In this paper, we propose a modified Lotka-Volterra competition model under climate change, which incorporates both spatial and temporal nonlocal effect. First, the theoretical analyses for forced waves of the model are performed, and the existence of the forced waves is proved by using the cross-iteration scheme combining with appropriate upper and lower solutions. Second, the asymptotic behaviors of the forced waves are derived by using the linearization and limiting method, and we find that the asymptotic behaviors of forced waves are mainly determined by the leading equations. In addition, some typical numerical examples are provided to illustrate the analytical results. By choosing three kinds of different kernel functions, it is found that the forced waves can be both monotonic and non-monotonic.
Citation: Yong Yang, Zunxian Li, Chengyi Xia. Forced waves and their asymptotic behaviors in a Lotka-Volterra competition model with spatio-temporal nonlocal effect under climate change[J]. Mathematical Biosciences and Engineering, 2023, 20(8): 13638-13659. doi: 10.3934/mbe.2023608
In this paper, we propose a modified Lotka-Volterra competition model under climate change, which incorporates both spatial and temporal nonlocal effect. First, the theoretical analyses for forced waves of the model are performed, and the existence of the forced waves is proved by using the cross-iteration scheme combining with appropriate upper and lower solutions. Second, the asymptotic behaviors of the forced waves are derived by using the linearization and limiting method, and we find that the asymptotic behaviors of forced waves are mainly determined by the leading equations. In addition, some typical numerical examples are provided to illustrate the analytical results. By choosing three kinds of different kernel functions, it is found that the forced waves can be both monotonic and non-monotonic.
[1] | https://climate.nasa.gov/effects/ |
[2] | R. S. Cantrell, C. Cosner, Spatial ecology via reaction-diffusion equations, John Wiley & Sons, New York, USA, 2004. https://doi.org/10.1002/0470871296 |
[3] | S. Kim, J. Park, C. Lee, D. Jeong, Y. Choi, S. Kwak, et al., Periodic travelling wave solutions for a reaction-diffusion system on landscape fitted domains, Chaos Solit. Fract., 139 (2020), 110300. https://doi.org/10.1016/j.chaos.2020.110300 doi: 10.1016/j.chaos.2020.110300 |
[4] | J. Wei, B. Liu, Global dynamics of a Lotka-Volterra competition-diffusion-advection system for small diffusion rates in heterogenous environment, Math. Biosci. Eng., 18 (2021), 564–582. https://doi.org/10.3934/mbe.2021031 doi: 10.3934/mbe.2021031 |
[5] | H. Berestycki, O. Diekmann, C. J. Nagelkerke, P. A. Zegeling, Can a species keep pace with a shifting climate, Bull. Math. Biol., 71 (2009), 399–429. https://doi.org/10.1007/s11538-008-9367-5 doi: 10.1007/s11538-008-9367-5 |
[6] | J. Garnier, M. Lewis, Expansion under climate change: The genetic consequences, Bull. Math. Biol., 78 (2016), 2165–2185. https://doi.org/10.1007/s11538-016-0213-x doi: 10.1007/s11538-016-0213-x |
[7] | H. Berestycki, L. Rossi, Reaction-diffusion equations for population dynamics with forced speed Ⅰ - The case of the whole space, Disc. Cont. Dynam. Syst., 21 (2008), 41–67. https://doi.org/10.3934/dcds.2008.21.41 doi: 10.3934/dcds.2008.21.41 |
[8] | H. Berestycki, L. Rossi, Reaction-diffusion equations for population dynamics with forced speed Ⅱ - cylinderical-type domains, Disc. Cont. Dynam. Syst., 25 (2009), 19–61. https://doi.org/10.3934/dcds.2009.25.19 doi: 10.3934/dcds.2009.25.19 |
[9] | H. Vo, Persistence versus extinction under a climate change in mixed environments, J. Differ. Equat., 259 (2015), 4947–4988. https://doi.org/10.1016/j.jde.2015.06.014 doi: 10.1016/j.jde.2015.06.014 |
[10] | H. Berestycki, J. Fang, Forced waves of the Fisher-KPP equation in a shifting environment, J. Differ. Equat., 264 (2018), 2157–2183. https://doi.org/10.1016/j.jde.2017.10.016 doi: 10.1016/j.jde.2017.10.016 |
[11] | H. Hu, X. Zou, Existence of an extinction wave in the fisher equation with a shifting habitat, Proc. Amer. Math. Soc., 145 (2017), 4763–4771. https://doi.org/10.1090/proc/13687 doi: 10.1090/proc/13687 |
[12] | J. Fang, Y. Lou, J. Wu, Can pathogen spread keep pace with its host invasion?, SIAM J. Appl. Math., 76 (2016), 1633–1657. https://doi.org/10.1137/15M1029564 doi: 10.1137/15M1029564 |
[13] | C. Wu, Y. Yang, P. Weng, Traveling waves in a diffusive predator-prey system of Holling type: point-to-point and point-to-periodic heteroclinic orbits, Chaos Solit. Fract., 48 (2013), 43–53. https://doi.org/10.1016/j.chaos.2013.01.003 doi: 10.1016/j.chaos.2013.01.003 |
[14] | Y. Yang, C. Wu, Z. Li, Forced waves and their asymptotics in a Lotka-Volterra cooperative model under climate change, Appl. Math. Comp., 353 (2019), 254–264. https://doi.org/10.1016/j.amc.2019.01.058 doi: 10.1016/j.amc.2019.01.058 |
[15] | F. D. Dong, B. Li, W. T. Li, Forced waves in a Lotka-Volterra diffusion-competition model with a shifting habitat, J. Differ. Equat., 276 (2021), 433–459. https://doi.org/10.1016/j.jde.2020.12.022 doi: 10.1016/j.jde.2020.12.022 |
[16] | H. Wang, C. Pan, C. Ou, Existence, uniqueness and stability of forced waves to the Lotka-Volterra competition system in a shifting environment, Stud. Appl. Math., 148 (2022), 186–218. https://doi.org/10.1111/sapm.12438 doi: 10.1111/sapm.12438 |
[17] | W. Choi, T. Giletti, J. S. Guo, Persistence of species in a predator-prey system with climate change and either nonlocal or local dispersal, J. Differ. Equat., 302 (2021), 807–853. https://doi.org/10.1016/j.jde.2021.09.017 doi: 10.1016/j.jde.2021.09.017 |
[18] | C. Wu, Z. Xu, Propagation dynamics in a heterogeneous reaction-diffusion system under a shifting environment, J. Dynam. Differ. Equat., 35 (2023), 493–521. https://doi.org/10.1007/s10884-021-10018-0 doi: 10.1007/s10884-021-10018-0 |
[19] | N. F. Britton, Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model, SIAM J. Appl. Math., 50 (1990), 1663–1688. https://doi.org/10.1137/0150099 doi: 10.1137/0150099 |
[20] | Y. C. Hao, G. B. Zhang, The dynamics of traveling wavefronts for a nonlocal delay competition system with local vs. nonlocal diffusions, Commun. Nonlinear Sci. Numer. Simulat., 110 (2022), 106381. https://doi.org/10.1016/j.cnsns.2022.106381 doi: 10.1016/j.cnsns.2022.106381 |
[21] | S. Lin, Z. Lu, Permanence for two-species Lotka-Volterra systems with delays, Math. Biosci. Eng., 3 (2006), 137–144. https://doi.org/10.3934/mbe.2006.3.137 doi: 10.3934/mbe.2006.3.137 |
[22] | S. Wu, Y. Song, Spatiotemporal dynamics of a diffusive predator-prey model with nonlocal effect and delay, Commun. Nonlinear Sci. Numer. Simulat., 89 (2020), 105310. https://doi.org/10.1016/j.cnsns.2020.105310 doi: 10.1016/j.cnsns.2020.105310 |
[23] | M. Banerjee, V. Volpert, Spatio-temporal pattern formation in Rosenzweig-MacArthur model: Effect of nonlocal interactions, Ecolog. Complex., 30 (2017), 2–10. https://doi.org/10.1016/j.ecocom.2016.12.002 doi: 10.1016/j.ecocom.2016.12.002 |
[24] | N. Hutchinson, G. Williams, Spatio-temporal variation in recruitment on a seasonal, tropical rocky shore: the importance of local versus non-local processes, Mar. Ecol. Prog. Ser., 215 (2001), 57–68. https://doi.org/10.3354/meps215057 doi: 10.3354/meps215057 |
[25] | Y. Song, G. Yang, Spatio-temporal dynamics of a reaction-diffusion equation with the nonlocal spatial average and delay, Appl. Math. Lett., 107 (2020), 106388. https://doi.org/10.1016/j.aml.2020.106388 doi: 10.1016/j.aml.2020.106388 |
[26] | S. A. Gourley, N. F. Britton, A predator-prey reaction-diffusion system with nonlocal effects, J. Math. Biol., 34 (1996), 297–333. https://doi.org/10.1007/BF00160498 doi: 10.1007/BF00160498 |
[27] | S. A. Gourley, M. A. J. Chaplain, F. A. Davidson, Spatio-temporal pattern for formation in a nonlocal reaction-diffusion equation, Dyn. Syst., 16 (2001), 173–192. https://doi.org/10.1080/14689360116914 doi: 10.1080/14689360116914 |
[28] | S. A. Gourley, S. Ruan, Convergence and travelling fronts in functional differential equations with nonlocal terms: a competition model, SIAM J. Math. Anal., 35 (2003), 806–822. https://doi.org/10.1137/S003614100139991 doi: 10.1137/S003614100139991 |
[29] | M. Ma, C. Ou, Asymptotic analysis of the perturbed Poisson-Boltzmann equation on unbounded domains, Asymptot. Anal., 91 (2015), 125–146. https://doi.org/10.3233/ASY-141262 doi: 10.3233/ASY-141262 |