Mixed-mode oscillations (MMOs) consisting of spikes alternating with a series of subthreshold oscillations have been observed in various neurons related to some physiological functions. In the present paper, inhibitory-autapse-induced MMOs are simulated by using the Hodgkin-Huxley neuron model, and the underlying dynamical mechanism is identified to be related to dynamics of unstable behaviors near subcritical Hopf bifurcation. For the monostable spiking, a delayed inhibitory current pulse activated by a spike can suppress the phase trajectory corresponding to depolarization phase of the next spike to the unstable focus nearby or the neighborhood outside of unstable limit cycle, respectively. Then the trajectory rotates multiple cycles away and converges to the stable limit cycle, resulting in an evolution process of membrane potential from small-amplitude subthreshold oscillations to a large-amplitude spike, i.e., MMOs. For the spiking coexisting with the resting state, inhibitory autapse induces MMOs and resting state from the spiking. The difference in the MMOs from those induced by the excitatory autapse is identified. The result presents the underlying nonlinear mechanisms of inhibitory autapse to suppress the neuronal firing and reveals the potential role to control the neuronal firing patterns near subcritical Hopf bifurcation.
Citation: Li Li, Zhiguo Zhao. Inhibitory autapse with time delay induces mixed-mode oscillations related to unstable dynamical behaviors near subcritical Hopf bifurcation[J]. Electronic Research Archive, 2022, 30(5): 1898-1917. doi: 10.3934/era.2022096
Mixed-mode oscillations (MMOs) consisting of spikes alternating with a series of subthreshold oscillations have been observed in various neurons related to some physiological functions. In the present paper, inhibitory-autapse-induced MMOs are simulated by using the Hodgkin-Huxley neuron model, and the underlying dynamical mechanism is identified to be related to dynamics of unstable behaviors near subcritical Hopf bifurcation. For the monostable spiking, a delayed inhibitory current pulse activated by a spike can suppress the phase trajectory corresponding to depolarization phase of the next spike to the unstable focus nearby or the neighborhood outside of unstable limit cycle, respectively. Then the trajectory rotates multiple cycles away and converges to the stable limit cycle, resulting in an evolution process of membrane potential from small-amplitude subthreshold oscillations to a large-amplitude spike, i.e., MMOs. For the spiking coexisting with the resting state, inhibitory autapse induces MMOs and resting state from the spiking. The difference in the MMOs from those induced by the excitatory autapse is identified. The result presents the underlying nonlinear mechanisms of inhibitory autapse to suppress the neuronal firing and reveals the potential role to control the neuronal firing patterns near subcritical Hopf bifurcation.
[1] | M. Desroches, J. Guckenheimer, B. Krauskopf, C. Kuehn, H. M. Osinga, M. Wechselberger, Mixed-mode oscillations with multiple time scales, SIAM Rev., 54 (2012), 211–288. https://doi.org/10.1137/100791233 doi: 10.1137/100791233 |
[2] | E. M. Izhikevich, Neural excitability, spiking and bursting, Int. J. Bifurcat. Chaos, 10 (2000), 1171–1266. |
[3] | B. J. Bacak, T. Kim, J. C. Smith, J. E. Rubin, I. A. Rybak, Mixed-mode oscillations and population bursting in the pre-Bötzinger complex, eLife, 5 (2016), e13403. https://doi.org/10.7554/eLife.13403 doi: 10.7554/eLife.13403 |
[4] | C. Iglesias, C. Meunier, M. Manuel, Y. Timofeeva, N. Delestrée, D. Zytnicki, Mixed mode oscillations in mouse spinal motoneurons arise from a low excitability state, J. Neurosci., 31 (2011), 5829–5840. https://doi.org/10.1523/JNEUROSCI.6363-10.2011 doi: 10.1523/JNEUROSCI.6363-10.2011 |
[5] | H. G. Rotstein, M. Wechselberger, N. Kopell, Canard induced mixed-mode oscillations in a medial entorhinal cortex layer II stellate cell model, SIAM J. Appl. Dyn. Syst., 7 (2008), 1582–1611. https://doi.org/10.1137/070699093 doi: 10.1137/070699093 |
[6] | M. Desroches, B. Krauskopf, H. M. Osinga, Numerical continuation of canard orbits in slow-fast dynamical systems, Nonlinearity, 23 (2010), 739–765. https://doi.org/10.1088/0951-7715/23/3/017 doi: 10.1088/0951-7715/23/3/017 |
[7] | J. Y. Zhao, D. G. Fan, Q. S. Wang, Dynamical transitions of the coupled Class I (II) neurons regulated by an astrocyte, Nonlinear Dynam., 103 (2021), 913–924. https://doi.org/10.1007/s11071-020-06122-3 doi: 10.1007/s11071-020-06122-3 |
[8] | Y. R. Liu, S. Q. Liu, Canard-induced mixed-mode oscillations and bifurcation analysis in a reduced 3D pyramidal cell model, Nonlinear Dyn., 101 (2020), 531–567. |
[9] | E. N. Davison, Z. Aminzare, B. Dey, N. E. Leonard, Mixed mode oscillations and phase locking in coupled FitzHugh-Nagumo model neurons, Chaos, 29 (2019), 033105. https://doi.org/10.1063/1.5050178 doi: 10.1063/1.5050178 |
[10] | Z. G. Zhao, L. Li, H. G. Gu, Excitatory autapse induces different cases of reduced neuronal firing activities near Hopf bifurcation, Commun. Nonlinear Sci. Numer. Simul., 85 (2020), 105250. https://doi.org/10.1016/j.cnsns.2020.105250 doi: 10.1016/j.cnsns.2020.105250 |
[11] | R. A. Silver, Neuronal arithmetic, Nat. Rev. Neurosci., 11 (2010), 474–489. https://doi.org/10.1038/nrn2864 doi: 10.1038/nrn2864 |
[12] | C. Van Vreeswijk, L. F. Abbott, G. B. Ermentrout, When inhibition not excitation synchronizes neural firing, J. Comput. Neurosci., 1 (1994), 313–321. https://doi.org/10.1007/BF00961879 doi: 10.1007/BF00961879 |
[13] | R. Dodla, G. Svirskis, J. Rinzel, Well-timed, brief inhibition can promote spiking: Postinhibitory facilitation, J. Neurophysiol., 95 (2006), 2664–2677. |
[14] | A. Bacci, J. R. Huguenard, D. A. Prince, Modulation of neocortical interneurons: extrinsic influences and exercises in self-control, Trends Neurosci., 28 (2005), 602–610. https://doi.org/10.1016/j.tins.2005.08.007 doi: 10.1016/j.tins.2005.08.007 |
[15] | L. P. Yin, R. Zheng, W. Ke, Q. S. He, Y. Zhang, J. L. Li, et al., Autapses enhance bursting and coincidence detection in neocortical pyramidal cells, Nat. Commun., 9 (2018), 4890. https://doi.org/10.1038/s41467-018-07317-4 doi: 10.1038/s41467-018-07317-4 |
[16] | R. Saada, N. Miller, I. Hurwitz, A. J. Susswein, Autaptic excitation elicits persistent activity and a plateau potential in a neuron of known behavioral function, Curr. Biol., 19 (2009), 479–484. https://doi.org/10.1016/j.cub.2009.01.060 doi: 10.1016/j.cub.2009.01.060 |
[17] | L. L. Colgin, Rhythms of the hippocampal network, Nat. Rev. Neurosci., 17 (2016), 239–249. https://doi.org/10.1038/nrn.2016.21 doi: 10.1038/nrn.2016.21 |
[18] | M. Y. Ge, Y. Xu, Z. K. Zhang, Y. X. Peng, W. J. Kang, L. J. Yang, et al., Autaptic modulation-induced neuronal electrical activities and wave propagation on network under electromagnetic induction, Eur. Phys. J. Special Topics, 227 (2018), 799–809. https://doi.org/10.1140/epjst/e2018-700141-7 doi: 10.1140/epjst/e2018-700141-7 |
[19] | H. X. Qin, J. Ma, W. Y. Jin, C. N. Wang, Dynamics of electric activities in neuron and neurons of network induced by autapses, Sci. China Technol. Sci., 57 (2014), 936–946. https://doi.org/10.1007/s11431-014-5534-0 doi: 10.1007/s11431-014-5534-0 |
[20] | H. T. Wang, L. F. Wang, Y. L. Chen, Y. Chen, Effect of autaptic activity on the response of a Hodgkin-Huxley neuron, Chaos, 24 (2014), 033122. https://doi.org/10.1063/1.4892769 doi: 10.1063/1.4892769 |
[21] | H. T. Wang, J. Ma, Y. L. Chen, Y. Chen, Effect of an autapse on the firing pattern transition in a bursting neuron, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 3242–3254. https://doi.org/10.1016/j.cnsns.2014.02.018 doi: 10.1016/j.cnsns.2014.02.018 |
[22] | D. Q. Guo, S. D. Wu, M. M. Chen, M. Perc, Y. S. Zhang, J. L. Ma, et al., Regulation of irregular neuronal firing by autaptic transmission, Sci. Rep., 6 (2016), 26096. https://doi.org/10.1038/srep26096 doi: 10.1038/srep26096 |
[23] | V. Baysal, E. Erkan, E. Yilmaz, Impacts of autapse on chaotic resonance in single neurons and small-world neuronal networks, Phil. Trans. R. Soc. A, 379 (2021), 20200237. https://doi.org/10.1098/rsta.2020.0237 doi: 10.1098/rsta.2020.0237 |
[24] | Z. G. Zhao, H. G. Gu, Transitions between classes of neuronal excitability and bifurcations induced by autapse, Sci. Rep., 7 (2017), 6760. https://doi.org/10.1038/s41598-017-07051-9 doi: 10.1038/s41598-017-07051-9 |
[25] | X. L. Song, H. T. Wang, Y. Chen, Autapse-induced firing patterns transitions in the Morris-Lecar neuron model, Nonlinear Dyn., 96 (2019), 2341–2350. https://doi.org/10.1007/s11071-019-04925-7 doi: 10.1007/s11071-019-04925-7 |
[26] | Z. G. Zhao, L. Li, H. G. Gu, Y. Gao, Different dynamics of repetitive neural spiking induced by inhibitory and excitatory autapses near subcritical Hopf bifurcation, Nonlinear Dyn., 99 (2020), 1129–1154. https://doi.org/10.1007/s11071-019-05342-6 doi: 10.1007/s11071-019-05342-6 |
[27] | B. Cao, L. N. Guan, H. G. Gu, Bifurcation mechanism of not increase but decrease of spike number within a neural burst induced by excitatory effect, Acta Phys. Sin., 67 (2018), 240502. |
[28] | Y. Y. Li, H. G. Gu, X. L. Ding, Bifurcations of enhanced neuronal bursting activities induced by the negative current mediated by inhibitory autapse, Nonlinear Dyn., 97 (2019), 2091–2105. https://doi.org/10.1007/s11071-019-05106-2 doi: 10.1007/s11071-019-05106-2 |
[29] | B. Ermentrout, Simulating, analyzing, and animating dynamical systems: a guide to XPPAUT for researchers and students, Society for Industrial and Applied Mathematics, PA, 2002. |
[30] | R. A. Tikidji-Hamburyan, J. J. Martínez, J. A. White, C. C. Canavier, Resonant interneurons can increase robustness of gamma oscillations, J. Neurosci., 35 (2015), 15682–15695. https://doi.org/10.1523/JNEUROSCI.2601-15.2015 doi: 10.1523/JNEUROSCI.2601-15.2015 |