In this paper, we study the nonlinear dynamics of a multiplex system consisting of neuronal networks each with an arbitrary number of FitzHugh-Nagumo neurons and intra-connections and delayed couplings. The network contains an autaptic connection formed by the axon of a neuron on its own soma or dendrites. The stability and instability of the network are determined and the existence of bifurcation is discussed. Then, the study turns to validate the theoretical analysis through numerical simulations. Abundant dynamical phenomena of the network are explored, such as coexisting multi-period oscillations and chaotic responses.
Citation: Weijie Ding, Xiaochen Mao, Lei Qiao, Mingjie Guan, Minqiang Shao. Delay-induced instability and oscillations in a multiplex neural system with Fitzhugh-Nagumo networks[J]. Electronic Research Archive, 2022, 30(3): 1075-1086. doi: 10.3934/era.2022057
In this paper, we study the nonlinear dynamics of a multiplex system consisting of neuronal networks each with an arbitrary number of FitzHugh-Nagumo neurons and intra-connections and delayed couplings. The network contains an autaptic connection formed by the axon of a neuron on its own soma or dendrites. The stability and instability of the network are determined and the existence of bifurcation is discussed. Then, the study turns to validate the theoretical analysis through numerical simulations. Abundant dynamical phenomena of the network are explored, such as coexisting multi-period oscillations and chaotic responses.
[1] | S. Majhi, M. Perc, D. Ghosh, Chimera states in uncoupled neurons induced by a multilayer structure, Sci. Rep., 6 (2016), 39033. https://doi.org/10.1038/srep39033 doi: 10.1038/srep39033 |
[2] | J. Sawicki, I. Omelchenko, A. Zakharova, E. Schoell, Delay controls chimera relay synchronization in multiplex networks, Phys. Rev. E, 98 (2018), 062224. https://doi.org/10.1103/PhysRevE.98.062224 doi: 10.1103/PhysRevE.98.062224 |
[3] | D. Nikitin, I. Omelchenko, A. Zakharova, M. Avetyan, A.L. Fradkov, E. Schoell, Complex partial synchronization patterns in networks of delay-coupled neurons, Philos. Trans. Royal Soc. A, 377 (2019), 20180128. https://doi.org/10.1098/rsta.2018.0128 doi: 10.1098/rsta.2018.0128 |
[4] | C. B. Gan, M. Perc, Q. Y. Wang, Delay-aided stochastic multiresonances on scale-free FitzHugh-Nagumo neuronal networks, Chin. Phys. B, 19 (2010), 040508. https://doi.org/10.1088/1674-1056/19/4/040508 doi: 10.1088/1674-1056/19/4/040508 |
[5] | H. Y. Hu, Z. H. Wang, Dynamics of controlled mechanical systems with delayed feedback, 1$^{st}$ edition, Springer-Verlag, Heidelberg, 2002. https://doi.org/10.1007/978-3-662-05030-9 |
[6] | X. Xu, D. Y. Yu, Z. H. Wang, Inter-layer synchronization of periodic solutions in two coupled rings with time delay, Physica D, 396 (2019), 1–11. https://doi.org/10.1016/j.physd.2019.02.010 doi: 10.1016/j.physd.2019.02.010 |
[7] | S. A. Plotnikov, J. Lehnert, A. L. Fradkov, E. Scholl, Adaptive control of synchronization in delay-coupled heterogeneous networks of FitzHugh-Nagumo nodes, Int. J. Bifurcat. Chaos, 26 (2016), 1650058. https://doi.org/10.1142/S0218127416500589 doi: 10.1142/S0218127416500589 |
[8] | F. Parastesh, S. Jafari, H. Azarnoush, Z. Shahriari, Z. Wang, S. Boccaletti, et al., Chimeras, Phys. Rep., 898 (2021), 1–114. https://doi.org/10.1016/j.physrep.2020.10.003 |
[9] | Q. Y. Wang, M. Perc, Z. S. Duan, G.R. Chen, Synchronization transitions on scale-free neuronal networks due to finite information transmission delays, Phys. Rev. E, 80 (2009), 026206. https://doi.org/10.1103/PhysRevE.80.026206 doi: 10.1103/PhysRevE.80.026206 |
[10] | S. R. Huddy, J. Sun, Master stability islands for amplitude death in networks of delay-coupled oscillators, Phys. Rev. E, 93 (2016), 052209. https://doi.org/10.1103/PhysRevE.93.052209 doi: 10.1103/PhysRevE.93.052209 |
[11] | X. C. Mao, F. C. Lei, X. Y. Li, W. J. Ding, T. T. Shi, Multiple bifurcations and complex responses of nonlinear time-delay oscillators, J. Comput. Nonlinear Dyn., 16 (2021), 111001. https://doi.org/10.1115/1.4051819 doi: 10.1115/1.4051819 |
[12] | F. Han, Z. J. Wang, Y. Du, X. J. Sun, B. Zhang, Robust synchronization of bursting Hodgkin–Huxley neuronal systems coupled by delayed chemical synapses, Int. J. Non-Linear Mech., 70 (2015), 105–111. https://doi.org/10.1016/j.ijnonlinmec.2014.10.010 doi: 10.1016/j.ijnonlinmec.2014.10.010 |
[13] | A. D. Kachhvah, S. Jalan, Delay regulated explosive synchronization in multiplex networks, New J. Phys., 21 (2019), 015006. https://doi.org/10.1088/1367-2630/aaff0e doi: 10.1088/1367-2630/aaff0e |
[14] | X. C. Mao, X. Y. Li, W. J. Ding, S. Wang, X. Y. Zhou, L. Qiao, Dynamics of a multiplex neural network with delayed couplings, Appl. Math. Mech. -Engl. Ed., 42 (2021), 441–456. https://doi.org/10.1007/s10483-021-2709-6 doi: 10.1007/s10483-021-2709-6 |
[15] | A. Singh, S. Ghosh, S. Jalan, J. Kurths, Synchronization in delayed multiplex networks, EPL, 111 (2015), 30010. https://doi.org/10.1209/0295-5075/111/30010 doi: 10.1209/0295-5075/111/30010 |
[16] | L. L. Zhou, F. Tan, F. Yu, W. Liu, Cluster synchronization of two-layer nonlinearly coupled multiplex networks with multi-links and time-delays, Neurocomputing, 359 (2019), 264–275. https://doi.org/10.1016/j.neucom.2019.05.077 doi: 10.1016/j.neucom.2019.05.077 |
[17] | E. R. Kandel, J. H. Schwartz, T. M. Jessell, Principles of neural science, McGraw-Hill, New York, 2000. |
[18] | J. Ma, J. Tang, A review for dynamics in neuron and neuronal network, Nonlinear Dyn., 89 (2017), 1569–1578. https://doi.org/10.1007/s11071-017-3565-3 doi: 10.1007/s11071-017-3565-3 |
[19] | E. Yilmaz, M. Ozer, V. Baysal, M. Perc, Autapse-induced multiple coherence resonance in single neurons and neuronal networks, Sci. Rep., 6 (2016), 30914. https://doi.org/10.1038/srep30914 doi: 10.1038/srep30914 |
[20] | J. Lubke, H. Markram, M. Frotscher, B. Sakmann, Frequency and dendritic distribution of autapses established by layer 5 pyramidal neurons in the developing rat neocortex: Comparison with synaptic innervation of adjacent neurons of the same class, J. Neurosci., 16 (1996), 3209–3218. https://doi.org/10.1523/JNEUROSCI.16-10-03209.1996 doi: 10.1523/JNEUROSCI.16-10-03209.1996 |