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Abstract: In this paper, we study the nonlinear dynamics of a multiplex system consisting of neuronal
networks each with an arbitrary number of FitzHugh-Nagumo neurons and intra-connections and de-
layed couplings. The network contains an autaptic connection formed by the axon of a neuron on its
own soma or dendrites. The stability and instability of the network are determined and the existence
of bifurcation is discussed. Then, the study turns to validate the theoretical analysis through numer-
ical simulations. Abundant dynamical phenomena of the network are explored, such as coexisting
multi-period oscillations and chaotic responses.
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1. Introduction

Over the past decades, there has been an increasing interest and activity in the investigation of
multiplex networks since they can be used to describe many real-life systems, such as brain, social
groups, and transport networks, et al. [1–3]. For example, neural networks are rich in certain subgraphs
and the interactions of them are crucial for the proper functioning of the brain. In multiplex systems,
the processes happening in one group may vitally affect others and a node in one unit is likely part
of another unit [1]. The interplay of units can lead to plenty of interesting features, which are often
different from the behaviors in isolation. For example, the coupling provides a means for driving and
modulating of sustainable synchronous oscillations. In fact, the synchronization of neural activity is
an important mechanism to transmit and process information in the brain. The dynamical phenomena
of multiplex systems play important roles in their functions and have found extensive applications in
various fields. For instance, coexisting attractor are important for image processing or can be taken as
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an additional source of randomness using for information engineering.

Since the speed of the propagation and processing of signals is always finite, time delays are ubiq-
uitous and non-negligible in nature [2–7]. For example, in neural systems, time delays are up to mil-
liseconds for propagation through the cortical networks. Moreover, time delay can be generated by an
autapse, which is a synapse from a neuron onto itself. Time delays can not be simply neglected in the
dynamical modeling because they have close relationships with the property and function of system.
Time delays can give rise to abundant and interesting phenomena, such as instability, synchronization
transitions, and chimera states [8, 9]. The past few decades have witnessed the rapid development
of the dynamics of time-delay systems [2, 3, 6, 10–12]. However, this research area is still open and
challenging due to the complexity of the theoretical analysis and simulations of infinite-dimensional
dynamical systems.

Recently, great efforts have been paid on the dynamics of multiplex neuronal networks with time
delays [2, 3, 6, 13–15]. For instance, Nikitin et al. [3] investigated the spatio-temporal dynamics of a
multiplex network with two different FitzHugh–Nagumo neuronal loops and delayed inter-layer cou-
plings and revealed coexisting partial synchronization patterns of the two-layer network and presented
effective control schemes. In previous studies, two-coupled models with specific topological structure
are often considered, such as two-coupled rings [6,16]. In biological systems, neurons are often lumped
into multiple interconnected networks(areas) [17]. Actually, some regions act as a relay between other
areas of the brain and play important roles in the signal propagation and brain functionality. For in-
stance, parahippocampal regions can be regarded as relay stations, which actively gate impulse traffic
between neocortex and hippocampus, having great effects on the propagation of neural activity [2].

Motivated by the above discussions, the objective of this work is to study the behaviors of a multi-
plex neuronal system with three FitzHugh–Nagumo sub-networks and time delays. Each sub-network
consists of an arbitrary number of neurons and intra-connections. These sub-networks are connected
through the delayed couplings between a single neuron of each sub-network. An autaptic connection is
considered in the network, which is a synapse formed by the axon of a neuron on its own soma or den-
drites. The structure of such connection has been observed in cerebral cortex, neocortex, cerebellum,
hippocampus, substantia nigra, etc. [18, 19]. For instance, the majority of cortical pyramidal neurons
(more than 80%) in the developing neocortex of a human brain have autaptic connections [20]. Ac-
tually, the autapse provides a time-delayed self-feedback mechanism and can effectively regulate the
membrane potential of neurons.

The remaining part of this paper is organized as follows. In Section 2, the model of the multiplex
network is presented and the stability and bifurcation of the system are analyzed. Case studies of
numerical simulations are given to validate the obtained results and rich dynamical phenomena are
revealed in Section 3. Finally, conclusions are made in Section 4.

2. Network model and stability

The multiplex system is composed of three FitzHugh-Nagumo neural groups with delayed cou-
plings and one autaptic connection, which can be described by a set of delay differential equations as
follows
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.
x1 = a11x1 − x3

1 − y1 +

n1∑
m=1

d1m f (xm) + k(x1(t − σ) − x1) + c3 f (r1(t − τ3))

.
y1 = x1 − b11y1

.
xi = a1ixi − x3

i − yi +

n1∑
m=1

dim f (xm), 2 ≤ i ≤ n1

.
yi = xi − b1iyi

.
u1 = a21u1 − u3

1 − v1 +

n2∑
p=1

e1p f (up) + c1 f (x1(t − τ1))

.
v1 = u1 − b21v1

.
u j = a2 ju j − u3

j − v j +

n2∑
p=1

e jp f (up), 2 ≤ j ≤ n2

.
v j = u j − b2 jv j

.
r1 = a31r1 − r3

1 − s1 +

n3∑
q=1

h1q f (rq) + c2 f (u1(t − τ2))

.
s1 = r1 − b31s1

.
rl = a3lrl − r3

l − sl +

n3∑
q=1

hlq f (rq), 2 ≤ l ≤ n3

.
sl = rl − b3lsl

(1)

where xi, u j, and rl denote the membrane potentials of the i-th, j-th, l-th neuron in the networks A, B,
and C, yi, v j, and sl represent the slow refractory variables of the i-th, j-th, l-th neuron, which describe
the time dependence of several physical quantities related to electrical conductances of the relevant ion
currents across the membrane, a1i, b1i, a2 j, b2 j, a3l, and b3l are positive constants, dim, e jp, and hlq are
the internal connection weights within the sub-networks, k and σ are the strength and time delay of
the autaptic connection, c1, c2, and c3 represent the strengths of the couplings, τ1, τ2, and τ3 are the
coupling time delays between sub-networks, n1, n2, and n3 are the number of the nodes in the sub-
networks, 1 ≤ i,m ≤ n1, 1 ≤ j, p ≤ n2, 1 ≤ l, q ≤ n3. In this network, the local kinetics of each node
is described by the FitzHugh-Nagumo neuron. The nonlinear activation functions among neurons are
assumed to be absolutely smooth and satisfy f (0) = 0. Obviously, the origin is the trivial equilibrium
of the coupled network. The linearization of Eq (1) at the trivial equilibrium of the network can be
written in the vector form as follows

.
z(t) = M1z(t) + γ1M2z(t − τ1) + γ2M3z(t − τ2) + γ3M4z(t − τ3) + kM5z(t − σ) − kM5z(t) (2)

where z = [XT,UT,RT]T, X = [x1, y1, x2, y2, . . . , xn1 , yn1]
T, U = [u1, v1, u2, v2, . . . , un2 , vn2]

T, R =
[r1, s1, r2, s2, . . . , rn3 , sn3]

T, βim = dim f ′(0), µ jp = e jp f ′(0), ηlq = hlq f ′(0), γg = cg f ′(0), g = 1, 2, 3,
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M1 =


A 0 0
0 B 0
0 0 C

, M2 =


0 0 0
E1 0 0
0 0 0

, M3 =


0 0 0
0 0 0
0 E2 0

, M4 =


0 0 E3

0 0 0
0 0 0

,

M5 =


E4 0 0
0 0 0
0 0 0

, E1 =


1 0 · · · 0
0 0 · · · 0
...
...
. . .

...

0 0 · · · 0


2n2×2n1

, E2 =


1 0 · · · 0
0 0 · · · 0
...
...
. . .

...

0 0 · · · 0


2n3×2n2

, E3 =


1 0 · · · 0
0 0 · · · 0
...
...
. . .

...

0 0 · · · 0


2n1×2n3

, E4 =


1 0 · · · 0
0 0 · · · 0
...
...
. . .

...

0 0 · · · 0


2n1×2n1

, A =


A1 + β11G β12G · · · β1n1G
β21G A2 + β22G · · · β2n1G
...

...
. . .

...

βn11G βn12G · · · An1 + βn1n1G

,

B =


B1 + µ11G µ12G · · · µ1n2G
µ21G B2 + µ22G · · · µ2n2G
...

...
. . .

...

µn21G µn22G · · · Bn2 + µn2n2G

, C =


C1 + η11G η12G · · · η1n3G
η21G C2 + η22G · · · η2n3G
...

...
. . .

...

ηn31G ηn32G · · · Cn3 + ηn3n3G

,
Ai =

[
a1i −1
1 −b1i

]
, B j =

[
a2 j −1
1 −b2 j

]
, Cl =

[
a3l −1
1 −b3l

]
, G =

[
1 0
0 0

]
.

After some calculations, the characteristic equation of the network reads

∆(λ, σ, τ) = P1(λ)P2(λ)P3(λ) + (k − ke−λσ)(λ + b11)P̃1(λ)P2(λ)P3(λ)

− γe−λτ(λ + b11)(λ + b21)(λ + b31)P̃1(λ)P̃2(λ)P̃3(λ)
= L(λ) − kH(λ)e−λσ − γW(λ)e−λτ

(3)

where P1(λ) = |λI1 − A|, P2(λ) = |λI2 − B|, P3(λ) = |λI3 − C|, P̃1(λ) = |λĨ1 − Ã|, P̃2(λ) = |λĨ2 − B̃|,
P̃3(λ) = |λĨ3 − C̃|, P(λ) = P1(λ)P2(λ)P3(λ), L(λ) = P(λ) + k(λ + b11)P̃1(λ)P2(λ)P3(λ), H(λ) = (λ +
b11)P̃1(λ)P2(λ)P3(λ), W(λ) = (λ + b11)(λ + b21)(λ + b31)P̃1(λ)P̃2(λ)P̃3(λ), I1, I2, I3, Ĩ1, Ĩ2, and Ĩ3 are
identity matrice, γ = γ1γ2γ3, τ = τ1+τ2+τ3, Ã, B̃, and C̃ represent the connection matrix of three sub-

networks without the first neuron respectively, i.e., Ã =


A2 + β22G β23G · · · β2n1G
β32G A3 + β33G · · · β3n1G
...

...
. . .

...

βn12G βn13G · · · An1 + βn1n1G

,

B̃ =


B2 + µ22G µ23G · · · µ2n2G
µ32G B3 + µ33G · · · µ3n2G
...

...
. . .

...

µn22G µn23G · · · Bn2 + µn2n2G

, C̃ =


C2 + η22G η23G · · · η2n3G
η32G C3 + η33G · · · η3n3G
...

...
. . .

...

ηn32G ηn33G · · · Cn3 + ηn3n3G

.
According to the characteristic equation of the network, the local stability of the trivial equilibrium

of the system is determined by the root distributions of the characteristic equations of each individual
sub-network, the coupling strengths and time delays. The stability analysis begins with the case when
autaptic time delay is zero, i.e., ∆(λ, 0, τ) = P(λ)− γW(λ)e−λτ = 0. The necessary and sufficient condi-
tions for all roots of ∆(λ, 0, 0) = 0 having negative real parts can be determined by the Routh–Hurwitz
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criteria. As the coupling time delay varies, let λ = ±iυ(υ > 0) be a pair of purely imaginary roots.
Then, one arrives at

∆(iυ, 0, τ) = PR(υ) + iPI(υ) − γ[WR(υ) + iWI(υ)][cos(υτ) − i sin(υτ)] = 0 (4)

where PR(υ) = Re[P(iυ)], PI(υ) = Im[P(iυ)], WR(υ) = Re[W(iυ)], and WI(υ) = Im[W(iυ)]. Clearly,
PR(υ) and WR(υ) are even functions, whereas PI(υ) and WI(υ) are odd functions. Separating the real
and imaginary parts of ∆(iυ, 0, τ) = 0 and eliminating the harmonic terms give D(υ) = P2

R(υ)+ P2
I (υ)−

γ2[W2
R(υ)+W2

I (υ)] = 0. Suppose that a positive root υ j of D(υ) = 0 can be found. Then, a set of critical
coupling time delay is given by τ j,n = (θ j + 2nπ)/υ j, n = 0, 1, 2, . . . where θ j ∈ [0, 2π) yields sets of
triangle equations

cos θ j = [PR(υ j)WR(υ j) + PI(υ j)WI(υ j)]/[γ|W(υ j)|2]
sin θ j = [−PI(υ j)WR(υ j) + PR(υ j)WI(υ j)]/[γ|W(υ j)|2]

(5)

If the polynomial D(υ) = 0 has no positive roots, the above critical time delays do not exist. In this
case, the network is delay-independent stable or unstable for any given coupling time delay, depending
on whether or not the system free of time delay is stable.

When the autaptic time delay is taken into account i.e., σ > 0, it can be regarded as a parameter for
fixed value of the coupling time delay. In order to find the boundary of stability, one needs to consider
the case when the characteristic equation has a pair of purely imaginary roots λ = ±iω(ω > 0). Then,
one obtains

∆(iω,σ, τ) = LR(ω) + iLI(ω) − k[HR(ω) + iHI(ω)][cos(ωσ) − i sin(ωσ)]
− γ[WR(ω) + iWI(ω)][cos(ωτ) − i sin(ωτ)]

(6)

where LR(ω) = Re[L(iω)], LI(ω) = Im[L(iω)], HR(ω) = Re[H(iω)], HI(ω) = Im[H(iω)], WR(ω) =
Re[W(iω)], and WI(ω) = Im[W(iω)]. Clearly, LR(ω), HR(ω), and WR(ω) are even functions, whereas
LI(ω), HI(ω), and WI(ω) are odd functions. Separating the real and imaginary parts of the characteristic
equation with two different delays yields

LR(ω) − k[HR(ω) cos(ωσ) + HI(ω) sin(ωσ)] − γ[WR(ω) cos(ωτ) +WI(ω) sin(ωτ)] = 0
LI(ω) − k[HI(ω) cos(ωσ) − HR(ω) sin(ωσ)] − γ[WI(ω) cos(ωτ) −WR(ω) sin(ωτ)] = 0

(7)

Eliminating the autaptic time delay in the above equation gives

F(ω) = L2
R(ω) + L2

I (ω) − 2γ[LR(ω)WR(ω) + LI(ω)WI(ω)] cos(ωτ)
− 2γ[LR(ω)WI(ω) − LI(ω)WR(ω)] sin(ωτ) + γ2[W2

R(ω) +W2
I (ω)]

− k2[H2
R(ω) + H2

I (ω)] = 0
(8)

If F(ω) = 0 has any positive roots ω j, then the characteristic equation has purely imaginary roots
λ = ±iω. In this case, the characteristic equation of the network has sets of critical autaptic time delays
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σ j,n = (φ j + 2nπ)/ω j, j = 1, 2, . . ., n = 0, 1, 2, . . ., where φ j ∈
[
0, 2φ) and φ j satisfies

cos(φ j) =
{
LR(ω j)HR(ω j) + LI(ω j)HI(ω j) − γ[WR(ω j)HR(ω j) +WI(ω j)HI(ω j)] cos(ω jτ)

−γ[WI(ω j)HR(ω j) −WR(ω j)HI(ω j)] sin(ω jτ)
}
/[k|H(ω j)|2]

sin(φ j) =
{
LR(ω j)HI(ω j) − LI(ω j)HR(ω j) − γ[WR(ω j)HI(ω j) −WI(ω j)HR(ω j)] cos(ω jτ)

−γ[WI(ω j)HI(ω j) +WR(ω j)HR(ω j)] sin(ω jτ)
}
/[k|H(ω j)|2]

(9)

After some calculations, one arrives at Re[λ(σ)|λ=iω]′ = 0.5ωF′(ω)/|S (iω)|2, where, S (iω) =
L′(iω)− kH′(iω)e−iωσ + kσH(iω)e−iωσ − γW ′(iω)e−iωτ + γτW(iω)e−iωτ. Thus, the variation direction of
its real part with respect to the autaptic time delay can be determined by the sign of F′(ω).

Based on the above results, one can check that the crossing real parts of the roots of the characteristic
equation at σ2 j−1,n corresponding to ±iω2 j−1 must be from the left to the right, and the crossing at σ2 j,n

corresponding to ±iω2 j must be from the right to the left, where ω1 > ω2 > · · · > ω j > ω j+1 > · · · > 0,
j = 1, 2, . . .. Thus, as the internal time delay σ varies from zero to the infinity, the characteristic
equation always adds a new pair of conjugate roots with positive real parts for each crossing at σ2 j−1,n,
but reduces such a pair for each crossing at σ2 j,n. In addition, more roots of the characteristic equation
change their sign of real parts from the negative to the positive at σ2 j−1,n than those changing the sign
of real parts from the positive to the negative at σ2 j,n with an increase of autaptic time delay in a given
long interval. Then, the system can undergo finite stability switches and become unstable at last when
the autaptic time delay increases from zero to the infinity [5]. On the other hand, when Equation (8)
has no positive roots, the stability of the system is independent of the autaptic time delay because the
signs of the real parts of the characteristic roots do not change when the autaptic time delay varies.

3. Illustrative examples

In this section, the nonlinear activation function between neurons is chosen as hyperbolic tangent
function, which is a typical sigmoid function and has been widely used in neuronal networks.

(1) n1 = n2 = n3 = 3, a11 = 0.8, a21 = a31 = 0.3, a12 = a22 = a32 = 0.4, a13 = a23 = a33 = 0.5,
b11 = b21 = b31 = 0.8, b12 = b22 = b32 = 0.5, b13 = b23 = b33 = 1.2, k = 0.5, d21 = d32 = d13 = 0.15,
e21 = e32 = e13 = 0.15, h21 = h32 = h13 = 0.15, c1 = c2 = c3 = −0.2, τ1 = τ2 = τ3 = τs, and other
parameters are zero. After some calculations, one can check that the trivial equilibrium of the multiplex
network free of time delays is locally asymptotically stable. Solving the polynomial D(υ) = 0 gives
υ1 = 0.615 and υ2 = 0.563. There follows, two sets of the critical coupling time delays can be obtained
τ1,n = 0.65, 10.87, 21.09, 31.32, 41.54, . . . and τ2,n = 7.25, 18.42, 29.58, 40.75, 51.92, . . .. Then, a pair
of roots of the characteristic equation is crossing the imaginary axis from the left to the right when
τ = τ1,n and from the right to the left when τ = τ2,n. Thus, the trivial equilibrium of the multiplex
network free of autaptic time delay is locally asymptotically stable for τ ∈

[
0, τ1,0

)
∪· · ·∪ (τ2,n, τ1,n+1)∪

· · · ∪ (τ2,3, τ1,4) and becomes unstable for τ ∈ (τ1,0, τ2,0) ∪ · · · ∪ (τ1,n, τ2,n) ∪ · · · ∪ (τ1,4,+∞).
Figure 1(a) gives the stable trivial equilibrium of the network when τs = 0.1. Figure 1(b) shows that

periodic oscillations arising from Hopf bifurcation come into being when τs = 1. Figure 1(c) illustrates
that the trivial equilibrium remain stable since all roots of the characteristic equation have negative real
parts when τs = 3. Figure 1(d) gives that the trivial equilibrium loses its stability again and periodic
oscillations occur because the network adds a pair of characteristic roots with positive real parts when
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τs = 4. The solid, dashed, and dotted curves are the responses of the first neurons in each sub-network.
As shown in Figure 1, the system exhibits stable rest state and bifurcated periodic oscillations, which
coincide with the theoretical results.
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(d) τs = 4

Figure 1. The responses of the multiplex network free of autaptic time delays

Let τs = 10. After some calculations, the quasi-polynomial F(ω) = 0 has two positive real roots
ω1 = 1.09 and ω2 = 0.62. There follows, two sets of critical autaptic time delays can be obtained
σ1,n = 4.62, 10.36, 16.11, . . . and σ2,n = 10.07, 20.20, 30.34, . . .. Based on the conclusions in the above
section, a pair of roots of the characteristic equation is crossing the imaginary axis from the left to the
right when σ = σ1,n, and from the right to the left when σ = σ2,n. The critical autaptic time delays
can be ranked as 0 < σ1,0 < σ2,0 < σ1,1 < σ1,2 < . . .. Hence, the trivial equilibrium of the multiplex
neuronal network is locally asymptotically stable for σ ∈

[
0, σ1,0

)
∪ (σ2,0, σ1,1) and becomes unstable

for (σ1,0, σ2,0)∪(σ1,1,+∞). It is obvious that the trivial equilibrium of the multiplex network undergoes
three stability switches and will become unstable at last. Figure 2 gives the responses of the multiplex
network when the autaptic time delay varies. As shown in Figure 2, the network exhibits the switches
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between the stable trivial state and periodic oscillations, which reach an agreement with the obtained
analytical conclusions.
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(d) σ = 10.5

Figure 2. The responses of the multiplex network when τs = 10

(2) n1 = n2 = n3 = 3, a11 = a21 = a31 = 1, a12 = a22 = a32 = 1.1, a13 = a23 = a33 = 1.3,
b11 = b21 = b31 = 0.65, b12 = b22 = b32 = 1.12, b13 = b23 = b33 = 0.8, k = 0.2, d21 = d32 = d13 = 0.15,
e21 = e32 = e13 = 0.15, h21 = h32 = h13 = 0.15, c1 = c2 = c3 = 0.15, σ = 0.05, τ1 = τ2 = τ3 = τs, and
other parameters are zero.

A Poincaré section is defined as the projection of solutions of the system. The points on Poincaré
section depend on the behaviors of the system. If the final motion of the system is periodic, there is only
one point on the Poincaré section. For a period-n motion, n points will appear in the section, but the
numbers of points become infinite for non-periodic motions such as chaotic responses. The Poincaré
section is defined by S =

{
(x1(t), x1(t − 1)) : (y1(t) = 0,

.
y1(t) > 0)

}
. Figure 3 gives the responses of the

multiplex network when τs = 0.1. The phase plots depict that a pair of period-3 orbits and a pair of
chaotic motions come into being under different initial conditions, as shown in Figures 3(a), 3(b), 3(d),
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and 3(e). The round and asterisk points appear in Figures 3(c) and 3(f) and verify these coexisting
period-3 orbits and chaotic attractors.
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Figure 3. The responses of the multiplex network when τs = 0.1. (a) and (b) Phase trajecto-
ries of a pair of period-3 oscillations under initial conditions IC1(0.1, 0.4, 0.8, 0.8, 0.8, 0.7,
-0.3, -0.75, -0.25, -0.9, -1.25, -0.05, -0.01, -0.6, -0.45, -0.5, -1, -0.2) and IC2(-0.1, -0.4, -0.8,
-0.8, -0.8, -0.7, 0.3, 0.75, 0.25, 0.9, 1.25, 0.05, 0.01, 0.6, 0.45, 0.5, 1, 0.2); (c) Poincaré sec-
tion plot; (d) and (e) Phase trajectories of a pair of chaotic attractors under initial conditions
IC3(0.1, 0.4, 0.8, 0.8, 0.8, 0.7, 0.3, 0.75, 0.25, 0.9, 1.25, 0.05, -0.01, -0.6, -0.45, -0.5, -1,
-0.2) and IC4(-0.1, -0.4, -0.8, -0.8, -0.8, -0.7, -0.3, -0.75, -0.25, -0.9, -1.25, -0.05, 0.01, 0.6,
0.45, 0.5, 1, 0.2); (f) Poincaré section plot

Figure 4 shows the coexistence of a pair of period-3 orbits and a pair of period-2 oscillations when
τs = 0.3. The points on the Poincaré plots, as shown in Figures 4(c), and 4(f), coincide with the
results in the phase plane. Figure 5 illustrates the multiple coexisting chaotic motions when τs = 0.4.
As shown in Figures 3–5, the network exhibits different types of multiple coexisting attractors when
the coupling time delays vary. That is, the time delays have great effects on the performance of the
multiplex network and can be used to regulate the complicated dynamical behaviors of the system,
such as multi-stability.
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Figure 4. The responses of the multiplex network when τs = 0.3. (a) and (b) Phase trajec-
tories of a pair of period-3 orbits under initial conditions IC1 and IC2; (c) Poincaré section
plot; (d) and (e) Phase trajectories of a pair of period-2 motions under initial conditions IC3
and IC4, respectively; (f) Poincaré section plot
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Figure 5. The responses of the multiplex network when τs = 0.4. (a) and (b) Phase trajecto-
ries of two chaotic responses under initial conditions IC1 and IC2; (c) Poincaré section plot;
(d) and (e) Phase trajectories of two chaotic orbits under initial conditions IC3 and IC4; (f)
Poincaré section plot
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4. Conclusions

This paper has studied the stability, bifurcation, and multi-stability coexistence of a
FitzHugh–Nagumo neuronal network consisting of three populations with delayed couplings between
one neuron of each sub-network and autapstic connection. By regarding the sum of coupling time de-
lays and autaptic time delay as the parameters, the stability and bifurcation of the network equilibrium
have been studied. It is shown that the stability of the network can be determined by the root distri-
butions of characteristic equations of each individual sub-network, the product of coupling strengths,
autaptic time delay, and the sum of coupling time delays. Illustrative examples are given to validate
the theoretical analysis and a variety of complex phenomena are observed, such as the coexistence
of different multi-period orbits and chaotic motions. The revealed results may provide promising and
useful information for understanding the mechanisms of rhythms and complexity of real interacting
neural systems.
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