Let $ \mathfrak{L} $ and $ A $ be Lie triple systems, and let $ \theta_A $ be a representation of $ \mathfrak{L} $ on $ A. $ We first construct the third-order cohomology classes by derivations of $ A $ and $ \mathfrak{L}, $ then obtain a Lie algebra $ G_{\theta_A} $ with a representation $ \Phi $ on $ H^3(\mathfrak{L}, A), $ where $ \theta_A $ is given by an abelian extension
$ 0\longrightarrow A\longrightarrow {\tilde {\mathfrak{L}}} \xrightarrow{\pi} \mathfrak{L}\longrightarrow 0. $
We study obstruction classes for extensibility of derivations of $ A $ and $ \mathfrak{L} $ to those of $ \tilde{\mathfrak{L}}. $ An application of $ \Phi $ is discussed.
Citation: Xueru Wu, Yao Ma, Liangyun Chen. Abelian extensions of Lie triple systems with derivations[J]. Electronic Research Archive, 2022, 30(3): 1087-1103. doi: 10.3934/era.2022058
Let $ \mathfrak{L} $ and $ A $ be Lie triple systems, and let $ \theta_A $ be a representation of $ \mathfrak{L} $ on $ A. $ We first construct the third-order cohomology classes by derivations of $ A $ and $ \mathfrak{L}, $ then obtain a Lie algebra $ G_{\theta_A} $ with a representation $ \Phi $ on $ H^3(\mathfrak{L}, A), $ where $ \theta_A $ is given by an abelian extension
$ 0\longrightarrow A\longrightarrow {\tilde {\mathfrak{L}}} \xrightarrow{\pi} \mathfrak{L}\longrightarrow 0. $
We study obstruction classes for extensibility of derivations of $ A $ and $ \mathfrak{L} $ to those of $ \tilde{\mathfrak{L}}. $ An application of $ \Phi $ is discussed.
[1] | N. Jacobson, Lie and Jordan triple systems, Amer. J. Math., 71 (1949), 149–170. https://doi.org/10.2307/2372102 doi: 10.2307/2372102 |
[2] | N. Jacobson, General representation theory of Jordan algebras, Trans. Amer. Math. Soc., 70 (1951), 509–530. https://doi.org/10.1090/S0002-9947-1951-0041118-9 doi: 10.1090/S0002-9947-1951-0041118-9 |
[3] | K. Yamaguti, On the cohomology space of Lie triple system, Kumamoto J. Sci. Ser. A, 5 (1960), 44–52. |
[4] | F. Kubo, Y. Taniguchi, A controlling cohomology of the deformation theory of Lie triple systems, J. Algebra, 278 (2004), 242–250. https://doi.org/10.1016/j.jalgebra.2004.01.005 doi: 10.1016/j.jalgebra.2004.01.005 |
[5] | J. Liu, A. Makhlouf, Y. Sheng, A new approach to representations of $3$-Lie algebras and abelian extensions, Algeber. Repersent. Theory, 20 (2017), 1415–1431. https://doi.org/10.1007/s10468-017-9693-0 doi: 10.1007/s10468-017-9693-0 |
[6] | T. Zhang, Notes on cohomologies of Lie triple systems, J. Lie Theorey, 24 (2014), 909–929. |
[7] | V. Bardakov, M. Singh, Extensions and automorphisms of Lie algebras, J. Algebra Appl., 16 (2017), 1750612. https://doi.org/10.1142/S0219498817501626 doi: 10.1142/S0219498817501626 |
[8] | A. Das, Leibniz algebras with derivations, J. Homotopy Relat., 16 (2021), 245–274. https://doi.org/10.1007/S40062-021-00280-W doi: 10.1007/S40062-021-00280-W |
[9] | A. Das, A. Mandal, Extensions, deformation and categorification of AssDer pairs, preprint, arXiv: 2002.11415. |
[10] | R. Tang, Y. Frégier, Y. Sheng, Cohomologies of a Lie algebra with a derivation and applications, J. Algebra, 534 (2019), 65–99. https://doi.org/10.1016/j.jalgebra.2019.06.007 doi: 10.1016/j.jalgebra.2019.06.007 |
[11] | S. Xu, Cohomology, derivations and abelian extensions of $3$-Lie algebras, J. Algebra Appl., 18 (2019), 1950130, 26 pp. https://doi.org/10.1142/S0219498819501305 doi: 10.1142/S0219498819501305 |