Research article Special Issues

Conic bundle structures on $ \mathbb{Q} $-Fano threefolds

  • Received: 02 November 2021 Revised: 31 January 2022 Accepted: 02 February 2022 Published: 31 March 2022
  • We obtain a sufficient condition for a Fano threefold with terminal singularities to have a conic bundle structure.

    Citation: Yuri Prokhorov. Conic bundle structures on $ \mathbb{Q} $-Fano threefolds[J]. Electronic Research Archive, 2022, 30(5): 1881-1897. doi: 10.3934/era.2022095

    Related Papers:

  • We obtain a sufficient condition for a Fano threefold with terminal singularities to have a conic bundle structure.



    加载中


    [1] V. G. Sarkisov, On conic bundle structures, Math. USSR, Izv., 120 (1982), 355–390. https://doi.org/10.1070/IM1983v020n02ABEH001354
    [2] V. V. Shokurov, Prym varieties: theory and applications, Math. USSR Izv., 23 (1984), 83–147. https://doi.org/10.1070/IM1984v023n01ABEH001459 doi: 10.1070/IM1984v023n01ABEH001459
    [3] V. A. Iskovskikh, On the rationality problem for conic bundles, Duke Math. J., 54 (1987), 271–294. https://doi.org/10.1215/S0012-7094-87-05416-0 doi: 10.1215/S0012-7094-87-05416-0
    [4] Y. Prokhorov, The rationality problem for conic bundles, Russian Math. Surv., 73 (2018), 375–456. http://dx.doi.org/10.1070/RM9811 doi: 10.1070/RM9811
    [5] T. Fujita, Classification theories of polarized varieties, vol. 155 of London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, 1990.
    [6] Y. Prokhorov, Rationality of $\mathbf{Q}$-Fano threefolds of large Fano index, arXiv e-print, 1903.07105, URL https://arXiv.org/abs/1903.07105, To appear in Recent Developments in Algebraic Geometry: To Miles Reid for his 70th Birthday, edited by Hamid Abban; Gavin Brown; Alexander Kasprzyk; Shigefumi Mori, London Mathematical Society Lecture Note Series Cambridge University Press.
    [7] M. M. Grinenko, Mori structures on a Fano threefold of index $2$ and degree $1$, Proc. Steklov Inst. Math., 246 (2004), 103–128.
    [8] M. Reid, Young person's guide to canonical singularities, in Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), vol. 46 of Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, RI, 1987,345–414. https://doi.org/10.1090/pspum/046.1/927963
    [9] J. Kollár, Singularities of pairs, in Algebraic geometry–Santa Cruz 1995, vol. 62 of Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, RI, 1997,221–287. https://doi.org/10.1090/pspum/062.1/1492525
    [10] V. Alexeev, General elephants of $\mathbf{Q}$-Fano 3-folds, Compos. Math., 91 (1994), 91–116. http://www.numdam.org/item?id=CM_1994__91_1_91_0
    [11] Y. Prokhorov, Equivariant minimal model program, Russian Math. Surv., 76 (2021), 461–542. https://doi.org/10.1070/rm9990 doi: 10.1070/rm9990
    [12] C. Birkar, P. Cascini, C. D. Hacon, J. McKernan, Existence of minimal models for varieties of log general type, J. Amer. Math. Soc., 23 (2010), 405–468. http://dx.doi.org/10.1090/S0894-0347-09-00649-3 doi: 10.1090/S0894-0347-09-00649-3
    [13] A. Corti, Factoring birational maps of threefolds after Sarkisov, J. Algebra. Geom., 4 (1995), 223–254.
    [14] Y. Kawamata, Divisorial contractions to $3$-dimensional terminal quotient singularities, in Higher-dimensional complex varieties (Trento, 1994), de Gruyter, Berlin, 1996,241–246.
    [15] K.-H. Shin, $3$-dimensional Fano varieties with canonical singularities, Tokyo J. Math., 12 (1989), 375–385. https://doi.org/10.3836/tjm/1270133187 doi: 10.3836/tjm/1270133187
    [16] V. A. Iskovskih, Fano threefolds. I, Izv. Akad. Nauk SSSR Ser. Mat., 41 (1977), 516–562.
    [17] F. Campana, H. Flenner, Projective threefolds containing a smooth rational surface with ample normal bundle, J. Reine Angew. Math., 440 (1993), 77–98. https://doi.org/10.1515/crll.1993.440.77 doi: 10.1515/crll.1993.440.77
    [18] Y. Prokhorov, The degree of $\mathbf{Q}$-Fano threefolds, Sbornik: Math., 198 (2007), 153–174. https://doi.org/10.1070/SM2007v198n11ABEH003901 doi: 10.1070/SM2007v198n11ABEH003901
    [19] Y. Prokhorov, $\mathbf{Q}$-Fano threefolds of large Fano index, I, Doc. Math., 15 (2010), 843–872. https://doi.org/10.3390/mca15050872 doi: 10.3390/mca15050872
    [20] Y. Prokhorov, Fano threefolds of large Fano index and large degree, Sbornik: Math., 204 (2013), 347–382. https://doi.org/10.1070/SM2013v204n03ABEH004304 doi: 10.1070/SM2013v204n03ABEH004304
    [21] Y. Prokhorov, M. Reid, On $\mathbf Q$-Fano threefolds of Fano index $2$, in Minimal Models and Extremal Rays (Kyoto 2011), vol. 70 of Adv. Stud. Pure Math., Mathematical Society of Japan, Kinokuniya, Tokyo, 2016,397–420.
    [22] G. Brown, A. M. Kasprzyk, Graded Ring Database, 2015. Available from: URL http://grdb.lboro.ac.uk.
    [23] K. Suzuki, On Fano indices of $\mathbf{Q}$-Fano $3$-folds, Manuscripta Math., 114 (2004), 229–246. https://doi.org/10.1007/s00229-004-0442-4 doi: 10.1007/s00229-004-0442-4
    [24] G. Brown, K. Suzuki, Computing certain Fano 3-folds, Japan J. Indust. Appl. Math., 24 (2007), 241–250. https://doi.org/10.1007/BF03167538 doi: 10.1007/BF03167538
    [25] The PARI Group, Bordeaux, PARI/GP, version 2.7.5, 2008. Available from http://pari.math.u-bordeaux.fr/.
    [26] M. Kawakita, Divisorial contractions in dimension three which contract divisors to smooth points, Invent. Math., 145 (2001), 105–119. https://doi.org/10.1007/s002220100144 doi: 10.1007/s002220100144
    [27] M. Furushima, M. Tada, Nonnormal Del Pezzo surfaces and Fano threefolds of the first kind, J. Reine Angew. Math., 429 (1992), 183–190. https://doi.org/10.1515/crll.1992.429.183 doi: 10.1515/crll.1992.429.183
    [28] S. Mori, Y. Prokhorov, Multiple fibers of del Pezzo fibrations, Proc. Steklov Inst. Math., 264 (2009), 131–145. https://doi.org/10.1134/S0081543809010167 doi: 10.1134/S0081543809010167
    [29] Y. Kawamata, Boundedness of $\mathbf{Q}$-Fano threefolds, in Proceedings of the International Conference on Algebra, Part 3 (Novosibirsk, 1989), vol. 131 of Contemp. Math., Amer. Math. Soc., Providence, RI, 1992,439–445. https://doi.org/10.1090/conm/131.3/1175897
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1609) PDF downloads(71) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog