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Abstract: In the present paper, by the complex method, the meromorphic solutions of the higher order
ordinary differential equation w(5)+aw

′′

+bw2−cw+d = 0 are investigated, where a, b, c, d are constant
complex numbers, and b , 0. Furthermore, by Theorem 1.1, we built elliptic and multiple-valued
solutions for the higher order ordinary differential equations u(6)−u(5)+u′2−2u′u+u2+2u′−2u+1 = 0
and u(6) − u(5) + au

′′′

− au′′ + bu′2 − 2bu′u + bu2 − cu′ + cu + d = 0. At the end, we give some new
meromorphic solutions for two higher-order KdV-like equations.

Keywords: the complex method; meromorphic solution; elliptic function; multiple-valued solution;
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1. Introduction

Non-linear differential equations are widely applied to represent complex phenomena in many nat-
ural sciences, and exact solutions contribute to well understanding of natural phenomena. Therefore, it
is important to study the exact solutions of non-linear differential equations. There are many effective
methods that are being used to find exact solutions of differential equations, such as the F-expansion
method [1], the exponential function method [2,3], the tanh method [4], the inverse scattering transform
method [5], the direct algebraic method [6], the sine-cosine method [7], the first integral method [8], the
transformed rational function method [9], the Bäcklund transform method [10], the (G′/G)-expansion
method [11] and the Lie group method [12].

We say w(z) is a meromorphic function, which means that w(z) is analytic in the complex plane C
except for poles. In recent years, many researchers studied complex differential equations using the
complex method [13] and Nevanlinna’s theory, and build some new elliptic function solutions and
simple periodic function solutions, for instance, see [14–17]. These results show that the complex
method is an effective tool for constructing explicit meromorphic solutions for complex differential
equations. In this paper, we consider the following partial differential equation
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ut + auxxx + 2buux + uxxxxxx = 0, (1.1)

where u(x, t) is a real-valued function, a, b(, 0) are real constants. Equation (1.1) is a modified version
of the Kuramoto-Sivashinsky equation in [18] which has aroused great interest in physical scientists
in recent years. Define a meromorphic function f belongs to the class W (see [18]) if f is an elliptic
function, a rational function of eαz(α ∈ C) or a rational function of z. The Kuramoto-Sivashinsky
equation reads ϕt + νϕxxxx + bϕxxx + µϕxx + ϕϕx = 0, ν, b, µ ∈ R, ν , 0. By the traveling wave
transformation ϕ(x, t) = c + w(z), z = x − ct, it reduces to the ordinary differential equation

νw′′′ + bw′′ + µw′ + w2/2 + A = 0, ν , 0. (1.2)

Eremenko applied the Nevanlinna theory and found that all meromorphic solutions of Eq (1.2)
belong to the class W, and if for some values of parameters such solution w exists, then all other
meromorphic solutions form a one-parametric family w(z − z0). Further, elliptic solutions exist only
if b2 = 16 µν, non-constant rational solutions exist if and only if b = µ = A = 0, and all exponential
solutions have the form of P(tan kz), where P is a polynomial [18]. In this direction, the motivation of
this paper is, therefore, whether it is possible to study very high order differential equations, such as
Eq (1.1), to study whether these equations have solutions in W, whether there are only solutions in W,
and, further, find out the expressions for the solutions.

Take traveling wave transformation u(x, t) = w(z), z = x − ct into Eq (1.1) and get the fifth-order
algebraic ordinary differential equation (ODE)

w(5) + aw′′ + bw2 − cw + d = 0, (1.3)

where a, b(, 0), c, d are constant complex numbers, and the superscript (k) denotes the kth derivative
with respect to z.

Conte and Ng used the subequations method to obtain meromorphic solutions for the generalized
third-order differential equation (see [19], pp. 2, Eq (3)). Demina and Kudryashov used the Laurent
series method to study some non-linear partial differential equations, such as the Kawahara equation
[20]. However, higher-order ODEs are rarely touched. Starting from this point, our aim is to prove that
all meromorphic solutions for Eq (1.3) belong to the class W, and use the complex method and direct
method of substitution to construct non-trivial elliptic and multiple-valued solutions of Eqs (1.3), (1.4)
and (1.7). Further, we will prove the following results.

Theorem 1.1. Equation (1.3) is integrable if and only if 4bd − c2 = 0, and all meromorphic solutions
w(z) belong to class W, with a movable quintuple pole at an arbitrary complex constant z0.

1) If a , 0, the only elliptic solution is

wd(z) = −
7560

b
℘(z − z0)℘

′

(z − z0) −
630a
41b
℘(z − z0) +

c
2b
,

where z0 ∈ C, g2 = 0, g3 =
2a2

226935 . Eq (1.3) is without rational and simply periodic function solution.
2) If a = 0, the only rational function solution is

wr(z) =
15120

b
1

(z − z0)5 +
c

2b
.
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Put z = x − ct into former solutions, and the traveling wave solutions for Eq (1.1) will be obtained
immediately.

For some values of the parameters, Theorem 1.1 shows that Eq (1.3) has only elliptic function
solutions and rational function solutions. We can use the results of Theorem 1.1 to evaluate the ex-
istence of solutions to more complex sixth-order differential equations through a kind of functional
transformation, for instance, Eqs (1.4) and (1.7). The results show that we obtain a class of innovative
multiple-valued solutions for some complex ordinary differential equations. By Theorem 1.1, we prove
the following theorems.

Theorem 1.2. Consider the sixth-order ODE

u(6) − u(5) + u′2 − 2u′u + u2 + 2u′ − 2u + 1 = 0, u := u(z). (1.4)

1) Equation (1.4) has the following form multiple-valued function solution

u1(z) = 1 −
3780

(z − z0)4 +
1260

(z − z0)3 −
630

(z − z0)2 +
630

(z − z0)
− 630ez−z0

∫
e−z+z0

z − z0
dz + βez−z0 , (1.5)

where β, z0 ∈ C are arbitrary.
2) Equation (1.4) bas the following meromorphic solution

u2(z) = βez−z0 + 1, (1.6)

where β, z0 ∈ C are arbitrary.

Theorem 1.3. Consider the sixth-order ODE

u(6) − u(5) + au
′′′

− au′′ + bu′2 − 2bu′u + bu2 − cu′ + cu + d = 0, u := u(z), (1.7)

a, b(, 0), c, d are constant complex numbers. If 4bd = c2, Eq (1.7) has the following elliptic and
multi-valued solution

u2(z) = −
630
b

[
℘
′′

(z − z0) + ℘
′

(z − z0) + ℘(z − z0)
]

−
25830 + 630a

41b
ez−z0

∫
℘(z)e−(z−z0)dz −

c
2b
+ βez−z0 ,

(1.8)

where β, z0 ∈ C are arbitrary, g2 = 0, g3 =
2a2

226935 .

This paper is organized as follows. In Section 2, we will introduce some mathematical definitions,
lemmas, and the complex method. In Section 3, we will prove the three theorems. In Section 4, we
will give elliptic meromorphic solutions to the modified singularly perturbed generalized higher-order
KdV equation and the special sixth-order KdV-like equation by virtue of Eq (1.3). In Section 5, we
will give the conclusions and discussion and pose two unsolved conjectures for the readers.
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2. Lemmas and the complex method

In this section, we introduce the related concepts, the lemmas, and the complex method [13].
Set m ∈ N, r j ∈ N ∪ {0}, r = (r0, r1, ..., rm), j = 0, 1, ...,m.
Define differential monomial

Mr[w](z) := [w(z)]r0[w′(z)]r1[w′′(z)]r2 · · · [w(m)(z)]rm .

p(r) := r0 + r1 + · · · + rm is called the degree of Mr[w].
Define differential polynomial

P(w,w′, · · · ,w(m)) :=
∑
r∈I

ar Mr[w],

where ar are constants, and I is a finite index set. The degree of P(w,w′, · · · ,w(m)) is defined by

deg P(w,w′, · · · ,w(m)) := max
r∈I
{p(r)}.

Consider an autonomous algebraic ODE

P(w,w′, · · · ,w(m)) = bwn + c (2.1)

where P is a polynomial in w(z) and its arguments with constant coefficients, b(, 0) and c are complex
constants. We investigate the solutions, which are in the form of the formal Laurent series

w(z) =
∞∑

k=−q

ck(z − z0)k.

If there are exactly p distinct formal Laurent series

w(z) =
∞∑

k=−q

ckzk (q > 0, c−q , 0) (2.2)

satisfy Eq (2.1), we say Eq (2.1) satisfies ⟨p, q⟩ condition. If we only determine p distinct principle
parts w(z) =

∑−1
k=−q ckzk (q > 0, c−q , 0), we say Eq (2.1) satisfies weak ⟨p, q⟩ condition. If Eq (2.1)

satisfies ⟨p, q⟩ condition, we say Eq (2.1) satisfies the finiteness property: has only finitely many formal
Laurent series with finite principle part admitting the equation.

Let ω1, ω2 be two fixed complex numbers such that Imω1
ω2
> 0, L = L[2ω1, 2ω2] be discrete subset

L[2ω1, 2ω2] = {ω | ω = 2mω1 + 2nω2, m, n ∈ Z}, which is isomorphic to Z × Z. The discriminant
∆ = ∆(c1, c2) := c3

1 − 27c2
2.

Weierstrass ℘(z) := ℘(z, g2, g3) function is a meromorphic function with two periods 2ω1, 2ω2 and
solves equation (℘′(z))2 = 4℘(z)3 − g2℘(z) − g3, where g2, g3 are elliptic invariants defined by

g2 =
∑

(m,n),(0,0)

60
(2mω1 + 2nω2)4 , g3 =

∑
(m,n),(0,0)

140
(2mω1 + 2nω2)6 ,
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and g3
2 − 27g2

3 , 0. The addition formula is

℘(z − z0) = −℘(z) − ℘(z0) +
1
4

[
℘′(z) + ℘′(z0)
℘(z) − ℘(z0)

]2
. (2.3)

The Weierstrass ℘ function has the Laurent series expansion

℘(z) =
1
z2 +

g2z2

20
+

g3z4

28
+ O(|z|6).

Furthermore, ℘′(−z) = −℘′(z), 2℘′′(z) = 12℘2(z) − g2, ℘
′′′(z) = 12℘(z)℘′(z), · · · , any kth derivatives

of ℘ can be deduced by the identities [21].

Lemma 2.1 ( [13, 22, 23]). Let p, l,m, n ∈ N. If deg P(w,w′, ...,w(m))) < n and Eq (2.1) satisfies ⟨p, q⟩
condition, then all non-constant meromorphic solutions w ∈ W and must be one of the following three
forms:

(i) Each elliptic solution with a pole at z = 0 can be written as

w(z) =
l−1∑
i=1

q∑
j=2

(−1) jc−i j

( j − 1)!
d j−2

dz j−2

14
[
℘′(z) + Bi

℘(z) − Ai

]2
− ℘(z)


+

l−1∑
i=1

c−i1

2
℘′(z) + Bi

℘(z) − Ai
+

q∑
j=2

(−1) jc−l j

( j − 1)!
d j−2

dz j−2℘(z) + c0,

(2.4)

where c−i j are given by Eq (2.2), B2
i = 4A3

i − g2Ai − g3 and
l∑

i=1

c−i1 = 0, c0 ∈ C.

(ii) Each rational function solution w := R(z) is of the form

R(z) =
l∑

i=1

q∑
j=1

ci j

(z − zi) j + c0, (2.5)

with l(≤ p) distinct poles of multiplicity q.
(iii) Each simply periodic solution is a rational function R(ξ) of ξ = eαz(α ∈ C). R(ξ) has l(≤ p)

distinct poles of multiplicity q, and is of the form

R(ξ) =
l∑

i=1

q∑
j=1

ci j

(ξ − ξi) j + c0. (2.6)

Lemma 2.2 ( [23]). Let p, l,m, n ∈ N, degP(w,w′, ...,w(m))) < n, m is an odd integer. If Eq (2.1) satisfies
weak ⟨p, q⟩ condition and the dominant part Ê(z,w) = w(m) − awn, then all meromorphic solutions
w(z) of Eq (2.1) belong to class W.

Suppose that Eq (2.1) satisfies weak ⟨p, q⟩ condition, we can also construct meromorphic solutions
by Eqs (2.4)–(2.6).

Apply the complex method [13], we will pose the following steps:
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Step 1 Substituting the transform T : u(x, y, t) → w(z), (x, y, t) → z into a given PDE gives a
non-linear ordinary differential Eq (2.1).

Step 2 Substitute (2.2) into Eq (2.1) to determine that weak ⟨p, q⟩ condition holds.
Step 3 By indeterminant relation Eqs (2.4)–(2.6) find the elliptic, rational and simply periodic

solutions w(z) of Eq (2.1) with pole at z = 0, respectively.
Step 4 By Lemma 2.1 obtain meromorphic solutions w(z − z0).
Step 5 Substituting the inverse transform T−1 into the meromorphic solutions w(z − z0), then get all

exact solutions u(x, y, t) of the original given PDE.
There is no unified method to handle all types of differential equations and obtain all types of

solutions. One of the fundamental reasons we apply the complex method in the current paper is that
by applying this method, we can obtain new meromoprhic solutions on the complex domains, e.g.,
W-class solutions.

3. The proof of the theorems

3.1. The Proof of Theorem 1.1

Proof. It is easy to check that Eq (1.3) has no nonconstant polynomial solution. Then, by Wiman-
Valiron theory (see [24], Chapter 3), we have that the Eq (1.3) does not have transcendental entire
solutions since there is only one top degree term in Eq (1.3). Suppose that w(z) is a meromorphic
solution of Eq (1.3), with a movable pole at z = 0, then in a neighborhood of z = 0, the Laurent series
of w(z) is the form of

∑∞
k=−q ckzk (q > 0, c−q , 0). The degree of the pole z = 0 and the coefficient c−q

can be uniquely determined by equating equation w(5) + bw2 = 0. Substituting
∑∞

k=−q ckzk into Eq (1.3),
we have p = 1, q = 5, c−5 =

15120
b , c−4 = 0, c−3 = 0, c−2 = −

630a
41b , c−1 = 0, c0 =

c
2b . Hence Eq (1.3)

satisfies weak ⟨p, q⟩ = ⟨1, 5⟩ condition, and w(z) has the following form Laurent series

w(z) =
15120

b
1
z5 −

630a
41b

1
z2 +

c
2b
+ . . .

Furthermore, the dominant term is Ê(z,w) = w
′′′′′

+ bw2, therefore by Lemma 2.2, all meromorphic
solutions w ∈ W. In the following, we are going to solve Eq (1.3).

1) a , 0.
By (2.4), we infer that the indeterminant of elliptic solution with pole z = 0 is

wd0(z) = −
c−5

24
℘
′′′

(z, g2, g3) + c−2℘(z, g2, g3) + c0. (3.1)

Substituting (3.1) into Eq (1.3), we have
(967680a2℘2(z)− 109800230400g3℘

2(z)− 12810026880g2
2℘(z)+ 78109920ag2℘

′(z)+ 51660a2g2 +

6724db − 1681c2 − 10065021120g2g3)/6724b = 0.
Combining similar terms, we have
(967680a2 − 109800230400g3)℘(z)2 − 12810026880g2

2℘(z) + 78109920ag2℘
′(z) + 51660a2g2 +

6724db − 1681c2 − 10065021120g2g3 = 0.
Eliminating the coefficients for the above functional relation, we have 967680a2 −

109800230400g3 = 0,−12810026880g2
2 = 0, 78109920ag2 = 0, 51660a2g2 + 6724db − 1681c2 −

10065021120g2g3 = 0, so g2 = 0, g3 = 2a2/226935, and 6724bd − 1681c2 = 0.
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Therefore, we yield that Eq (1.3) is integrable provided that 4bd − c2 = 0 (if 4bd − c2 , 0, the
constant terms in the expansion of Eq (1.3) can not be vanished), then Eq (1.3) has the following
elliptic solution

wd(z) = −
630

b
℘
′′′

(z − z0) −
630a
41b
℘(z − z0) +

c
2b

= −
7560

b
℘(z − z0)℘

′

(z − z0) −
630a
41b
℘(z − z0) +

c
2b
,

(3.2)

where z0 ∈ C, g2 = 0, g3 = 2a2/226935. By additional formula and (2.4), we know that each elliptic
function w can be written as w = R1(℘) + R2(℘)℘′, where R1,R2 are uniquely determined rational
functions.

By (2.5), we infer that the indeterminant of rational solution with pole z = 0 is

wr0(z) =
c−5

z5 +
c−2

z2 + h, (3.3)

h is constant. Substituting (3.3) into Eq (1.3), eliminating the coefficients, we have
30240h − 15120c

b = 0
241920a2

1681b = 0
−1260ah

41 + 630ca
41b = 0

bh2 − ch + d = 0.

It contradicts with a , 0, therefore, Eq (1.3) doesn’t have any rational function solution.
By (2.6), we infer that the indeterminant of simply periodic solution with pole z = 0 is

R(z) =
c−5

(ξ − 1)5 +
c−2

(ξ − 1)2 + c0, (3.4)

setting ξ = eαz, substituting (3.4) into Eq (1.3), we have

(R′′′′′ξ5 + 10R′′′′ξ4 + 25R′′′ξ3 + 15R′′ξ2 + R′ξ)α5 + (aR′′ξ2 + aRξ)α2 + bR2 − cR + d = 0, (3.5)

then eliminating the coefficients, letting the leading terms equal to zero, we have α5e5αz − 1 = 0, hence
z = − 1

α
logα, but it is contradict with z is arbitrary. Therefore Eq (1.3) doesn’t have any simple periodic

solution.
2) a = 0.
By (3.2), letting g3 = 0, it is obvious to see that

wr(z) = −
630

b
℘
′′′

(z − z0, 0, 0) +
c

2b
=

15120
b

1
(z − z0)5 +

c
2b

(3.6)

is the unique rational solution when a = 0, where z0 ∈ C.
Thus, we complete the proof of Theorem 1.1.
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3.2. The proof of Theorem 1.2

Proof. We take a transformation u(z) := (
∫

w(z)e−zdz + β)ez into Eq (1.4), where β is an arbitrary
constant and w(z) is a meromorphic function on the complex plane. Then, we reduce Eq (1.4) to

w(5) + w2 + 2w + 1 = 0. (3.7)

1) By Theorem 1.1, all the non-constant meromorphic solution with pole z = 0 of Eq (3.7) is

w(z) =
15120

z5 − 1, (3.8)

so we get

u0(z) = (
∫

(
15120

z5 − 1)e−zdz + β)ez

= 1 −
3780

z4 +
1260

z3 −
630
z2 +

630
z
+ 630ez

∫
e−z

z
dz + βez.

(3.9)

Furthermore, the solutions with pole z = z0 ∈ C of Eq (1.4) is

u1(z) = 1 −
3780

(z − z0)4 +
1260

(z − z0)3 −
630

(z − z0)2 +
630

(z − z0)
− 630ez−z0

∫
e−z+z0

z − z0
dz + βez−z0 ,

where β, z0 ∈ C arbitrary. Clearly,

∫
e−z

z
dz =

∞∑
n=1

(−1)n

nn!
zn + log z + γ, (3.10)

γ is a constant. According to the multiple-valued property of Logarithmic function log z, solution (1.5)
demonstrates that Eq (1.4) has a class of multiple-valued solutions that do not belong to W.

2) Since w(z) = −1 is the only constant meromorphic solution of (3.7), a trivial verification shows
that only u2(z) = βez−z0 + 1 satisfy Eq (1.4), where β, z0 ∈ C arbitrary. It implies that all meromorphic
solutions of Eq (1.4) be (1.6).

The proof of Theorem 1.2 is completed.

3.3. The Proof of Theorem 1.3

Proof. By the transformation u(z) := (
∫

w(z)e−zdz + β)ez, Eq (1.7) will be change into (1.3):

w(5) + aw′′ + bw2 − cw + d = 0,

where β is arbitrary, w(z) is meromorphic in the complex plane.
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Letting ℘(z) := ℘(z, g2, g3), here g2 = 0, g3 = 2a2/226935. By Theorem 1.1, if 4bd = c2 , we have,

u0(z) =
{∫ [

−
630
b
℘
′′′

(z) −
630a
41b
℘(z) +

c
2b

]
e−zdz + β

}
ez

=

{
−

630
b

∫
℘
′′′

(z)e−zdz −
630a
41b

∫
℘(z)e−zdz +

c
2b

∫
e−zdz + β

}
ez

=

{
−

630
b

[
e−z℘

′′

(z) + e−z℘
′

(z) + e−z℘(z) +
∫
℘(z)e−zdz

]
−

630a
41b

∫
℘(z)e−zdz −

c
2b

e−z + β

}
ez

= −
630

b

[
℘
′′

(z) + ℘
′

(z) + ℘(z) + ez
∫
℘(z)e−zdz

]
−

630a
41b

ez
∫
℘(z)e−zdz −

c
2b
+ βez

= −
630

b

[
℘
′′

(z) + ℘
′

(z) + ℘(z)
]
−

25830 + 630a
41b

ez
∫
℘(z)e−zdz −

c
2b
+ βez.

(3.11)

Therefore, Eq (1.7) has the following elliptic multiple-valued solutions with pole z = z0 ∈ C:

u2(z) = −
630
b

[
℘
′′

(z − z0) + ℘
′

(z − z0) + ℘(z − z0)
]
−

25830 + 630a
41b

ez−z0

∫
℘(z)e−(z−z0)dz −

c
2b
+ βez−z0 ,

where β, z0 ∈ C is arbitrary, 4bd = c2, g2 = 0, g3 = 2a2/226935.
The proof of Theorem 1.3 is completed.

4. Applications

The complex method has been applied in the process of many higher order differential equations,
such as the six-order thin-film equation [15], the seventh-order KdV equation [16] with the assistance
of Painlevé analysis and Nevanlinna theory. Many meromorphic solutions are constructed. In this
section, the following sixth-order KdV-like equations are considered again, and the exact solutions are
derived with the aid of Eq (1.3).

4.1. The modified singularly perturbed generalized higher-order KdV equation

The modified singularly perturbed generalized higher-order KdV equation [25] be

Ut + αUn+1Ux + βUxxx + ϵUxxxxxx = 0, (4.1)

where α, β, ϵ are positive constants. Assume n = 0, substituting the traveling wave transformation

U(x, t) = w(z), z = (ϵ−1)1/6x − ct

into Eq (4.1), then
− cw′ + α(ϵ−1)1/6ww′ + β(ϵ−1)1/2w′′′ + w(6) = 0, (4.2)

integrating it yields
− cw + α(ϵ−1)1/6w2/2 + β(ϵ−1)1/2w′′ + w(5) + d = 0, (4.3)
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by Theorem 1.1, if and only if 2α(ϵ−1)1/6d = c2, Eq (4.1) has elliptic meromorphic solutions:

w(z) = −15120
ϵ1/6

α
℘(z − z0)℘

′

(z − z0) −
1260
41
β

α
(ϵ−1)1/3℘(z − z0) +

cϵ1/6

α
, (4.4)

where z0 ∈ C, g2 = 0, g3 = 2β2ϵ−1/226935. Then substitute z = (ϵ−1)1/6x − ct into (4.4), the traveling
wave solutions for the modified singularly perturbed generalized higher-order KdV equation will be
built. Suppose that β = 0 in Eq (4.1) and (4.4), the rational solutions will be derived instantly.

4.2. The special sixth-order KdV-like equation

We second give an example, modified from Kaya ( [26], Example 2), consider a special sixth-order
KdV equation as following

Ut + Ux + UUx − Uxxx + Uxxxxxx = 0. (4.5)

Substituting the traveling wave transformation

U(x, t) = w(z), z = x − λt

into Eq (4.5), then
(1 − λ)w′ + ww′ − w′′′ + w(6) = 0, (4.6)

integrating it yields
(1 − λ)w + w2/2 − w′′ + w(5) + d = 0, (4.7)

by Theorem 1.1, if and only if 2d = (λ − 1)2, Eq (4.5) has elliptic meromorphic solutions:

w(z) = −15120℘(z − z0)℘
′

(z − z0) + 1260/41℘(z − z0) + λ − 1, (4.8)

where z0 ∈ C, g2 = 0, g3 = 2/226935. Then, substitute z = x − λt into (4.8), and the traveling wave
solutions for Eq (4.5) will be built.

5. Conclusions and discussion

We prove that all meromorphic solutions for Eq (1.3) belong to the class W, and construct them
by the complex method. Using a functional transformation u(z) = (

∫
w(z)e−zdz + β)ez, we obtain the

elliptic and multiple-valued solutions for the high order nonlinear Eqs (1.4) and (1.7). At last, we give
two applications on the KdV-like equations for Theorem 1.1. In conclusion, the complex method is
an effective method for constructing explicit traveling wave solutions for some high-order nonlinear
differential equations, such as elliptic solutions, simple periodic solutions and rational solutions. Most
recently, the non-traveling wave rational solutions of a KdV-like equation [27] and a KP-like equation
[28], the non-traveling wave soliton solutions of two types of nonlocal integrable nonlinear Schrödinger
equation were investigated [29,30]. It is of great interest to investigate the traveling wave reduced KdV-
like equation and the KP-like equation, and the nonlocal integrable nonlinear Schrödinger equations
using the complex method to construct rational solutions and meromorphic solutions.

Furthermore, we would like to raise the unsolved conjectures for readers:
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Conjecture 1 Equation (1.4) does not have any other multiple-valued function solutions except for
the solution (1.5).
Conjecture 2 Equation (1.7) does not have any other multiple-valued function solutions except for
the solution (1.8).
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extended complex method and Painlevé analysis, ScienceAsia, 49 (2023), 108–115.
https://doi.org/10.2306/scienceasia1513-1874.2023.133

17. G. Dang, Q. Liu, Solving the conformable Huxley equation using the complex method, Electron.
Res. Arch., 31 (2023), 1303–1322. https://doi.org/10.3934/era.2023067

18. A. Eremenko, Meromorphic traveling wave solutions of the Kuramoto-Sivashinsky equation,
preprint, arXiv:nlin/0504053.

19. R. Conte, T. W. Ng, Meromorphic solutions of a third order nonlinear differential equation, J.
Math. Phys., 51 (2010), 033518. https://doi.org/10.1063/1.3319568

20. M. V. Demina, N. A. Kudryashov, From Laurent series to exact meromor-
phic solutions: the Kawahara equation, Phys. Lett. A, 374 (2010), 4023–4029.
https://doi.org/10.1016/j.physleta.2010.08.013

21. S. Lang, Elliptic Functions, 2nd Ed, New York, Springer Verlag, 1987.

22. W. J. Yuan, Y. D. Shang, Y. Huang, H. Wang, The representation of meromorphic solutions of
certain ordinary differential equations and its applications, Sci. Sin. Math., 43 (2013), 563–575.
https://doi.org/10.1360/012012-159

23. Z. F. Huang, L. M. Zhang, Q. H. Cheng, W. J. Yuan, The representation of meromorphic solutions
for a class of odd order algebraic differential equations and its applications, Math. Methods Appl.
Sci., 37 (2014), 1553–1560. https://doi.org/10.1002/mma.3053

24. I. Laine, Nevanlinna Theory and Complex Differential Equations, Berlin, New York: Walter de
Gruyter, 1993. https://doi.org/10.1515/9783110863147

25. K. Zhuang, Z. Du, X. Lin, Solitary waves solutions of singularly perturbed higher-order KdV
equation via geometric singular perturbation method, Nonlinear Dyn., 80 (2015), 629–635.
https://doi.org/10.1007/s11071-015-1894-7

Electronic Research Archive Volume 31, Issue 10, 5946–5958.

http://dx.doi.org/https://doi.org/10.1016/S0375-9601(02)01515-3
http://dx.doi.org/https://doi.org/10.1016/j.cnsns.2009.01.006
http://dx.doi.org/https://doi.org/10.1002/mma.2723
http://dx.doi.org/https://doi.org/10.1515/dema-2021-0009
http://dx.doi.org/https://doi.org/10.1016/j.padiff.2021.100116
http://dx.doi.org/https://doi.org/10.2306/scienceasia1513-1874.2023.133
http://dx.doi.org/https://doi.org/10.3934/era.2023067
http://dx.doi.org/https://doi.org/10.1063/1.3319568
http://dx.doi.org/https://doi.org/10.1016/j.physleta.2010.08.013
http://dx.doi.org/https://doi.org/10.1360/012012-159
http://dx.doi.org/https://doi.org/10.1002/mma.3053
http://dx.doi.org/https://doi.org/10.1515/9783110863147
http://dx.doi.org/https://doi.org/10.1007/s11071-015-1894-7


5958

26. D. Kaya, An explicit and numerical solutions of some fifth-order KdV equation by decom-
position method, Appl. Math. Comput., 144 (2003), 353–363. https://doi.org/10.1016/S0096-
3003(02)00412-5

27. Y. Zhang, W. X. Ma, Rational solutions to a KdV-like equation, Appl. Math. Comput., 256 (2015),
252–256. https://doi.org/10.1016/j.amc.2015.01.027

28. Y. Zhang, W. X. Ma, A study on rational solutions to a KP-like equation, Z. Naturforsch., A, 70
(2015), 263–268. https://doi.org/10.1515/zna-2014-0361

29. W. X. Ma, Soliton hierarchies and soliton solutions of type (−λ∗, λ) reduced nonlocal nonlinear
Schrödinger equations of arbitrary even order, Partial Differ. Equations Appl. Math., 7 (2023),
100515. https://doi.org/10.1016/j.padiff.2023.100515

30. W. X. Ma, Soliton solutions to constrained nonlocal integrable nonlinear Schördinger hi-
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