Research article

Ordering properties of positive solutions for a class of $ \varphi $-Laplacian quasilinear Dirichlet problems

  • Received: 28 January 2022 Revised: 22 March 2022 Accepted: 27 March 2022 Published: 08 April 2022
  • We study ordering properties of positive solutions $ u $ for the one-dimensional $ \varphi $-Laplacian quasilinear Dirichlet problem

    $ \begin{equation*} \left \{\begin{array}{l} -\left (\varphi (u^{ \prime })\right )^{ \prime } = \lambda f (u) , \;\; -L <x <L, \\ u ( -L) = u (L) = 0, \end{array}\right . \end{equation*} $

    where $ \lambda, L > 0 $ are two parameters. Assume that $ \varphi \in C (-\kappa, \kappa) \cap C^{2} ((-\kappa, 0) \cup (0, \kappa)) $ is odd for some positive $ \kappa \leq \infty, $ and $ \varphi ^{ \prime } (t) > 0 $ for all $ t \in (-\kappa, 0) \cup (0, \kappa) $ and $ f \in C[0, \eta) $, $ f (0) \geq 0 $, $ f (u) > 0 $ on $ (0, \eta) $ for some positive $ \eta \leq \infty $, where either $ \eta = \infty $, or $ \eta < \infty $ with $ \lim_{u \rightarrow \eta ^{ -}}f (u) = \infty $ or $ \lim_{u \rightarrow \eta ^{ -}}f (u) = 0 $. Some applications are given, including $ f (u) = u^{p} $ ($ p > 0 $)$, $ $ u^{p} +u^{q} $ ($ 0 < p < q < \infty $), $ \frac{1}{(1 -u)^{p}} $ $ (p > 0), $ $ \exp (u), \; \exp \left({\frac{{au}}{{a + u}}} \right) $ ($ a > 0 $)$, $ and $ \frac{1}{(1 -u)^{2}} -\frac{\varepsilon ^{2}}{(1 -u)^{4}} $ ($ \varepsilon \in (0, 1) $).

    Citation: Kuo-Chih Hung, Shin-Hwa Wang, Jhih-Jyun Zeng. Ordering properties of positive solutions for a class of $ \varphi $-Laplacian quasilinear Dirichlet problems[J]. Electronic Research Archive, 2022, 30(5): 1918-1935. doi: 10.3934/era.2022097

    Related Papers:

  • We study ordering properties of positive solutions $ u $ for the one-dimensional $ \varphi $-Laplacian quasilinear Dirichlet problem

    $ \begin{equation*} \left \{\begin{array}{l} -\left (\varphi (u^{ \prime })\right )^{ \prime } = \lambda f (u) , \;\; -L <x <L, \\ u ( -L) = u (L) = 0, \end{array}\right . \end{equation*} $

    where $ \lambda, L > 0 $ are two parameters. Assume that $ \varphi \in C (-\kappa, \kappa) \cap C^{2} ((-\kappa, 0) \cup (0, \kappa)) $ is odd for some positive $ \kappa \leq \infty, $ and $ \varphi ^{ \prime } (t) > 0 $ for all $ t \in (-\kappa, 0) \cup (0, \kappa) $ and $ f \in C[0, \eta) $, $ f (0) \geq 0 $, $ f (u) > 0 $ on $ (0, \eta) $ for some positive $ \eta \leq \infty $, where either $ \eta = \infty $, or $ \eta < \infty $ with $ \lim_{u \rightarrow \eta ^{ -}}f (u) = \infty $ or $ \lim_{u \rightarrow \eta ^{ -}}f (u) = 0 $. Some applications are given, including $ f (u) = u^{p} $ ($ p > 0 $)$, $ $ u^{p} +u^{q} $ ($ 0 < p < q < \infty $), $ \frac{1}{(1 -u)^{p}} $ $ (p > 0), $ $ \exp (u), \; \exp \left({\frac{{au}}{{a + u}}} \right) $ ($ a > 0 $)$, $ and $ \frac{1}{(1 -u)^{2}} -\frac{\varepsilon ^{2}}{(1 -u)^{4}} $ ($ \varepsilon \in (0, 1) $).



    加载中


    [1] Y. H. Cheng, K. C. Hung, S. H. Wang, Global bifurcation diagrams and exact multiplicity of positive solutions for a one-dimensional prescribed mean curvature problem arising in MEMS, Nonlinear Anal. Theory Methods Appl., 89 (2013), 284–298. http://dx.doi.org/https://doi.org/10.1016/j.na.2013.04.018 doi: 10.1016/j.na.2013.04.018
    [2] P. Habets, P. Omari, Multiple positive solutions of a one-dimensional prescribed mean curvature problem, Commun. Contemp. Math., 9 (2007), 701–730. https://doi.org/10.1142/S0219199707002617 doi: 10.1142/S0219199707002617
    [3] K. C. Hung, Y. H. Cheng, S. H. Wang, C. H. Chuang, Exact multiplicity and bifurcation diagrams of positive solutions of a one-dimensional prescribed mean curvature problem, J. Differ. Equations, 257 (2014), 3272–3299. https://doi.org/10.1016/j.jde.2014.06.013 doi: 10.1016/j.jde.2014.06.013
    [4] P. Korman, Y. Li, Global solution curves for a class of quasilinear boundary value problem, Proc. R. Soc. Edinburgh Sect. A: Math., 140 (2010), 1197–1215. https://doi.org/10.1017/S0308210509001449 doi: 10.1017/S0308210509001449
    [5] F. Obersnel, Classical and non-classical sign-changing solutions of a one-dimensional autonomous prescribed curvature equation, Adv. Nonlinear Stud., 7 (2007), 671–682. https://doi.org/10.1515/ans-2007-0409 doi: 10.1515/ans-2007-0409
    [6] H. Pan, One-dimensional prescribed mean curvature equation with exponential nonlinearity, Nonlinear Anal. Theory Methods Appl., 70 (2009), 999–1010. https://doi.org/10.1016/j.na.2008.01.027 doi: 10.1016/j.na.2008.01.027
    [7] H. Pan, R. Xing, Time maps and exact multiplicity results for one-dimensional prescribed mean curvature equations, Nonlinear Anal. Theory Methods Appl., 74 (2011), 1234–1260. https://doi.org/10.1016/j.na.2010.09.063 doi: 10.1016/j.na.2010.09.063
    [8] H. Pan, R. Xing, Time maps and exact multiplicity results for one-dimensional prescribed mean curvature equations, II, Nonlinear Anal. Theory Methods Appl., 74 (2011), 3751–3768. https://doi.org/10.1016/j.na.2011.03.020 doi: 10.1016/j.na.2011.03.020
    [9] C. Bereanu, P. Jebelean, P. J. Torres, Multiple positive radial solutions for a Dirichlet problem involving the mean curvature operator in Minkowski space, J. Funct. Anal., 265 (2013), 644–659. https://doi.org/10.1016/j.jfa.2013.04.006 doi: 10.1016/j.jfa.2013.04.006
    [10] A. Boscaggin, G. Feltrin, Pairs of positive radial solutions for a Minkowski-curvature Neumann problem with indefinite weight, Nonlinear Anal., 196 (2020), 111807. https://doi.org/10.1016/j.na.2020.111807 doi: 10.1016/j.na.2020.111807
    [11] I. Coelho, C. Corsato, F. Obersnel, P. Omari, Positive solutions of the Dirichlet problem for the one-dimensional Minkowski-curvature equation, Adv. Nonlinear Stud., 12 (2012), 621–638. https://doi.org/10.1016/j.jmaa.2013.04.003 doi: 10.1016/j.jmaa.2013.04.003
    [12] S. Y. Huang, Classification and evolution of bifurcation curves for the one-dimensional Minkowski-curvature problem and its applications, J. Differ. Equations, 264 (2018), 5977–6011. https://doi.org/10.1016/j.jde.2018.01.021 doi: 10.1016/j.jde.2018.01.021
    [13] S. Y. Huang, Bifurcation diagrams of positive solutions for one-dimensional Minkowski-curvature problem and its applications, Discrete Contin. Dyn. Syst., 39 (2019), 3443–3462. https://doi.org/10.3934/dcds.2019142 doi: 10.3934/dcds.2019142
    [14] S.Y. Huang, Global bifurcation diagrams for Liouville-Bratu-Gelfand problem with Minkowski curvature operator, J. Dyn. Differ. Equations, (2021), 1–16. https://doi.org/10.1007/s10884-021-09982-4 doi: 10.1007/s10884-021-09982-4
    [15] R. Ma, L. Wei, Z. Chen, Evolution of bifurcation curves for one-dimensional Minkowski-curvature problem, Appl. Math. Lett., 103 (2020), 106176. https://doi.org/10.1016/j.aml.2019.106176 doi: 10.1016/j.aml.2019.106176
    [16] X. Zhang, M. Feng, Bifurcation diagrams and exact multiplicity of positive solutions of one-dimensional prescribed mean curvature equation in Minkowski space, Commun. Contemp. Math., 21 (2019), 1850003. https://doi.org/10.1142/S0219199718500037 doi: 10.1142/S0219199718500037
    [17] J. I. Díaz, Nonlinear Partial Differential Equations and Free Boundaries, Volume I, Elliptic Equations, SERBIULA (sistema Librum 2.0), Pitman, Boston, MA, 1985.
    [18] J. I. Díaz, Qualitative study of nonlinear parabolic equations: an introduction, Extracta Math., 16 (2001), 303–341. Available from: https://www.eweb.unex.es/eweb/extracta/Vol-16-3/16a3diaz.pdf.
    [19] S. Y. Huang, S. H. Wang, Proof of a conjecture for the one-dimensional perturbed Gelfand problem from combustion theory, Arch. Ration. Mech. Anal., 222 (2016), 769–825. https://doi.org/10.1007/s00205-016-1011-1 doi: 10.1007/s00205-016-1011-1
    [20] X. Lao, H. Pan, R. Xing, Global bifurcation curves of a regularized MEMS model, Appl. Math. Lett., 111 (2021), 106688. https://doi.org/10.1016/j.aml.2020.106688 doi: 10.1016/j.aml.2020.106688
    [21] Z. Liu, X. Zhang, A class of two-point boundary value problems, J. Math. Anal. Appl., 254 (2001), 599–617. https://doi.org/10.1006/jmaa.2000.7258 doi: 10.1006/jmaa.2000.7258
    [22] R. Manásevich, F. I. Njoku, F. Zanolin, Positive solutions for the one-dimensional $p$-Laplacian, Differ. Integr. Equations, 8 (1995), 213–222. Available from: https://projecteuclid.org/journals/differential-and-integral-equations/volume-8/issue-1/Positive-solutions-for-the-one-dimensional-p-Laplacian/die/1411134162.full.
    [23] B. Rynne, Exact multiplicity and stability of solutions of a 1-dimensional, $p$-Laplacian problem with positive convex nonlinearity, Nonlinear Anal., 183 (2019), 271–283. https://doi.org/10.1016/j.na.2019.01.023 doi: 10.1016/j.na.2019.01.023
    [24] S. H. Wang, D. M. Long, An exact multiplicity theorem involving concave-convex nonlinearities and its application to stationary solutions of a singular diffusion problem, Nonlinear Anal. Theory Methods Appl., 44 (2001), 469–486. https://doi.org/10.1016/S0362-546X(99)00272-2 doi: 10.1016/S0362-546X(99)00272-2
    [25] S. H. Wang, T. S. Yeh, Exact multiplicity and ordering properties of positive solutions of a $p$-Laplacian Dirichlet problem and their applications, J. Math. Anal. Appl., 287 (2003), 380–398. https://doi.org/10.1016/S0022-247X(02)00520-6 doi: 10.1016/S0022-247X(02)00520-6
    [26] U. Das, A. Muthunayake, R. Shivaji, Existence results for a class of $p$-$q$ Laplacian semipositone boundary value problems, Electron. J. Qual. Theory Differ. Equations, (2020), 1–7. https://doi.org/10.14232/ejqtde.2020.1.88 doi: 10.14232/ejqtde.2020.1.88
    [27] R. Kajikiya, I. Sim, S. Tanaka, A complete classification of bifurcation diagrams for a class of $(p, q)$-Laplace equations, J. Math. Anal. Appl., 462 (2018), 1178–1194. https://doi.org/10.1016/j.jmaa.2018.02.049 doi: 10.1016/j.jmaa.2018.02.049
    [28] R. Kajikiya, M. Tanaka, S. Tanaka, Bifurcation of positive solutions for the one-dimensional $(p, q)$-Laplace equation, Electron. J. Differ. Equations, 2017 (2017), 1–37. Available from: https://ejde.math.txstate.edu/Volumes/2017/107/kajikija.pdf.
    [29] Y. Komiya, R. Kajikiya, Existence of infinitely many solutions for the $(p, q)$-Laplace equation, Nonlinear Differ. Equations Appl., 23 (2016), 49. https://doi.org/10.1007/s00030-016-0402-1 doi: 10.1007/s00030-016-0402-1
    [30] I. Sim, B. Son, Positive solutions to classes of infinite semipositone $(p, q)$-Laplace problems with nonlinear boundary conditions, J. Math. Anal. Appl., 494 (2021), 124577. https://doi.org/10.1016/j.jmaa.2020.124577 doi: 10.1016/j.jmaa.2020.124577
    [31] H. Pan, R. Xing, On the existence of positive solutions for some nonlinear boundary value problems II, preprint, arXiv: 1501.02882.
    [32] M. G. Crandall, P. H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability, Arch. Ration. Mech. Anal., 52 (1973), 161–180. https://doi.org/10.1007/BF00282325 doi: 10.1007/BF00282325
    [33] H. Pan, R. Xing, On the existence of positive solutions for some nonlinear boundary value problems and applications to MEMS models, Discrete Contin. Dyn. Syst., 35 (2015), 3627–3682. https://doi.org/10.3934/dcds.2015.35.3627 doi: 10.3934/dcds.2015.35.3627
    [34] A. Boscaggin, G. Feltrin, F. Zanolin, Uniqueness of positive solutions for boundary value problems associated with indefinite $\Phi $-Laplacian-type equations, Open Math., 19 (2021), 163–183. https://doi.org/10.1515/math-2021-0003 doi: 10.1515/math-2021-0003
    [35] D. D. Hai, X. Wang, Existence and multiplicity of positive solutions for singular $\phi $-Laplacian superlinear problems with nonlinear boundary conditions, Electron. J. Qual. Theory Differ. Equations, (2021).
    [36] D. D. Hai, X. Wang, Positive solutions for singular superlinear $\phi $-Laplacian problems with nonlinear boundary conditions, Mediterr. J. Math., 19 (2022), 42. https://doi.org/10.1007/s00009-021-01963-7 doi: 10.1007/s00009-021-01963-7
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1469) PDF downloads(53) Cited by(0)

Article outline

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog