Citation: Xiaofang Jiang, Hui Zhou, Feifei Wang, Bingxin Zheng, Bo Lu. Bifurcation analysis on the reduced dopamine neuronal model[J]. Electronic Research Archive, 2024, 32(7): 4237-4254. doi: 10.3934/era.2024191
[1] | Y. U. Ying, X. M. Wang, Q. S. Wang, Q. Y. Wang, A review of computational modeling and deep brain stimulation: Applications to Parkinson's disease, Appl. Math. Mech., 41 (2020), 1747–1768. https://doi.org/10.1007/s10483-020-2689-9 doi: 10.1007/s10483-020-2689-9 |
[2] | C. J. Chen, F. H. Min, J. M. Cai, H. Bao, Memristor synapse-driven simplified Hopfield neural network: Hidden dynamics, attractor control, and circuit implementation, IEEE Trans. Circuits Syst. I, 71 (2024), 2308–2319. https://doi.org/10.1109/TCSI.2024.3349451 doi: 10.1109/TCSI.2024.3349451 |
[3] | F. H. Min, J. Zhu, Y. Z. Cheng, Y. Y. Xu, Dynamical analysis of a tabu learning neuron through the discrete implicit mapping method, Chaos Solitons Fractals, 181 (2024), 114716. https://doi.org/10.1016/j.chaos.2024.114716 doi: 10.1016/j.chaos.2024.114716 |
[4] | R. M. Wightman, J. B. Zimmerman, Control of dopamine extracellular concentration in rat striatum by impulse flow and uptake, Brain Res. Rev., 15 (1990), 135–144. https://doi.org/10.1016/0165-0173(90)90015-G doi: 10.1016/0165-0173(90)90015-G |
[5] | D. J. Vidyadhara, M. Somayaji, N. Wade, B. Yücel, H. Zhao, N. Shashaank, et al., Dopamine transporter and synaptic vesicle sorting defects underlie auxilin-associated Parkinson's disease, Cell Press, 42 (2023), 112231. https://doi.org/10.1016/j.celrep.2023.112231 doi: 10.1016/j.celrep.2023.112231 |
[6] | A. A. Grace, S. P. Onn, Morphology and electrophysiological properties of immunocytochemically identified rat dopamine neurons recorded in vitro, J. Neurosci., 9 (1989), 3463–3481. https://doi.org/10.1523/JNEUROSCI.09-10-03463.1989 doi: 10.1523/JNEUROSCI.09-10-03463.1989 |
[7] | Q. Shan, Y. Tian, H. Chen, X. Lin, Y. Tian, Reduction in the activity of VTA/SNc dopaminergic neurons underlies aging-related decline in novelty seeking, Commun. Biol., 6 (2023), 1224. https://doi.org/10.1038/s42003-023-05571-x doi: 10.1038/s42003-023-05571-x |
[8] | H. X. Ping, P. D. Shepard, Apamin-sensitive Ca(2+)-activated K+ channels regulate pacemaker activity in nigral dopamine neurons, Neuroreport, 7 (1996), 809–814. https://doi.org/10.1097/00001756-199602290-00031 doi: 10.1097/00001756-199602290-00031 |
[9] | C. J. Knowlton, T. I. Ziouziou, N. Hammer, J. Roeper, C. C. Canavier, Inactivation mode of sodium channels defines the different maximal firing rates of conventional versus atypical midbrain dopamine neurons, PLOS Comput. Biol., 17 (2021), e1009371. https://doi.org/10.1371/journal.pcbi.1009371 doi: 10.1371/journal.pcbi.1009371 |
[10] | B. I. Hyland, J. N. J. Reynolds, J. Hay, C. G. Perk, R. Miller, Firing modes of midbrain dopamine cells in the freely moving rat, Neuroscience, 114 (2002), 475–492. https://doi.org/10.1016/S0306-4522(02)00267-1 doi: 10.1016/S0306-4522(02)00267-1 |
[11] | G. Hernandez, W. M. Kouwenhoven, E. Poirier, K. Lebied, D. Lévesque, P. P. Rompré, Dorsal raphe stimulation relays a reward signal to the ventral tegmental area via GluN2C NMDA receptors, PLoS One, 18 (2023), e0293564. https://doi.org/10.1371/journal.pone.0293564 doi: 10.1371/journal.pone.0293564 |
[12] | C. R. Lee, E. D. Abercrombie, J. M. Tepper, Pallidal control of substantia nigra dopaminergic neuron firing pattern and its relation to extracellular neostriatal dopamine levels, Neuroscience, 129 (2004), 481–489. https://doi.org/10.1016/j.neuroscience.2004.07.034 doi: 10.1016/j.neuroscience.2004.07.034 |
[13] | F. Arencibia-Albite, C. A. Jiménez-Rivera, Computational and theoretical insights into the homeostatic response to the decreased cell size of midbrain dopamine neurons, Physiol. Rep., 9 (2021), e14709. https://doi.org/10.14814/phy2.14709 doi: 10.14814/phy2.14709 |
[14] | Y. Kang, S. T. Kitai, Calcium spike underlying rhythmic firing in dopaminergic neurons of the rat substantia nigra, Neurosci. Res., 18 (1993), 195–207. https://doi.org/10.1016/0168-0102(93)90055-U doi: 10.1016/0168-0102(93)90055-U |
[15] | D. E. Cobb-Lewis, L. Sansalone, Z. M. Khaliq, Contributions of the sodium leak channel NALCN to pacemaking of medial ventral tegmental area and substantia nigra dopaminergic neurons, J. Neurosci., 43 (2023), 6841–6853. https://doi.org/10.1523/JNEUROSCI.0930-22.2023 doi: 10.1523/JNEUROSCI.0930-22.2023 |
[16] | G. Drion, L. Massotte, R. Sepulchre, V. Seutin, How modeling can reconcile apparently discrepant experimental results: The case of pacemaking in dopaminergic neurons, PLoS Comput. Biol., 7 (2011), 1002050. https://doi.org/10.1371/journal.pcbi.1002050 doi: 10.1371/journal.pcbi.1002050 |
[17] | O. Waroux, L. Massotte, L. Alleva, A. Graulich, E. Thomas, J. F. Liégeois, et al., SK channels control the firing pattern of midbrain dopaminergic neurons in vivo, Eur. J. Neurosci., 22 (2005), 3111–3121. https://doi.org/10.1111/j.1460-9568.2005.04484.x doi: 10.1111/j.1460-9568.2005.04484.x |
[18] | R. Lyer, M. A. Ungless, A. A. Faisal, Calcium-activated SK channels control firing regularity by modulating sodium channel availability in midbrain dopamine neurons, Nature, 7 (2017), 5248. https://doi.org/10.1038/s41598-017-05578-5 doi: 10.1038/s41598-017-05578-5 |
[19] | C. C. Canavier, S. A. Oprisan, J. C. Callaway, H. Ji, P. D. Shepard, Computational model predicts a role for ERG current in repolarizing plateau potentials in dopamine neurons: Implications for modulation of neuronal activity, J. Neurophys., 98 (2007), 3006–3022. https://doi.org/10.1152/jn.00422.2007 doi: 10.1152/jn.00422.2007 |
[20] | H. Ji, K. R. Tucker, I. Putzier, M. A. Huertas, J. P. Horn, C. C. Canavier, et al., Functional characterization of ether-à-go-go-related gene potassium channels in midbrain dopamine neurons-implications for a role in depolarization block, Eur. J. Neurosci., 36 (2012), 2906–2916. https://doi.org/10.1111/j.1460-9568.2012.08190.x doi: 10.1111/j.1460-9568.2012.08190.x |
[21] | A. A. Grace, B. S. Bunney, Induction of depolarization block in midbrain dopamine neurons by repeated administration of haloperidol: Analysis using in vivo intracellular recording, J. Pharmacol. Exp. Ther., 238 (1986), 1092–1100. https://doi.org/10.1016/0160-5402(86)90023-9 doi: 10.1016/0160-5402(86)90023-9 |
[22] | A. A. Grace, D. L. Uliana, Insights into the mechanism of action of antipsychotic drugs derived from animal models: Standard of care versus novel targets, Int. J. Mol. Sci., 24 (2023), 12374. https://doi.org/10.3390/ijms241512374 doi: 10.3390/ijms241512374 |
[23] | S. Nedergaard, J. A. Flatman, I. Engberg, Nifedipine- and omega-conotoxin-sensitive Ca2+ conductances in guinea-pig substantia nigra pars compacta neurones, J. Physiol., 466 (1993), 727–747. https://doi.org/10.1113/jphysiol.1993.sp019742 doi: 10.1113/jphysiol.1993.sp019742 |
[24] | O. Garritsen, E. Y. van Battum, L. M. Grossouw, R. J. Pasterkamp, Development, wiring and function of dopamine neuron subtypes, Nature, 24 (2023), 134–152. https://doi.org/10.1038/s41583-022-00669-3 doi: 10.1038/s41583-022-00669-3 |
[25] | S. W. Johnson, Y. N. Wu, Multiple mechanisms underlie burst firing in rat midbrain dopamine neurons in vitro, Brain Res., 1019 (2004), 293–296. https://doi.org/10.1016/j.brainres.2004.06.022 doi: 10.1016/j.brainres.2004.06.022 |
[26] | D. J. Galtieri, C. M. Estep, D. L. Wokosin, S. Traynelis, D. J. Surmeier, Pedunculopontine glutamatergic neurons control spike patterning in substantia nigra dopaminergic neurons, Elife, 6 (2017), e30352. https://doi.org/10.7554/eLife.30352 doi: 10.7554/eLife.30352 |
[27] | N. Yu, K. R. Tucker, E. S. Levitan, P. D. Shepard, C. C. Canavier, Implications of cellular models of dopamine neurons for schizophrenia, Prog. Mol. Biol. Transl. Sci., 123 (2014), 53–82. https://doi.org/10.1016/B978-0-12-397897-4.00011-5 doi: 10.1016/B978-0-12-397897-4.00011-5 |
[28] | R. D. Howell, S. Dominguez-Lopez, S. R. Ocañas, W. M. Freeman, M. J. Beckstead, Female mice are resilient to age-related decline of substantia nigra dopamine neuron firing parameters, Neurobiol. Aging, 95 (2020), 195–204 https://doi.org/10.1016/j.neurobiolaging.2020.07.025 doi: 10.1016/j.neurobiolaging.2020.07.025 |
[29] | J. Rinzel, A formal classification of bursting mechanisms in excitable systems, Math. Top. Popul. Biol. Morphog. Neurosci., 519 (1987), 267–281. https://doi.org/10.1007/978-3-642-93360-8-26 doi: 10.1007/978-3-642-93360-8-26 |
[30] | B. Ibarz, J. M. Casado, M. A. F. Sanjuán, Map-based models in neuronal dynamics, Phys. Rep., 501 (2011), 1–74. https://doi.org/10.1016/j.physrep.2010.12.003 doi: 10.1016/j.physrep.2010.12.003 |
[31] | Y. H. Qian, D. J. Zhang, Bursting oscillation and mechanism analysis of a class of Duffing-Van der Pol system with two excitation terms, Eur. Phys. J. Plus, 138 (2023), 1017. https://doi.org/10.1007/978-3-642-93360-8-26 doi: 10.1007/978-3-642-93360-8-26 |
[32] | R. Bertram, M. J. Butte, T. Kiemel, A. Sherman, Topological and phenomenological classification of bursting oscillations, Bull. Math. Biol., 57 (1995), 413–439. https://doi.org/10.1007/BF02460633 doi: 10.1007/BF02460633 |
[33] | N. Yu, C. C. Canavier, A mathematical model of a midbrain dopamine neuron identifies two slow variables likely responsible for bursts evoked by SK channel antagonists and terminated by depolarization block, J. Math. Neurosci., 5 (2015), 1–19. https://doi.org/10.1186/s13408-015-0017-6 doi: 10.1186/s13408-015-0017-6 |
[34] | C. Knowlton, S. Kutterer, J. Roeper, C. C. Canavier, Calcium dynamics control K-ATP channel-mediated bursting in substantia nigra dopamine neurons: A combined experimental and modeling study, J. Neurophys., 119 (2018), 84–95. https://doi.org/10.1152/jn.00351.2017 doi: 10.1152/jn.00351.2017 |
[35] | B. Lu, X. F. Jiang, Reduced and bifurcation analysis of intrinsically bursting neuron model, Electron. Res. Arch., 31 (2023), 5928–5945. https://doi.org/10.3934/era.2023301 doi: 10.3934/era.2023301 |
[36] | T. Carnevale, M. Hines, The Neuron Book, Cambridge University Press, 2017. https://doi.org/10.1017/CBO9780511541612 |
[37] | Origin. Available from: http://www.originlab.com. |
[38] | G. Y. Zhou, T. Noto, A. Sharma, Q. Yang, K. A. G. Otárula, M. Tate, et al., HFOApp: A MATLAB graphical user interface for high-frequency oscillation marking, eNeuro, 8 (2021), 0509–0520. https://doi.org/10.1523/ENEURO.0509-20.2021 doi: 10.1523/ENEURO.0509-20.2021 |
[39] | A. Dhooge, W. Govaerts, Y. A. Kuznetsov, MATCONT: A Matlab package for numerical bifurcation analysis of ODEs, ACM Trans. Math. Software, 29 (2003), 141–164. http://dx.doi.org/10.1145/779359.779362 doi: 10.1145/779359.779362 |
[40] | R. Fitzhugh, Impulses and physiological states in theoretical models of nerve membrane, Biophys. J., 1 (1961), 445–466. https://doi.org/10.1016/S0006-3495(61)86902-6 doi: 10.1016/S0006-3495(61)86902-6 |
[41] | F. A. Carrillo, F. Verduzco, J. Delgado, Analysis of the Takens-Bogdanov bifurcation on m-parameterized vector fields, Int. J. Bifurcation Chaos, 20 (2010), 995–1005. https://doi.org/10.1142/S0218127410026277 doi: 10.1142/S0218127410026277 |
[42] | Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, NewYork: Springer-Verlag, 1998. https://doi.org/10.1007/b98848 |