Research article Special Issues

Delay-induced instability and oscillations in a multiplex neural system with Fitzhugh-Nagumo networks

  • Received: 14 October 2021 Revised: 16 November 2021 Accepted: 16 November 2021 Published: 11 March 2022
  • In this paper, we study the nonlinear dynamics of a multiplex system consisting of neuronal networks each with an arbitrary number of FitzHugh-Nagumo neurons and intra-connections and delayed couplings. The network contains an autaptic connection formed by the axon of a neuron on its own soma or dendrites. The stability and instability of the network are determined and the existence of bifurcation is discussed. Then, the study turns to validate the theoretical analysis through numerical simulations. Abundant dynamical phenomena of the network are explored, such as coexisting multi-period oscillations and chaotic responses.

    Citation: Weijie Ding, Xiaochen Mao, Lei Qiao, Mingjie Guan, Minqiang Shao. Delay-induced instability and oscillations in a multiplex neural system with Fitzhugh-Nagumo networks[J]. Electronic Research Archive, 2022, 30(3): 1075-1086. doi: 10.3934/era.2022057

    Related Papers:

  • In this paper, we study the nonlinear dynamics of a multiplex system consisting of neuronal networks each with an arbitrary number of FitzHugh-Nagumo neurons and intra-connections and delayed couplings. The network contains an autaptic connection formed by the axon of a neuron on its own soma or dendrites. The stability and instability of the network are determined and the existence of bifurcation is discussed. Then, the study turns to validate the theoretical analysis through numerical simulations. Abundant dynamical phenomena of the network are explored, such as coexisting multi-period oscillations and chaotic responses.



    加载中


    [1] S. Majhi, M. Perc, D. Ghosh, Chimera states in uncoupled neurons induced by a multilayer structure, Sci. Rep., 6 (2016), 39033. https://doi.org/10.1038/srep39033 doi: 10.1038/srep39033
    [2] J. Sawicki, I. Omelchenko, A. Zakharova, E. Schoell, Delay controls chimera relay synchronization in multiplex networks, Phys. Rev. E, 98 (2018), 062224. https://doi.org/10.1103/PhysRevE.98.062224 doi: 10.1103/PhysRevE.98.062224
    [3] D. Nikitin, I. Omelchenko, A. Zakharova, M. Avetyan, A.L. Fradkov, E. Schoell, Complex partial synchronization patterns in networks of delay-coupled neurons, Philos. Trans. Royal Soc. A, 377 (2019), 20180128. https://doi.org/10.1098/rsta.2018.0128 doi: 10.1098/rsta.2018.0128
    [4] C. B. Gan, M. Perc, Q. Y. Wang, Delay-aided stochastic multiresonances on scale-free FitzHugh-Nagumo neuronal networks, Chin. Phys. B, 19 (2010), 040508. https://doi.org/10.1088/1674-1056/19/4/040508 doi: 10.1088/1674-1056/19/4/040508
    [5] H. Y. Hu, Z. H. Wang, Dynamics of controlled mechanical systems with delayed feedback, 1$^{st}$ edition, Springer-Verlag, Heidelberg, 2002. https://doi.org/10.1007/978-3-662-05030-9
    [6] X. Xu, D. Y. Yu, Z. H. Wang, Inter-layer synchronization of periodic solutions in two coupled rings with time delay, Physica D, 396 (2019), 1–11. https://doi.org/10.1016/j.physd.2019.02.010 doi: 10.1016/j.physd.2019.02.010
    [7] S. A. Plotnikov, J. Lehnert, A. L. Fradkov, E. Scholl, Adaptive control of synchronization in delay-coupled heterogeneous networks of FitzHugh-Nagumo nodes, Int. J. Bifurcat. Chaos, 26 (2016), 1650058. https://doi.org/10.1142/S0218127416500589 doi: 10.1142/S0218127416500589
    [8] F. Parastesh, S. Jafari, H. Azarnoush, Z. Shahriari, Z. Wang, S. Boccaletti, et al., Chimeras, Phys. Rep., 898 (2021), 1–114. https://doi.org/10.1016/j.physrep.2020.10.003
    [9] Q. Y. Wang, M. Perc, Z. S. Duan, G.R. Chen, Synchronization transitions on scale-free neuronal networks due to finite information transmission delays, Phys. Rev. E, 80 (2009), 026206. https://doi.org/10.1103/PhysRevE.80.026206 doi: 10.1103/PhysRevE.80.026206
    [10] S. R. Huddy, J. Sun, Master stability islands for amplitude death in networks of delay-coupled oscillators, Phys. Rev. E, 93 (2016), 052209. https://doi.org/10.1103/PhysRevE.93.052209 doi: 10.1103/PhysRevE.93.052209
    [11] X. C. Mao, F. C. Lei, X. Y. Li, W. J. Ding, T. T. Shi, Multiple bifurcations and complex responses of nonlinear time-delay oscillators, J. Comput. Nonlinear Dyn., 16 (2021), 111001. https://doi.org/10.1115/1.4051819 doi: 10.1115/1.4051819
    [12] F. Han, Z. J. Wang, Y. Du, X. J. Sun, B. Zhang, Robust synchronization of bursting Hodgkin–Huxley neuronal systems coupled by delayed chemical synapses, Int. J. Non-Linear Mech., 70 (2015), 105–111. https://doi.org/10.1016/j.ijnonlinmec.2014.10.010 doi: 10.1016/j.ijnonlinmec.2014.10.010
    [13] A. D. Kachhvah, S. Jalan, Delay regulated explosive synchronization in multiplex networks, New J. Phys., 21 (2019), 015006. https://doi.org/10.1088/1367-2630/aaff0e doi: 10.1088/1367-2630/aaff0e
    [14] X. C. Mao, X. Y. Li, W. J. Ding, S. Wang, X. Y. Zhou, L. Qiao, Dynamics of a multiplex neural network with delayed couplings, Appl. Math. Mech. -Engl. Ed., 42 (2021), 441–456. https://doi.org/10.1007/s10483-021-2709-6 doi: 10.1007/s10483-021-2709-6
    [15] A. Singh, S. Ghosh, S. Jalan, J. Kurths, Synchronization in delayed multiplex networks, EPL, 111 (2015), 30010. https://doi.org/10.1209/0295-5075/111/30010 doi: 10.1209/0295-5075/111/30010
    [16] L. L. Zhou, F. Tan, F. Yu, W. Liu, Cluster synchronization of two-layer nonlinearly coupled multiplex networks with multi-links and time-delays, Neurocomputing, 359 (2019), 264–275. https://doi.org/10.1016/j.neucom.2019.05.077 doi: 10.1016/j.neucom.2019.05.077
    [17] E. R. Kandel, J. H. Schwartz, T. M. Jessell, Principles of neural science, McGraw-Hill, New York, 2000.
    [18] J. Ma, J. Tang, A review for dynamics in neuron and neuronal network, Nonlinear Dyn., 89 (2017), 1569–1578. https://doi.org/10.1007/s11071-017-3565-3 doi: 10.1007/s11071-017-3565-3
    [19] E. Yilmaz, M. Ozer, V. Baysal, M. Perc, Autapse-induced multiple coherence resonance in single neurons and neuronal networks, Sci. Rep., 6 (2016), 30914. https://doi.org/10.1038/srep30914 doi: 10.1038/srep30914
    [20] J. Lubke, H. Markram, M. Frotscher, B. Sakmann, Frequency and dendritic distribution of autapses established by layer 5 pyramidal neurons in the developing rat neocortex: Comparison with synaptic innervation of adjacent neurons of the same class, J. Neurosci., 16 (1996), 3209–3218. https://doi.org/10.1523/JNEUROSCI.16-10-03209.1996 doi: 10.1523/JNEUROSCI.16-10-03209.1996
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1699) PDF downloads(71) Cited by(3)

Article outline

Figures and Tables

Figures(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog