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Abstract: We study ordering properties of positive solutions u for the one-dimensional ϕ-Laplacian
quasilinear Dirichlet problem {

− (ϕ(u′))′ = λ f (u), − L < x < L,
u(−L) = u(L) = 0,

where λ, L > 0 are two parameters. Assume that ϕ ∈ C(−κ, κ) ∩ C2((−κ, 0) ∪ (0, κ)) is odd for some
positive κ ≤ ∞, and ϕ′(t) > 0 for all t ∈ (−κ, 0) ∪ (0, κ) and f ∈ C[0, η), f (0) ≥ 0, f (u) > 0 on (0, η)
for some positive η ≤ ∞, where either η = ∞, or η < ∞ with limu→η− f (u) = ∞ or limu→η− f (u) = 0.
Some applications are given, including f (u) = up (p > 0), up + uq (0 < p < q < ∞), 1

(1−u)p (p > 0),

exp(u), exp
(

au
a+u

)
(a > 0), and 1

(1−u)2 −
ε2

(1−u)4 (ε ∈ (0, 1)).

Keywords: prescribed mean curvature problem; m-Laplacian problem; (m, n)-Laplacian problem;
positive solution; bifurcation diagram; ordering property

1. Introduction

In this paper we study ordering properties of positive solutions u ∈ C2(−L, L) ∩ C[−L, L] for the
one-dimensional ϕ-Laplacian quasilinear Dirichlet problem{

− (ϕ(u′(x)))′ = λ f (u), − L < x < L,
u(−L) = u(L) = 0,

(1.1)

where λ, L > 0 are two parameters, ϕ and f satisfy the following hypotheses (H1) and (H2)
respectively:
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(H1) ϕ ∈ C(−κ, κ) ∩ C2((−κ, 0) ∪ (0, κ)) is odd for some positive κ ≤ ∞, and ϕ′(t) > 0 for all t ∈
(−κ, 0) ∪ (0, κ).

(H2) f ∈ C[0, η), f (0) ≥ 0, f (u) > 0 on (0, η) for some positive η ≤ ∞, where either η = ∞, or η < ∞
with limu→η− f (u) = ∞ or limu→η− f (u) = 0.

The main examples of the one-dimensional ϕ-Laplacian Dirichlet problem are the following (i)–
(iv):

(i) ϕ(t) = t
√

1+t2
with κ = ∞, which corresponds to the prescribed mean curvature problem (capillary

surface problem) in Euclidean space −
(

u′(x)√
1+(u′(x))2

)′
= λ f (u), − L < x < L,

u(−L) = u(L) = 0.
(1.2)

Problem (1.2) with general nonlinearity f (u) or with many different types nonlinearities, like up

(p > 0), up + uq (0 ≤ p < q < ∞), (1 + u)p (p > 0), exp(u), exp(u) − 1, exp
(

au
a+u

)
(a > 0), (1 − u)−p

(p > 0), and (1 − u)−2 − ε2(1 − u)−4 (ε ∈ (0, 1)) has been investigated intensively since 1990, see,
e.g., [1–8].

(ii) ϕ(t) = t
√

1−t2
with κ = 1 < ∞, which corresponds to the prescribed mean curvature problem

(capillary surface problem) in Minkowski space −
(

u′(x)√
1−(u′(x))2

)′
= λ f (u), − L < x < L,

u(−L) = u(L) = 0.
(1.3)

One-dimensional problem (1.3) and n-dimensional problem of it with Dirichlet or Neumann
boundary condition, with general nonlinearity f (u) or with many different types nonlinearities,
like up (p > 0), up + uq (0 < p ≤ q < ∞), up − uq (p, q > 0 and p , q), (1 + u)p (p > 0), exp(u),
exp(u) − 1, exp

(
au

a+u

)
(a > 0) has been investigated intensively in recent years, see, e.g., [9–16].

(iii) ϕ(t) = |t|m−2t (m > 1) with κ = ∞, which corresponds to the m-Laplacian problem −
(
|u′(x)|m−2u′(x)

)′
= λ f (u), − L < x < L,

u(−L) = u(L) = 0.
(1.4)

In particular, when m = 2, then ϕ(t) = t, which corresponds to the usual Laplacian problem{
−u′′(x) = λ f (u), − L < x < L,
u(−L) = u(L) = 0.

(1.5)

Problem (1.4) arises in the study of non-Newtonian fluids and nonlinear diffusion problems. The
quantity m is a characteristic of the medium. In particular, for m > 2 the fluids medium are
called dilatant fluids, and those with 1 < m < 2 are called pseudoplastics. When m = 2 they are
Newtonian fluids (see, e.g., Dı́az [17, 18] and its bibliography).
Problem (1.4) with general f (u) of the types of convex, concave, convex-concave,
concave-convex, concave-convex-concave or even concave-convex-concave-convex nonlineari-
ties on (0,∞) has been extensively and intensively investigated, see, e.g., [19–25].
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Lao et al. [20] very recently studied the global bifurcation curve and exact multiplicity of positive
solutions of one-dimensional Laplacian regularized MEMS problem (1.5) with L = 1 and

fε(u) ≡
1

(1 − u)2 −
ε2

(1 − u)4 (ε ∈ (0, 1))

which is concave on (0,∞) if 0 < ε <
√

30
10 ≈ 0.548 and is convex–concave on (0,∞) if

√
30

10 ≤ ε <

1.
(iv) ϕ(t) = |t|m−2t + |t|n−2t (1 < m < n < ∞) with κ = ∞, which corresponds to the (m, n)-Laplacian

problem  −
(
|u′(x)|m−2u′(x) + |u′(x)|n−2u′(x)

)′
= λ f (u), − L < x < L,

u(−L) = u(L) = 0.
(1.6)

Problem (1.6) with general nonlinearity f (u) or with different types nonlinearities, like up (p > 0)
and um−1 + un−1, (u + 1)γ − 2 (γ ∈ (0, 3), m = 4, and n = 2) has been studied in recent years, see,
e.g., [26–30].

To study ordering properties of solutions of ϕ-Laplacian problem (1.1), we start with an equivalent
quasilinear Dirichlet problem as follows:{

u′′(x) + λh(u′) f (u) = 0, − L < x < L,
u(−L) = u(L) = 0,

(1.7)

where h(t) = 1
ϕ′(t) > 0 by (H1), see [4, p. 1199]. For four ϕ-Laplacian operators

ϕ(t) =
t

√
1 + t2

,
t

√
1 − t2

, |t|m−2t (m > 1), |t|m−2t + |t|n−2t (1 < m < n < ∞), (1.8)

we check that ϕ ∈ C(−κ, κ) ∩ C2((−κ, 0) ∪ (0, κ)) with κ = ∞, 1, ∞, ∞, respectively. In addition, ϕ is
odd on (−κ, κ),

ϕ′(t) =

(1 + t2)−3/2 > 0 for t ∈ (−∞, 0) ∪ (0,∞) if ϕ(t) =
t

√
1 + t2

,

(1 − t2)−3/2 > 0 for t ∈ (−1, 0) ∪ (0, 1) if ϕ(t) =
t

√
1 − t2

,

(m − 1) |t|m−2 > 0 for t ∈ (−∞, 0) ∪ (0,∞) if ϕ(t) = |t|m−2t with m > 1,
(m − 1) |t|m−2 + (n − 1) |t|n−2

> 0 for t ∈ (−∞, 0) ∪ (0,∞)
if ϕ(t) = |t|m−2t + |t|n−2t
with 1 < m < n < ∞,

(1.9)

and
ϕ′(−t) = ϕ′(t) for allt ∈ (−κ, 0) ∪ (0, κ). (1.10)

So by (1.9) and (1.10), for each ϕ(t) in (1.8), ϕ(t) satisfies (H1). While, it is important to notice that

tϕ′′(t) =

 −3t2(1 + t2)−5/2 < 0 for t ∈ (−∞, 0) ∪ (0,∞) if ϕ(t) = t
√

1+t2
,

3t2(1 − t2)−5/2 > 0 for t ∈ (−1, 0) ∪ (0, 1) if ϕ(t) = t
√

1−t2
,

(1.11)
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tϕ′′(t) = (m − 1)(m − 2) |t|m−2
{
≤ 0 if 1 < m ≤ 2
> 0 if 2 < m < ∞

for t ∈ (−∞, 0) ∪ (0,∞)

if ϕ(t) = |t|m−2t with m > 1 (1.12)

and

tϕ′′(t) = (m − 1)(m − 2) |t|m−2 + (n − 1)(n − 2) |t|n−2{
< 0 if 1 < m < n ≤ 2
> 0 if 2 ≤ m < n < ∞

for t ∈ (−∞, 0) ∪ (0,∞) (1.13)

if ϕ(t) = |t|m−2t + |t|n−2t with 1 < m < n < ∞.

The sign of tϕ′′(t) plays an important role in the analysis of ordering properties of positive solutions
u for ϕ-Laplacian problem (1.1); see Theorem 2.1 stated behind.

A solution u ∈ C2(−L, L) ∩ C[−L, L] of ϕ-Laplacian Dirichlet problem (1.1) with
u′ ∈ C([−L, L], [−∞,∞]) is called classical if |u′(±L)| < ∞, and it is called non-classical if
u′(−L) = ∞ or u′(L) = −∞, see [31] and cf. e.g., [5, 8]. In this paper, we always allow that solutions
u ∈ C2(−L, L) ∩ C[−L, L] satisfy u′ ∈ C([−L, L], [−∞,∞]); that is, we consider classical solutions as
well as non-classical solutions.

It can be shown that (see [4, (1.4), (1.5) and Lemma 2.1]), for (1.1) with ϕ and f satisfying (H1)
and (H2) respectively,

(i) Any non-trivial solution u ∈ C2(−L, L) ∩ C[−L, L] is concave and positive on (−L, L) since the
ϕ-Laplacian equation in (1.1) can be written in the equivalent form u′′(x) = −λh(u′) f (u) < 0 on
(−L, L) by (1.7) and (H2).

(ii) A positive solution u ∈ C2(−L, L) ∩ C[−L, L] must be symmetric on [−L, L]. Thus u′(−L) =

−u′(+L).

We define the bifurcation diagram CL of ϕ-Laplacian Dirichlet problem (1.1) by

CL ≡
{
(λ, ‖uλ‖∞) : λ > 0 and uλ ∈ C2(−L, L) ∩C[−L, L] is a positive solution of (1.1)

}
.

For one-dimensional ϕ-Laplacian Dirichlet problem (1.1), Korman and Li [4] applied the Crandall-
Rabinowitz local bifurcation theorem [32] to study the uniqueness and exact multiplicity of positive
solutions. The next Theorem 1.1 is due to Korman and Li [4, Theorem3.4].

Theorem 1.1. ( [4, Theorem 3.4]) Consider (1.1) where ϕ satisfies

ϕ ∈ C2(R) is odd and ϕ′(t) > 0 for all t ∈ R, (1.14)

tϕ′′(t) ≤ 0 for all t ∈ R, (1.15)

and moreover that its range over R is bounded, while the function f (u) ∈ C2(R̄+) is convex, it satisfies
f (u) > 0 for u > 0 and it is bounded below by a positive constant on [0,∞). Then (1.1) has at most
two positive solutions for any λ > 0. Moreover, all positive solutions lie on a unique bifurcation curve
CL on the (λ, ‖u‖∞)-plane. This curve CL emanates from the origin (0, 0) and either it tends to infinity
at some λ0 > 0, or at λ0 it develops infinite slope at x = ± L and stops, or else it bends back at some
λ0 > 0. After the turn, the curve continues without any more turns, and it either tends to infinity for
decreasing λ, or else it develops infinite slope at x = ± L and stops at some nonnegative λ̄ < λ0.
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Pan and Xing [33], in the next theorem, extended the first conclusion of Theorem 1.1, which requires
more assumptions in [4] — the boundedness of ϕ, η = ∞, and f (0) > 0 [33, p. 3632, lines 5 and 6].

Theorem 1.2. Consider (1.1) where ϕ satisfies (1.14) and (1.15) and f satisfies the following
conditions:

f ∈ C[0, η), f (u) > 0 on (0, η) for some positive η ≤ ∞,
where either η = ∞, or η < ∞ with limu→η− f (u) = ∞,

f ∈ C2[0, η) satisfying f ′′(u) > 0 on (0, η), (1.16)

f ∈ C1[0, η) satisfying f ′(u) > 0 on (0, η).

In addition, one of the inequalities in (1.15) and (1.16) is strict, except for at most finite number of
t and u. Then (1.1) has at most two non-trivial positive solutions for any λ > 0.

For one-dimensional ϕ-Laplacian Dirichlet problem (1.1), in the next theorem, Pan and Xing [31]
proved the existence and uniqueness of positive solution. They also established various results on the
exact number of positive solutions as well as global bifurcation diagrams, see [31] for details.

Theorem 1.3. ( [31, Theorem 2.1]) Consider (1.1) where ϕ satisfies (1.14) and (1.15) and f satisfies
f ∈ C1[0, η), f (0) ≥ 0, f (u) > 0 on (0, η) for some positive η ≤ ∞, where either η = ∞, or η < ∞ with
limu→η− f (u) = ∞. Moreover,

f (u) − u f ′(u) ≤ 0 for u ∈ [0, η). (1.17)

In addition, one of the inequalities in (1.15) and (1.17) is strict, except for at most finite number of
t and u. Then (1.1) has at most one positive solution for any λ > 0.

We remark that Boscaggin et al. [34] has recently proved the uniqueness of positive solution for
one-dimensional ϕ-Laplacian equation associated with the Neumann or periodic boundary conditions;
see [34, Theorems 1.1, 1.2 and Section 2] for details.

We end this section by giving next Theorems 1.4 and 1.5 which are main motivation of this paper.
Theorem 1.4 on ordering properties of positive solutions for ϕ-Laplacian Dirichlet problem (1.1) is
due to Korman and Li [4, Corollary 2.5 and Lemma 2.7] after some slight generalization for ϕ and f
satisfying (H1) and (H2) respectively. Theorem 1.4 ( [4, Corollary 2.5 and Lemma 2.7]) which was
applied in [4] to prove Theorem 1.1 says that any two positive solutions of (1.1) are strictly ordered
on (−L, L). Theorem 1.5 on ordering properties of positive solutions for Laplacian Dirichlet problem
(1.5) is due to Liu and Zhang [21, Theorem 1(iv),(v)] and Wang and Yeh [25, Theorem1.2] after some
slight generalization.

Theorem 1.4. ( [4, Corollary 2.5 and Lemma 2.7]) Consider (1.1) where ϕ satisfies (H1) and f satisfies
(H2). Suppose that, for two fixed positive numbers λ1 < λ2, uλ1(x) is a positive solution of (1.1) for
λ = λ1 and uλ2(x) is a positive solution of (1.1) for λ = λ2. Then the following assertions (I) and (II)
hold:

(I) If
∥∥∥uλ1

∥∥∥
∞
<

∥∥∥uλ2

∥∥∥
∞

, then uλ1(x) < uλ2(x) for x ∈ (−L, L).
(II) If

∥∥∥uλ1

∥∥∥
∞
>

∥∥∥uλ2

∥∥∥
∞

, then uλ1(x) > uλ2(x) for x ∈ (−L, L).

The steps of the sketch of the proof of Theorem 1.4 are as follows (Cf. [4, Lemmas 2.1, 2.3, 2.7 and
Corollaries 2.4, 2.5]):
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Step 1. Assume that ϕ satisfies (H1). Show that any positive solution of (1.7) is an even function,
with u′(x) < 0 for x > 0.

Step 2. Assume that ϕ satisfies (H1), that v(x) is a supersolution and u(x) is a subsolution of (1.1)
and that both functions are positive on (−L, L) and even. Assume that |u′(x)| > |v′(x)|. Show that
u(x) > v(x) for all x ∈ (−L, L). Moreover, if u(η) = v(η) for some η ∈ (0, L), then show that u(x) > v(x)
for all x ∈ (−η, η).

Step 3. Show that any two positive solutions of (1.1) cannot intersect, and hence they are strictly
ordered on (−L, L).

Step 4. Assume that ϕ satisfies (H1) and f satisfies (H2). Show that the value of u(0) = α uniquely
identifies the solution pair (λ, u(x)) of (1.1) (i.e., there is at most one λ, with at most one positive
solution u(x), so that u(0) = α).

Theorem 1.5. Consider Laplacian problem (1.5) where f satisfies (H2). Suppose that, for fixed two
positive numbers λ1 < λ2, uλ1(x) is a positive solution of (1.5) for λ = λ1, uλ2(x) is a positive solution
of (1.5) for λ = λ2. Then the following assertions (I) and (II) hold:

(I) If
∥∥∥uλ1

∥∥∥
∞
<

∥∥∥uλ2

∥∥∥
∞

, then

uλ1(x) < uλ2(x) for x ∈ (−L, L).

Moreover, if f is a strictly increasing function of u on [0, η), then

uλ1(x) <
(
λ1

λ2

)
uλ2(x) for x ∈ (−L, L).

In particular, if f (u) =
∑m

i=1 aiupi +
∑n

j=1 b juq j satisfies

{
0 < p1 < p2 < · · · < pm < 1 ≤ q1 < q2 < · · · < qn, m, n ≥ 1, qn > 1,
ai > 0 for i = 1, 2, . . . ,m and b j > 0 for j = 1, 2, . . . , n,

(1.18)

then

uλ1(x) <
(
λ1

λ2

) 1
1−p1

uλ2(x) for x ∈ (−L, L).

(II) If
∥∥∥uλ1

∥∥∥
∞
>

∥∥∥uλ2

∥∥∥
∞

, then

uλ1(x) >

√
λ1

λ2
uλ2(x) for x ∈ (−L, L).

We finally remark in this section that it is also interesting to study ordering properties of positive
solutions for one-dimensional ϕ-Laplacian problems with nonlinear boundary conditions. Cf. e.g.,
[35, 36] in which multiplicity results of positive solutions were obtained. Further research is needed.

The rest of this paper is organized as follows. Section 2 contains the main theorem (Theorem
2.1), its several applications (Corollaries 2.2–2.6), and a simple example of numerical computation for
Laplacian problem (1.5). Section 3 contains the proofs of the main results.
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2. Main results

The main result in this paper is the next Theorem 2.1 for one-dimensional ϕ-Laplacian Dirichlet
problem (1.1), in which we study ordering properties of positive solutions u ∈ C2(−L, L) ∩ C[−L, L].
Theorem 2.1 improves Theorem 1.4(I) by further analysis on the positivity of the term tϕ′′(t) on
(−κ, 0) ∪ (0, κ). Theorem 2.1 also generalizes and improves Theorem 1.5(I) for Laplacian Dirichlet
problem (1.5). Thus we are able to provide practical applications for (1.1) with ϕ(t) = t

√
1+t2

of the
prescribed mean curvature problem in Euclidean space, ϕ(t) = t

√
1−t2

of the prescribed mean curvature
problem in Minkowski space, ϕ(t) = |t|m−2t of the m-Laplacian problem, and ϕ(t) = |t|m−2t + |t|n−2t of
the (m, n)-Laplacian problem, see Remark 2.7. We then give some applications for some
nonlinearities f , including f (u) = up (p > 0) (Corollary 2.2),

∑m
i=1 aiupi +

∑n
j=1 b juq j satisfying (2.11)

stated behind (Corollary 2.3), 1
(1−u)p (p > 0), exp(u), exp

(
au

a+u

)
(a > 0) (Corollary 2.4), and

1
(1−u)2 −

ε2

(1−u)4 (ε ∈ (0, 1)) (Corollaries 2.5 and 2.6).

Theorem 2.1. Consider (1.1) where ϕ satisfies (H1) and f satisfies (H2). Suppose that, for two fixed
positive numbers λ1 < λ2, uλ1(x) is a positive solution of (1.1) for λ = λ1 and uλ2(x) is a positive
solution of (1.1) for λ = λ2. If

∥∥∥uλ1

∥∥∥
∞
<

∥∥∥uλ2

∥∥∥
∞

, then

uλ1(x) < uλ2(x) for x ∈ (−L, L). (2.1)

Moreover, the following assertions (i) and (ii) hold:

(i) Suppose that
tϕ′′(t) ≤ 0 for all t ∈ (−κ, 0) ∪ (0, κ). (2.2)

If f is a strictly increasing function of u on [0, η), then

uλ1(x) <
(
λ1

λ2

)
uλ2(x) for x ∈ (−L, L). (2.3)

Moreover, if there exists a constant p̂ ∈ (0, 1) such that

f (u)
u p̂ is an increasing function of u on [0, η), (2.4)

then

uλ1(x) ≤
(
λ1

λ2

) 1
1−p̂

uλ2(x) for x ∈ (−L, L). (2.5)

In particular, if tϕ′′(t) < 0 for all t ∈ (−κ, 0) ∪ (0, κ), then

uλ1(x) <
(
λ1

λ2

) 1
1−p̂

uλ2(x) for x ∈ (−L, 0) ∪ (0, L). (2.6)

Furthermore, if ϕ′(t) > 0 for all t ∈ (−κ, κ), then (2.6) holds for all x ∈ (−L, L).
(ii) Suppose that

tϕ′′(t) ≥ 0 for all t ∈ (−κ, 0) ∪ (0, κ). (2.7)

If f is a strictly decreasing function of u on [0, η), then(
λ1

λ2

)
uλ2(x) < uλ1(x) < uλ2(x) for x ∈ (−L, L). (2.8)
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Corollary 2.2. (Cf. [27, Figure 1] with f (u) = up (p > 0) for (1.6).) Consider (1.1) where ϕ satisfies
(H1) and (2.2) and f (u) = up, p > 0. Suppose that, for two fixed positive numbers λ1 < λ2, uλ1(x)
is a positive solution of (1.1) for λ = λ1 and uλ2(x) is a positive solution of (1.1) for λ = λ2, and∥∥∥uλ1

∥∥∥
∞
<

∥∥∥uλ2

∥∥∥
∞

. Then (2.3) holds. Moreover, if 0 < p < 1, then

uλ1(x) ≤
(
λ1

λ2

) 1
1−p

uλ2(x) for x ∈ (−L, L). (2.9)

In particular, if tϕ′′(t) < 0 for all t ∈ (−κ, 0) ∪ (0, κ), then

uλ1(x) <
(
λ1

λ2

) 1
1−p

uλ2(x) for x ∈ (−L, 0) ∪ (0, L). (2.10)

Corollary 2.3. (Cf. [3, Figures 2–5] with f (u) = up + uq, 0 < p < q < ∞ for (1.2).) Consider (1.1)
where ϕ satisfies (H1) and (2.2) and f (u) =

∑m
i=1 aiupi +

∑n
j=1 b juq j satisfies{

0 < p1 < p2 < · · · < pm < 1 ≤ q1 < q2 < · · · < qn, m, n ∈ N ∪ {0}, m2 + n2 ≥ 1, qn > 1,
ai > 0 for i = 1, 2, . . . ,m and b j > 0 for j = 1, 2, . . . , n;

(2.11)

cf. (1.18). Suppose that, for two fixed positive numbers λ1 < λ2, uλ1(x) is a positive solution of (1.1)
for λ = λ1 and uλ2(x) is a positive solution of (1.1) for λ = λ2, and

∥∥∥uλ1

∥∥∥
∞
<

∥∥∥uλ2

∥∥∥
∞

. Then (2.3) holds.
Moreover, if m ≥ 1, then

uλ1(x) ≤
(
λ1

λ2

) 1
1−p1

uλ2(x) for x ∈ (−L, L).

In particular, if tϕ′′(t) < 0 for all t ∈ (−κ, 0) ∪ (0, κ), then

uλ1(x) <
(
λ1

λ2

) 1
1−p1

uλ2(x) for x ∈ (−L, 0) ∪ (0, L).

Corollary 2.4. (Cf. [14, Figure 4] with f (u) = exp(u) for (1.3).) Consider (1.1) where ϕ satisfies (H1)
and (2.2) and

f (u) =
1

(1 − u)p (p > 0), exp(u), and exp
(

au
a + u

)
(a > 0).

Suppose that, for two fixed positive numbers λ1 < λ2, uλ1(x) is a positive solution of (1.1) for λ = λ1

and uλ2(x) is a positive solution of (1.1) for λ = λ2, and
∥∥∥uλ1

∥∥∥
∞
<

∥∥∥uλ2

∥∥∥
∞

. Then (2.3) holds.

Corollary 2.5. (Cf. [20, Figure 1] for (1.5) with L = 1.) Consider (1.1) where ϕ satisfies (H1) and
(2.2) and fε(u) = 1

(1−u)2 −
ε2

(1−u)4 , ε ∈ (0, 1). Suppose that, for two fixed positive numbers λ1 < λ2,
uλ1(x) is a positive solution of (1.1) for λ = λ1 and uλ2(x) is a positive solution of (1.1) for λ = λ2, and∥∥∥uλ1

∥∥∥
∞
<

∥∥∥uλ2

∥∥∥
∞

. Then for 0 < ε < 1
√

2
≈ 0.707, if

∥∥∥uλ1

∥∥∥
∞
<

∥∥∥uλ2

∥∥∥
∞
≤ 1 −

√
2ε, then (2.3) holds.

Corollary 2.6. (Cf. [20, Figure 1(c)] for (1.5) with L = 1.) Consider (1.1) where ϕ satisfies (H1) and
(2.7) and fε(u) = 1

(1−u)2 −
ε2

(1−u)4 , ε ∈ (0, 1). Suppose that, for two fixed positive numbers λ1 < λ2,
uλ1(x) is a positive solution of (1.1) for λ = λ1 and uλ2(x) is a positive solution of (1.1) for λ = λ2, and∥∥∥uλ1

∥∥∥
∞
<

∥∥∥uλ2

∥∥∥
∞

. Then for 1 > ε ≥ 1
√

2
≈ 0.707, (2.8) holds.

Electronic Research Archive Volume 30, Issue 5, 1918–1935



1926

Finally, in this section, we give several remarks to Theorem 2.1 and Corollary 2.3.

Remark 2.7. Theorem 2.1(i) holds for ϕ-Laplacian operators

ϕ(t) =
t

√
1 + t2

, |t|m−2t (1 < m ≤ 2) and |t|m−2t + |t|n−2t (1 < m < n ≤ 2)

since (2.2) holds by (1.11)–(1.13). In addition, Theorem 2.1(ii) holds for ϕ-Laplacian operators

ϕ(t) =
t

√
1 − t2

, |t|m−2t (2 ≤ m) and |t|m−2t + |t|n−2t (2 ≤ m < n < ∞)

since (2.7) holds by (1.11)–(1.13).

Remark 2.8. Corollary 2.3 applies to f (u) = aup + buq with a, b > 0 and 0 < p < q < ∞. So (2.3)
holds. Moreover, (2.9) holds if 0 < p < 1.

Remark 2.9. (Cf. Corollary 2.3.) It is interesting to note that Theorem 2.1(i) can apply to polynomial
nonlinearities f (u) =

∑m
i=1 aiupi +

∑n
j=1 b juq j with some negative coefficients ai or b j. For example, let

f = f̂ (u) = u
1
4 − âu

1
3 + u

1
2 +

m∑
i=4

aiupi +

n∑
j=1

b juq j

satisfying { 1
2 < p1 < p2 < · · · < pm < 1 ≤ q1 < q2 < · · · < qn, m ≥ 4, n ≥ 0, qn > 1,
â ≥ 0, ai > 0 for i = 4, 5, . . . ,m and b j > 0 for j = 1, 2, . . . , n.

We choose constant p̂ = 1
5 in (2.4). Then it can be easily shown that, for 0 < â < 9

8

(
3
2

) 1
3
≈ 1.288,

f̂ (u) is a positive, strictly increasing function of u on [0,∞) and it satisfies

f̂ (u)

u
1
5

= u
1
20 − âu

2
15 + u

3
10 +

m∑
i=4

aiupi−
1
5 +

n∑
j=1

b juq j−
1
5

is a strictly increasing function of u on [0,∞). Thus, by Theorem 2.1(i), for two fixed positive numbers
λ1 < λ2, suppose that, uλ1(x) is a positive solution of (1.1) for λ = λ1 and uλ2(x) is a positive solution
of (1.1) for λ = λ2 satisfying

∥∥∥uλ1

∥∥∥
∞
<

∥∥∥uλ2

∥∥∥
∞

, we have that

uλ1(x) <
(
λ1

λ2

) 5
4

uλ2(x) for x ∈ (−L, L).

Remark 2.10. Consider (1.1) where ϕ satisfies (H1) and (2.2) and f (u) satisfies (H2) and (2.4) for
some p̂ ≥ 1. Suppose that, for two fixed positive numbers λ1 < λ2, uλ1(x) is a positive solution of
(1.1) for λ = λ1 and uλ2(x) is a positive solution of (1.1) for λ = λ2. Then it can be shown that∥∥∥uλ1

∥∥∥
∞
>

∥∥∥uλ2

∥∥∥
∞

, cf. [31, Theorem 2.1].

Remark 2.11. If ϕ(t) = t and hence ϕ′(t) = 1 > 0 and ϕ′′(t) = 0 for all t ∈ (−∞,∞). Then ϕ-Laplacian
Dirichlet problem (1.1) reduces to the Laplacian Dirichlet problem (1.5) and both results in Theorem
2.1(i),(ii) hold.
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2.1. A simple example of numerical computation for Laplacian problem (1.5)

We study ordering of positive solutions for the one-dimensional Laplacian problem (1.5) with L = 1
and f (u) =

√
u, η = ∞. Function f (u) =

√
u satisfies f (0) = 0 and is strictly increasing, concave on

[0,∞). So it is easy to show that, on the (λ, ‖u‖∞)-plane, the bifurcation curve is a strictly increasing
bifurcation curve which emanates at the origin and tends to infinity as λ→ ∞. Theorem 2.1(i) applies
for f (u) =

√
u and (2.4) holds with p̂ = 1/2 ∈ (0, 1). In Figure 1, we give numerical bifurcation curve

for (1.5) produced by MATHEMATICA. In Figure 2 we choose two solutions uλ1(x) and uλ2(x) for
(1.5) satisfying uλ2(0) = 2 > 1 = uλ1(0), λ1 ≈ 7.05518,λ2 ≈ 9.97754. So by (2.5) we obtain that

uλ2(x)
uλ1(x)

≥

(
λ2

λ1

)2

≈ 2 for x ∈ (−1, 1).

The numerical simulation graph of uλ2(x)/uλ1(x) in Figure 3 suggests that the value
(
λ2
λ1

)2
gives a

pretty close lower bound for uλ2 (x)
uλ1 (x) on (−1, 1) for any two positive solutions uλ1(x) and uλ2(x) for (1.5)

with any positive λ1 < λ2. Both Figures 2 and 3 are also produced by MATHEMATICA.

2 4 6 8 10
Λ

5

10

15

20

25

uH0L

Figure 1. Bifurcation curve for (1.5) with f (u) =
√

u, L = 1.

uΛ1
HxL

uΛ2
HxL

-1.0 -0.5 0.5 1.0
x

5

10

15

20

Figure 2. Solutions uλ1(x) and uλ2(x) for (1.5) with f (u) =
√

u, L = 1, uλ2(0) = 2 > 1 =

uλ1(0), λ1 ≈ 7.05518, λ2 ≈ 9.97754.
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uΛ2
HxL�uΛ1

HxL

-1.0 -0.5 0.5 1.0
x

1.9985

1.9990

1.9995

2.0000

2.0005

2.0010

2.0015

2.0020

Figure 3. The numerical simulation graph of uλ2(x)/uλ1(x) with uλ1(x), uλ2(x) in Figure 2.

3. Proof of main results

To prove Theorem 2.1, we need the next lemma which is well-known.

Lemma 3.1. Let ϕ̃ be a continuous, strictly increasing function on the open interval I ⊂ R and
J ≡ ϕ̃(I) ⊂ R. Then ϕ̃−1 is a continuous, strictly increasing function on J. Moreover, the following
assertions (i) and (ii) hold:

(i) If ϕ̃ is convex on I, then ϕ̃−1 is concave on J.
(ii) If ϕ̃ is concave on I, then ϕ̃−1 is convex on J.

Proof of Theorem 2.1. Consider (1.1) where ϕ satisfies (H1) and f satisfies (H2). Assume that∥∥∥uλ1

∥∥∥
∞
<

∥∥∥uλ2

∥∥∥
∞

for positive numbers λ1 < λ2. First, inequality (2.1) follows by Theorem 1.4(I).
(I) We prove Theorem 2.1(i). Suppose that ϕ satisfies (2.2) and f is a strictly increasing function of

u on [0, η). Then, for −L < x ≤ 0, by (2.1),

0 >
(
ϕ(u′λ1

(x))
)′

= −λ1 f (uλ1(x)) > −
(
λ1

λ2

)
λ2 f (uλ2(x)) =

λ1

λ2

(
ϕ(u′λ2

(x))
)′

.

Since u′λ1
(0) = u′λ2

(0) = 0, we have that

0 < ϕ(u′λ1
(x)) <

λ1

λ2
ϕ(u′λ2

(x)) for − L < x < 0. (3.1)

Since ϕ(t) is continuous, strictly increasing on I ≡ (0, κ), and ϕ′′(t) ≤ 0 for all t ∈ I = (0, κ) by (2.2),
we obtain that ϕ−1 is continuous, strictly increasing and convex on J ≡ ϕ(I) by Lemma 3.1(ii). Thus,
for −L < x < 0,

u′λ1
(x) = ϕ−1(ϕ(u′λ1

(x)))

< ϕ−1(
λ1

λ2
ϕ(u′λ2

(x))) (by (3.1))

≤
λ1

λ2
ϕ−1(ϕ(u′λ2

(x))) (since ϕ−1(0) = 0 and ϕ−1 is convex on J = ϕ(I))

=
λ1

λ2
u′λ2

(x).
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This implies that

uλ1(x) <
(
λ1

λ2

)
uλ2(x) for x ∈ (−L, L) (3.2)

since uλ1(−L) = uλ2(−L) = 0 and uλ1(x), uλ2(x) are both symmetric on (−L, L) with respect to x = 0. So
(2.3) holds.

Moreover, suppose that there exists a constant p̂ ∈ (0, 1) such that f (u)
u p̂ is an increasing function of

u on [0, η). Then, for any two positive numbers u1 < u2 < η, we have that

f (u1)

u p̂
1

≤
f (u2)

up̂
2

.

Thus, for −L < x < 0,

( 0 > )
(
ϕ(u′λ1

(x))
)′

= −λ1 f (uλ1(x))

≥ −λ2

(
λ1

λ2

)
f (uλ2(x))

(
uλ1(x)
uλ2(x)

)p̂

> −

(
λ1

λ2

)1+p̂

λ2 f (uλ2(x)) (by (3.2))

=

(
λ1

λ2

)1+ p̂ (
ϕ(u′λ2

(x))
)′

.

By similar argument as above, we have that

uλ1(x) <
(
λ1

λ2

)1+ p̂

uλ2(x) for x ∈ (−L, L).

Then an inductive argument leads to, for any k ∈ N,

uλ1(x) <
(
λ1

λ2

)1+ p̂+ p̂2+···p̂k

uλ2(x) for x ∈ (−L, L).

Letting k → ∞, we obtain that

uλ1(x) ≤
(
λ1

λ2

)∑∞
k=0 p̂k

uλ2(x) =

(
λ1

λ2

) 1
1−p̂

uλ2(x) for x ∈ (−L, L). (3.3)

Now suppose that tϕ′′(t) < 0 for t ∈ (−κ, 0) ∪ (0, κ). We prove that the inequality (3.3) is strict for
x ∈ (−L, 0) ∪ (0, L) by the method of contradiction. Suppose that there exists ξ ∈ (−L, 0) ∪ (0, L) such
that

uλ1(ξ) =

(
λ1

λ2

) 1
1− p̂

uλ2(ξ). (3.4)

Since the solutions uλ1(x) and uλ2(x) are symmetric with respect to x = 0, we only need to consider
the case ξ ∈ (−L, 0). The proof for the case ξ ∈ (0, L) is similar. Then u′λ1

(ξ), u′λ2
(ξ) > 0 by (H1) and

(1.7), and hence
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λ1 f (uλ1(ξ)) = −
(
ϕ(u′λ1

(ξ))
)′

(by (1.1))

= −u′′λ1
(ξ)ϕ′(u′λ1

(ξ))

= −

(
λ1

λ2

) 1
1−p̂

u′′λ2
(ξ)ϕ′

(λ1

λ2

) 1
1−p̂

u′λ2
(ξ)


> −

(
λ1

λ2

) 1
1−p̂

u′′λ2
(ξ)ϕ′(u′λ2

(ξ))

(since − u′′λ2
(ξ) > 0 and ϕ′′(t) < 0 on (0, κ)

= −

(
λ1

λ2

) 1
1−p̂ (

ϕ(u′λ2
(ξ))

)′
=

(
λ1

λ2

) 1
1−p̂

λ2 f (uλ2(ξ))

(3.5)

by (1.1). This implies that

λ1

λ2

(
uλ1(ξ)
uλ2(ξ)

) p̂

>
λ1

λ2

f (uλ1(ξ))
f (uλ2(ξ))

>

(
λ1

λ2

) 1
1−p̂

.

So, by (3.4), we have that (
λ1

λ2

) 1
1−p̂

>

(
λ1

λ2

) 1
1−p̂

which is a contradiction. So we have that uλ1(x) <
(
λ1
λ2

) 1
1−p̂ uλ2(x) for x ∈ (−L, 0) ∪ (0, L).

Furthermore, if ϕ′(t) > 0 for all t ∈ (−κ, κ), then the proof for the case ξ = 0 in (3.5) still works.
Hence, (2.6) holds for all x ∈ (−L, L).

(II) We prove Theorem 2.1(ii). Suppose that ϕ satisfies (2.7) and f is a strictly decreasing function
of u on [0, η). Then, for −L < x ≤ 0, by (2.1),

(
ϕ(u′λ1

(x))
)′

= −λ1 f (uλ1(x)) < −
(
λ1

λ2

)
λ2 f (uλ2(x)) =

λ1

λ2

(
ϕ(u′λ2

(x))
)′
< 0.

Since u′λ1
(0) = u′λ2

(0) = 0, we have that

ϕ(u′λ1
(x)) >

λ1

λ2
ϕ(u′λ2

(x)) > 0 for − L < x < 0. (3.6)

Since ϕ(t) is strictly increasing on I ≡ (0, κ) and ϕ′′(t) ≥ 0 for all t ∈ I = (0, κ) by (2.2), we
obtain that ϕ−1 is continuous, strictly increasing and concave on J = ϕ(I) by Lemma 3.1(i). Thus, for
−L < x < 0,
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u′λ1
(x) = ϕ−1(ϕ(u′λ1

(x)))

> ϕ−1(
λ1

λ2
ϕ(u′λ2

(x))) (by (3.6))

≥
λ1

λ2
ϕ−1(ϕ(u′λ2

(x))) (since ϕ−1(0) = 0 and ϕ−1 is concave on ϕ(I))

=
λ1

λ2
u′λ2

(x).

This implies that

uλ1(x) >
(
λ1

λ2

)
uλ2(x) for x ∈ (−L, L)

since uλ1(−L) = uλ2(−L) = 0 and uλ1(x), uλ2(x) are both symmetric on (−L, L) with respect to x = 0. So
(2.7) holds.

The proof of Theorem 2.1 is now complete.
Proof of Corollary 2.2. Consider (1.1) where ϕ satisfies (H1) and (2.2) and f (u) = up, p > 0.
Suppose that, for two fixed positive numbers λ1 < λ2, uλ1(x) is a positive solution of (1.1) for λ = λ1

and uλ2(x) is a positive solution of (1.1) for λ = λ2, and
∥∥∥uλ1

∥∥∥
∞
<

∥∥∥uλ2

∥∥∥
∞

. Since f (u) = up, p > 0
satisfies (H2) with η = ∞ and is a strictly increasing function of u on [0,∞), inequality (2.3) holds by
Theorem 2.1(i). Moreover, if 0 < p < 1, we have that

f (u)
up−ε =

up

up−ε = uε

is a positive, strictly increasing function of u on [0,∞), where ε is any small enough positive constant.
Thus

uλ1(x) ≤
(
λ1

λ2

) 1
1−(p−ε)

uλ2(x) for x ∈ (−L, L) (3.7)

by (2.5). Inequality (3.7) holds for any positive ε small enough. This implies that

uλ1(x) ≤
(
λ1

λ2

) 1
1−p

uλ2(x) for x ∈ (−L, L).

In particular, if tϕ′′(t) < 0 for all t ∈ (−κ, 0) ∪ (0, κ), then the same arguments used to prove (2.6)
can be applied to prove (2.10).

The proof of Corollary 2.2 is complete.
Corollary 2.3 follows by Theorem 2.1(i), or by slight modification of the arguments in the proof of

Corollary 2.2; we omit its proof.
Corollary 2.4 follows immediately by Theorem 2.1(i) since nonlinearities f (u) = 1

(1−u)p (p > 0),

exp(u), and exp
(

au
a+u

)
(a > 0) all satisfies (H2) with η = 1, ∞ and ∞ respectively, and all are strictly

increasing functions of u on [0, η).
Proof of Corollary 2.5. For 0 < ε < 1

√
2
≈ 0.707, it is easy to see that fε(u) = 1

(1−u)2 −
ε2

(1−u)4

satisfies (H2) with ηε = 1 − ε ∈ (0, 1) and is a strictly increasing function of u on [0, 1 −
√

2ε] with
fε(0) = 1 − ε2 > 0, f ′ε(0) = 1 − 2ε2 > 0, fε(ηε) = 0, fε(1 −

√
2ε) = 1

4ε > 0, and
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f ′ε(u) =
2(1 − 2u + u2 − 2ε2)

(1 − u)5

{
> 0 if 0 ≤ u < 1 −

√
2ε,

= 0 if u = 1 −
√

2ε.

Thus, if
∥∥∥uλ1

∥∥∥
∞
<

∥∥∥uλ2

∥∥∥
∞
≤ 1 −

√
2ε, then (2.3) holds by applying modified arguments in the proof

of Theorem 2.1(i).
The proof of Corollary 2.5 is complete.

Proof of Corollary 2.6. For 1 > ε ≥ 1
√

2
≈ 0.707, it is easy to check that fε(u) = 1

(1−u)2 −
ε2

(1−u)4 satisfies
(H2) with ηε = 1 − ε ∈ (0, 1) and is a strictly decreasing function of u on [0, ηε] with fε(0) = 1 − ε2 >

0, f ′ε(0) = 1 − 2ε2 ≤ 0, f ′′ε (u) < 0 for 0 < u < ηε, and f (ηε) = 0. Thus, (2.7) holds by Theorem 2.1(ii).
The proof of Corollary 2.6 is complete.
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