd Ed, New York, Springer Verlag, 1987. |
[22] | W. J. Yuan, Y. D. Shang, Y. Huang, H. Wang, The representation of meromorphic solutions of certain ordinary differential equations and its applications, Sci. Sin. Math., 43 (2013), 563–575. https://doi.org/10.1360/012012-159 doi: 10.1360/012012-159 |
[23] | Z. F. Huang, L. M. Zhang, Q. H. Cheng, W. J. Yuan, The representation of meromorphic solutions for a class of odd order algebraic differential equations and its applications, Math. Methods Appl. Sci., 37 (2014), 1553–1560. https://doi.org/10.1002/mma.3053 doi: 10.1002/mma.3053 |
[24] | I. Laine, Nevanlinna Theory and Complex Differential Equations, Berlin, New York: Walter de Gruyter, 1993. https://doi.org/10.1515/9783110863147 |
[25] | K. Zhuang, Z. Du, X. Lin, Solitary waves solutions of singularly perturbed higher-order KdV equation via geometric singular perturbation method, Nonlinear Dyn., 80 (2015), 629–635. https://doi.org/10.1007/s11071-015-1894-7 doi: 10.1007/s11071-015-1894-7 |
[26] | D. Kaya, An explicit and numerical solutions of some fifth-order KdV equation by decomposition method, Appl. Math. Comput., 144 (2003), 353–363. https://doi.org/10.1016/S0096-3003(02)00412-5 doi: 10.1016/S0096-3003(02)00412-5 |
[27] | Y. Zhang, W. X. Ma, Rational solutions to a KdV-like equation, Appl. Math. Comput., 256 (2015), 252–256. https://doi.org/10.1016/j.amc.2015.01.027 doi: 10.1016/j.amc.2015.01.027 |
[28] | Y. Zhang, W. X. Ma, A study on rational solutions to a KP-like equation, Z. Naturforsch., A, 70 (2015), 263–268. https://doi.org/10.1515/zna-2014-0361 doi: 10.1515/zna-2014-0361 |
[29] | W. X. Ma, Soliton hierarchies and soliton solutions of type $(-\lambda ^*, \lambda)$ reduced nonlocal nonlinear Schrödinger equations of arbitrary even order, Partial Differ. Equations Appl. Math., 7 (2023), 100515. https://doi.org/10.1016/j.padiff.2023.100515 doi: 10.1016/j.padiff.2023.100515 |
[30] | W. X. Ma, Soliton solutions to constrained nonlocal integrable nonlinear Schördinger hierarchies of type $(-\lambda, \lambda)$, Int. J. Geom. Methods Mod. Phys., 20 (2023), 2350098. https://doi.org/10.1142/S0219887823500986 doi: 10.1142/S0219887823500986 |