In this paper, we show that for a nonsingular projective curve and a positive integer $ k $, the $ k $-th secant bundle is the blowup of the $ k $-th secant variety along the $ (k-1) $-th secant variety. This answers a question raised in the recent paper of the authors on secant varieties of curves.
Citation: Lawrence Ein, Wenbo Niu, Jinhyung Park. On blowup of secant varieties of curves[J]. Electronic Research Archive, 2021, 29(6): 3649-3654. doi: 10.3934/era.2021055
In this paper, we show that for a nonsingular projective curve and a positive integer $ k $, the $ k $-th secant bundle is the blowup of the $ k $-th secant variety along the $ (k-1) $-th secant variety. This answers a question raised in the recent paper of the authors on secant varieties of curves.