We obtain a sufficient condition for a Fano threefold with terminal singularities to have a conic bundle structure.
Citation: Yuri Prokhorov. Conic bundle structures on $ \mathbb{Q} $-Fano threefolds[J]. Electronic Research Archive, 2022, 30(5): 1881-1897. doi: 10.3934/era.2022095
We obtain a sufficient condition for a Fano threefold with terminal singularities to have a conic bundle structure.
[1] | V. G. Sarkisov, On conic bundle structures, Math. USSR, Izv., 120 (1982), 355–390. https://doi.org/10.1070/IM1983v020n02ABEH001354 |
[2] | V. V. Shokurov, Prym varieties: theory and applications, Math. USSR Izv., 23 (1984), 83–147. https://doi.org/10.1070/IM1984v023n01ABEH001459 doi: 10.1070/IM1984v023n01ABEH001459 |
[3] | V. A. Iskovskikh, On the rationality problem for conic bundles, Duke Math. J., 54 (1987), 271–294. https://doi.org/10.1215/S0012-7094-87-05416-0 doi: 10.1215/S0012-7094-87-05416-0 |
[4] | Y. Prokhorov, The rationality problem for conic bundles, Russian Math. Surv., 73 (2018), 375–456. http://dx.doi.org/10.1070/RM9811 doi: 10.1070/RM9811 |
[5] | T. Fujita, Classification theories of polarized varieties, vol. 155 of London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, 1990. |
[6] | Y. Prokhorov, Rationality of $\mathbf{Q}$-Fano threefolds of large Fano index, arXiv e-print, 1903.07105, URL https://arXiv.org/abs/1903.07105, To appear in Recent Developments in Algebraic Geometry: To Miles Reid for his 70th Birthday, edited by Hamid Abban; Gavin Brown; Alexander Kasprzyk; Shigefumi Mori, London Mathematical Society Lecture Note Series Cambridge University Press. |
[7] | M. M. Grinenko, Mori structures on a Fano threefold of index $2$ and degree $1$, Proc. Steklov Inst. Math., 246 (2004), 103–128. |
[8] | M. Reid, Young person's guide to canonical singularities, in Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), vol. 46 of Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, RI, 1987,345–414. https://doi.org/10.1090/pspum/046.1/927963 |
[9] | J. Kollár, Singularities of pairs, in Algebraic geometry–Santa Cruz 1995, vol. 62 of Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, RI, 1997,221–287. https://doi.org/10.1090/pspum/062.1/1492525 |
[10] | V. Alexeev, General elephants of $\mathbf{Q}$-Fano 3-folds, Compos. Math., 91 (1994), 91–116. http://www.numdam.org/item?id=CM_1994__91_1_91_0 |
[11] | Y. Prokhorov, Equivariant minimal model program, Russian Math. Surv., 76 (2021), 461–542. https://doi.org/10.1070/rm9990 doi: 10.1070/rm9990 |
[12] | C. Birkar, P. Cascini, C. D. Hacon, J. McKernan, Existence of minimal models for varieties of log general type, J. Amer. Math. Soc., 23 (2010), 405–468. http://dx.doi.org/10.1090/S0894-0347-09-00649-3 doi: 10.1090/S0894-0347-09-00649-3 |
[13] | A. Corti, Factoring birational maps of threefolds after Sarkisov, J. Algebra. Geom., 4 (1995), 223–254. |
[14] | Y. Kawamata, Divisorial contractions to $3$-dimensional terminal quotient singularities, in Higher-dimensional complex varieties (Trento, 1994), de Gruyter, Berlin, 1996,241–246. |
[15] | K.-H. Shin, $3$-dimensional Fano varieties with canonical singularities, Tokyo J. Math., 12 (1989), 375–385. https://doi.org/10.3836/tjm/1270133187 doi: 10.3836/tjm/1270133187 |
[16] | V. A. Iskovskih, Fano threefolds. I, Izv. Akad. Nauk SSSR Ser. Mat., 41 (1977), 516–562. |
[17] | F. Campana, H. Flenner, Projective threefolds containing a smooth rational surface with ample normal bundle, J. Reine Angew. Math., 440 (1993), 77–98. https://doi.org/10.1515/crll.1993.440.77 doi: 10.1515/crll.1993.440.77 |
[18] | Y. Prokhorov, The degree of $\mathbf{Q}$-Fano threefolds, Sbornik: Math., 198 (2007), 153–174. https://doi.org/10.1070/SM2007v198n11ABEH003901 doi: 10.1070/SM2007v198n11ABEH003901 |
[19] | Y. Prokhorov, $\mathbf{Q}$-Fano threefolds of large Fano index, I, Doc. Math., 15 (2010), 843–872. https://doi.org/10.3390/mca15050872 doi: 10.3390/mca15050872 |
[20] | Y. Prokhorov, Fano threefolds of large Fano index and large degree, Sbornik: Math., 204 (2013), 347–382. https://doi.org/10.1070/SM2013v204n03ABEH004304 doi: 10.1070/SM2013v204n03ABEH004304 |
[21] | Y. Prokhorov, M. Reid, On $\mathbf Q$-Fano threefolds of Fano index $2$, in Minimal Models and Extremal Rays (Kyoto 2011), vol. 70 of Adv. Stud. Pure Math., Mathematical Society of Japan, Kinokuniya, Tokyo, 2016,397–420. |
[22] | G. Brown, A. M. Kasprzyk, Graded Ring Database, 2015. Available from: URL http://grdb.lboro.ac.uk. |
[23] | K. Suzuki, On Fano indices of $\mathbf{Q}$-Fano $3$-folds, Manuscripta Math., 114 (2004), 229–246. https://doi.org/10.1007/s00229-004-0442-4 doi: 10.1007/s00229-004-0442-4 |
[24] | G. Brown, K. Suzuki, Computing certain Fano 3-folds, Japan J. Indust. Appl. Math., 24 (2007), 241–250. https://doi.org/10.1007/BF03167538 doi: 10.1007/BF03167538 |
[25] | The PARI Group, Bordeaux, PARI/GP, version 2.7.5, 2008. Available from http://pari.math.u-bordeaux.fr/. |
[26] | M. Kawakita, Divisorial contractions in dimension three which contract divisors to smooth points, Invent. Math., 145 (2001), 105–119. https://doi.org/10.1007/s002220100144 doi: 10.1007/s002220100144 |
[27] | M. Furushima, M. Tada, Nonnormal Del Pezzo surfaces and Fano threefolds of the first kind, J. Reine Angew. Math., 429 (1992), 183–190. https://doi.org/10.1515/crll.1992.429.183 doi: 10.1515/crll.1992.429.183 |
[28] | S. Mori, Y. Prokhorov, Multiple fibers of del Pezzo fibrations, Proc. Steklov Inst. Math., 264 (2009), 131–145. https://doi.org/10.1134/S0081543809010167 doi: 10.1134/S0081543809010167 |
[29] | Y. Kawamata, Boundedness of $\mathbf{Q}$-Fano threefolds, in Proceedings of the International Conference on Algebra, Part 3 (Novosibirsk, 1989), vol. 131 of Contemp. Math., Amer. Math. Soc., Providence, RI, 1992,439–445. https://doi.org/10.1090/conm/131.3/1175897 |