Intrinsic bursting neurons represent a common neuronal type that displays bursting patterns upon depolarization stimulation. These neurons can be described by a system of seven-dimensional equations, which pose a challenge for dynamical analysis. To overcome this limitation, we employed the projection reduction method to reduce the dimensionality of the model. Our approach demonstrated that the reduced model retained the inherent bursting characteristics of the original model. Following reduction, we investigated the bi-parameter bifurcation of the equilibrium point in the reduced model. Specifically, we analyzed the Bogdanov-Takens bifurcation that arises in the reduced system. Notably, the topological structure of the neuronal model near the bifurcation point can be effectively revealed with our proposed method. By leveraging the proposed projection reduction method, we could explore the bursting mechanism in the reduced Pospischil model with greater precision. Our approach offers an effective foundation for generating theories and hypotheses that can be tested experimentally. Furthermore, it enables links to be drawn between neuronal morphology and function, thereby facilitating a deeper understanding of the complex dynamical behaviors that underlie intrinsic bursting neurons.
Citation: Bo Lu, Xiaofang Jiang. Reduced and bifurcation analysis of intrinsically bursting neuron model[J]. Electronic Research Archive, 2023, 31(10): 5928-5945. doi: 10.3934/era.2023301
Intrinsic bursting neurons represent a common neuronal type that displays bursting patterns upon depolarization stimulation. These neurons can be described by a system of seven-dimensional equations, which pose a challenge for dynamical analysis. To overcome this limitation, we employed the projection reduction method to reduce the dimensionality of the model. Our approach demonstrated that the reduced model retained the inherent bursting characteristics of the original model. Following reduction, we investigated the bi-parameter bifurcation of the equilibrium point in the reduced model. Specifically, we analyzed the Bogdanov-Takens bifurcation that arises in the reduced system. Notably, the topological structure of the neuronal model near the bifurcation point can be effectively revealed with our proposed method. By leveraging the proposed projection reduction method, we could explore the bursting mechanism in the reduced Pospischil model with greater precision. Our approach offers an effective foundation for generating theories and hypotheses that can be tested experimentally. Furthermore, it enables links to be drawn between neuronal morphology and function, thereby facilitating a deeper understanding of the complex dynamical behaviors that underlie intrinsic bursting neurons.
[1] | R. A. Satterlie, Reciprocal inhibition and postinhibitory rebound produce reverberation in a locomotor pattern generator, Science, 229 (1985), 402–404. http://dx.doi.org/10.1126/science.229.4711.402 doi: 10.1126/science.229.4711.402 |
[2] | X. J. Wang, Neurophysiological and computational principles of cortical rhythms in Cognition, Physiol. Rev., 90 (2010), 1195–1268. http://dx.doi.org/10.1152/physrev.00035.2008 doi: 10.1152/physrev.00035.2008 |
[3] | Y. Yang, Y. Cui, K. Sang, Y. Dong, Z. Ni, S. Ma, et al., Ketamine blocks bursting in the lateral habenula to rapidly relieve depression, Nature, 554 (2018), 317–322. http://dx.doi.org/10.1038/nature25509 doi: 10.1038/nature25509 |
[4] | W. M. Howe, P. J. Kenny, Burst firing sets the stage for depression, Nature, 554 (2018), 304–305. http://dx.doi.org/10.1038/d41586-018-01588-z doi: 10.1038/d41586-018-01588-z |
[5] | C. Park, L. L. Rubchinsky, S. Ahn, Mathematical model of subthalamic nucleus neuron: Characteristic activity patterns and bifurcation analysis, Chaos, 31 (2021), 113121. http://dx.doi.org/10.48550/arXiv.2110.10229 doi: 10.48550/arXiv.2110.10229 |
[6] | J. Kim, Y. Kim, R. Nakajima, A. Shin, M. Jeong, A. H. Park, et al., Inhibitory basal ganglia inputs induce excitatory motor signals in the thalamus, Neuron, 95 (2017), 1181–1196. http://dx.doi.org/10.1016/j.neuron.2017.08.028 doi: 10.1016/j.neuron.2017.08.028 |
[7] | A. L. Hodgkin, A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol., 117 (1952), 500–544. http://dx.doi.org/10.1113/jphysiol.1952.sp004764 doi: 10.1113/jphysiol.1952.sp004764 |
[8] | E. M. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting, Cambridge: MIT Press, 2006. http://dx.doi.org10.7551/mitpress/2526.001.0001 |
[9] | B. Lu, S. Liu, X. Liu, X. Jiang, X. Wang, Bifurcation and spike adding transition in Chay-Keizer model, Int. J. Bifurcation Chaos, 26 (2016), 1650090. http://dx.doi.org/10.1142/S0218127416500905 doi: 10.1142/S0218127416500905 |
[10] | Y. Liang, B. Lu, H. Gu, Analysis to dynamics of complex electrical activities in Wilson model of brain neocortical neuron using fast-slow variable dissection with two slow variables, Acta Phys. Sin., 71 (2022), 230502. http://dx.doi.org/10.7498/aps.71.20221416 doi: 10.7498/aps.71.20221416 |
[11] | B. Lu, S. Liu, X. Jiang, J. Wang, X. Wang, The mixed-mode oscillations in Av-Ron-Parnas-Segel model, Discrete. Cont. Dyn. S, 10 (2017), 487–504. http://dx.doi.org/10.3934/dcdss.2017024 doi: 10.3934/dcdss.2017024 |
[12] | Y. Liu, B. Lu, Transition from Anti-coherence resonance to coherence resonance for mixed-mode oscillations and period-1 firing of nervous system, Int. J. Mod. Phys. B, 35 (2021), 2150295. http://doi.org/10.1142/S0217979221502957 doi: 10.1142/S0217979221502957 |
[13] | Y. Jiang, B. Lu, W. Zhang, H. Gu, Fast autaptic feedback induced-paradoxical changes of mixed-mode bursting and bifurcation mechanism, Acta Phys. Sin., 70 (2021), 170501. http://dx.doi.org/10.7498/aps.70.20210208 doi: 10.7498/aps.70.20210208 |
[14] | B. Lu, H. Gu, X. Wang, H. Hua, Paradoxical enhancement of neuronal bursting response to negative feedback of autapse and the nonlinear mechanism, Chaos Solitons Fractals, 145 (2021), 110817. https//doi.org/10.1016/j.chaos.2021.110817 doi: 10.1016/j.chaos.2021.110817 |
[15] | H. Wu, Z. Jiang, X. Wu, Dynamic analysis of a new financial system with diffusion effect and two delays, Int. J. Bifurcation Chaos, 32 (2022), 2250236. http://dx.doi.org/10.1142/S0218127422502364 doi: 10.1142/S0218127422502364 |
[16] | Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, NewYork: Spring-Verlag Press, 2004. http://doi.org/10.1007/978-1-4757-3978-$7_1$ |
[17] | D. Benmerzouk, J. P. Barbot, Lyapunov-Schmidt method dedicated to the observer analysis and design, Math. Probl. Eng., 2006 (2006), 369–376. http://dx.doi.org/10.1155/MPE/2006/43681 doi: 10.1155/MPE/2006/43681 |
[18] | M. Marion, R. Temam, Nonlinear Galerkin methods, SIAM J. Numer. Anal., 26 (1989), 1139–1157. http://dx.doi.org/10.1137/0726063 doi: 10.1137/0726063 |
[19] | B. García-Archilla, J. Novo, E. Tit, An approximate inertial manifolds approach to postprocessing the Galerkin method for the Navier-Stokes equations, Math. Comput., 68 (1999), 893–911. http://dx.doi.org/10.1090/S0025-5718-99-01057-1 doi: 10.1090/S0025-5718-99-01057-1 |
[20] | P. Glösmann, E. Kreuzer, Nonlinear system analysis with Karhunen-Loève transform, Nonlinear Dyn., 41 (2005), 111–128. http://dx.doi.org/10.1007/s11071-005-2794-z doi: 10.1007/s11071-005-2794-z |
[21] | P. Holmes, J. L. Lumley, G. Berkooz, Turbulence, Coherent Structures, Dynamical Systems, and Symmetry, Cambridge: Cambridge University Press, 2012. http://doi.org/10.2514/2.399 |
[22] | M. Pospischil, M. Toledo-Rodriguez, C. Monier, Z. Piwkowska, T. Bal, Y. Frégnac, et al., Minimal Hodgkin-Huxley type models for different classes of cortical and thalamic neurons, Biol. Cybern., 99 (2008), 427–441. http://dx.doi.org/10.1007/s00422-008-0263-8 doi: 10.1007/s00422-008-0263-8 |
[23] | D. A. McCormick, B. W. Connors, J. W. Lighthall, D. A. Prince, Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex, J. Neurophysiol., 54 (1985), 782–806. http://dx.doi.org/10.1097/00005072-198511000-00007 doi: 10.1097/00005072-198511000-00007 |
[24] | B. W. Connors, M. J. Gutnick, Intrinsic firing patterns of diverse neocortical neurons, Trends Neurosci., 13 (1990), 99–104. http://dx.doi.org/110.1016/0166-2236(90)90185-d |
[25] | R. J. Sayer, P. C. Schwindt, W. E. Crill, High- and low-threshold calcium currents in neurons acutely isolated from rat sensorimotor cortex, Neurosci. Lett., 120 (1990), 175–178. http://dx.doi.org/10.1016/0304-3940(90)90031-4 doi: 10.1016/0304-3940(90)90031-4 |
[26] | R. D. Traub, R. Miles, Neuronal Networks of the Hippocampus, Cambridge: Cambridge University Press, 1991. http://doi.org/10.1017/CBO9780511895401 |
[27] | V. J. Barranca, H. Huang, G. Kawakita, Network structure and input integration in competing firing rate models for decision-making, J. Comput. Neurosci., 46 (2019), 145–168. http://dx.doi.org/10.1007/s10827-018-0708-6 doi: 10.1007/s10827-018-0708-6 |
[28] | I. Reuveni, A. Friedman, Y. Amitai, M. J. Gutnick, Stepwise repolarization from $Ca^{2+}$ plateaus in neocortical pyramidal cells: Evidence for nonhomogeneous distribution of HVA $Ca^{2+}$ channels in dendrites, J. Neurosci., 13 (1993), 4609–4621. http://dx.doi.org/10.1523/jneurosci.13-11-04609.1993 doi: 10.1523/jneurosci.13-11-04609.1993 |
[29] | M. L. Hines, N. T. Carnevale, The Neuron simulation environment, Neural Comput., 9 (1997), 1179–1209. http://dx.doi.org/10.1162/neco.1997.9.6.1179 doi: 10.1162/neco.1997.9.6.1179 |
[30] | A. Dhooge, W. Govaerts, A. Kuznetsov, MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs, ACM T. Math. Software, 29 (2003), 141–164. http://dx.doi.org/10.1145/779359.779362 doi: 10.1145/779359.779362 |
[31] | B. Ermentrout, Simulating, analyzing, and animating dynamical systems: A guide to XPPAUT for researchers and students, Appl. Mech. Rev., 56 (2003), B53. http://dx.doi.org/10.1115/1.1579454 doi: 10.1115/1.1579454 |
[32] | E. M. Izhikevich, R. Fitzhugh, FitzHugh-Nagumo model, Scholarpedia, 1 (2006), 1349. http://dx.doi.org/10.4249/scholarpedia.1349 doi: 10.4249/scholarpedia.1349 |
[33] | F. A. Carrillo, F. Verduzco, J. Delgado, Analysis of the Takens-Bogdanov bifurcation on m-parameterized vector fields, Int. J. Bifurcations Chaos, 20 (2010), 995–1005. http://dx.doi.org/10.1142/S0218127410026277 doi: 10.1142/S0218127410026277 |
[34] | Z. Wei, B. Zhu, J. Yang, M. Perc, M. Slavinec, Bifurcation analysis of two disc dynamos with viscous friction and multiple time delays, Appl. Math. Comput., 347 (2019), 265–281. http://dx.doi.org/10.1016/j.amc.2018.10.090 doi: 10.1016/j.amc.2018.10.090 |
[35] | Z. Wei, W. Zhang, I. Moroz, N. V. Kuznetsov, Codimension one and two bifurcations in Cattaneo Christov heat-flux model, Discrete. Cont. Dyn. B, 26 (2021), 5305–5519. http://dx.doi.org/10.3934/dcdsb.2020344 doi: 10.3934/dcdsb.2020344 |
[36] | Z. Wei, F. Wang, H. Li, W. Zhang, Jacobi stability analysis and impulsive control of a 5D self-exciting homopolar disc dynamo, Discrete. Cont. Dyn. B, 27 (2022), 5029–5045. http://dx.doi.org/10.3934/dcdsb.2021263 doi: 10.3934/dcdsb.2021263 |
[37] | H. Bao, W. Liu, M. Chen, Hidden extreme multistability and dimensionality reduction analysis for an improved non-autonomous memristive FitzHugh-Nagumo circuit, Nonlinear Dyn., 96 (2019), 1879–1894. http://dx.doi.org/10.1007/s11071-019-04890-1 doi: 10.1007/s11071-019-04890-1 |
[38] | H. Bao, A. Hu, W. Liu, B. Bao, Hidden bursting firings and bifurcation mechanisms in memristive neuron model with threshold electromagnetic induction, IEEE Trans. Neural Network Learn. Syst., 31 (2020), 502–511. http://dx.doi.org/10.1109/TNNLS.2019.2905137 doi: 10.1109/TNNLS.2019.2905137 |
[39] | Q. Xu, Y. Wang, H. H. C. Lu, N. Wang, H. Bao, Locally active memristor-based neuromorphic circuit: Firing pattern and hardware experiment, IEEE Trans. Circuits Syst. I, 70 (2023), 3130–3141. http://dx.doi.org/10.1109/TCSI.2023.3276983 doi: 10.1109/TCSI.2023.3276983 |