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Abstract: Bursting is a crucial form of firing in neurons, laden with substantial information. Studying
it can aid in understanding the neural coding to identify human behavioral characteristics conducted by
these neurons. However, the high-dimensionality of many neuron models imposes a difficult challenge
in studying the generative mechanisms of bursting. On account of the high complexity and nonlinearity
characteristic of these models, it becomes nearly impossible to theoretically study and analyze them.
Thus, this paper proposed to address these issues by focusing on the midbrain dopamine neurons,
serving as the central neuron model for the investigation of the bursting mechanisms and bifurcation
behaviors exhibited by the neuron. In this study, we considered the dimensionality reduction of a high-
dimensional neuronal model and analyzed the dynamical properties of the reduced system. To begin,
for the original thirteen-dimensional model, using the correlation between variables, we reduced its
dimensionality and obtained a simplified three-dimensional system. Then, we discussed the changing
characteristics of the number of spikes within a burst by simultaneously varying two parameters.
Finally, we studied the co-dimension-2 bifurcation in the reduced system and presented the bifurcation
behavior near the Bogdanov-Takens bifurcation.
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1. Introduction

The activity of midbrain dopamine neurons, as reflected in levels of extracellular dopamine
concentration and the BLOD-fMRI (blood oxygen level dependent functional magnetic resonance
imaging, BOLD-fMRI) signals in their target areas, is hypothesized to represent a reward prediction
error or confidence in a prediction of a desired outcome [1–3]. Firing patterns of dopamine neurons
influence dopamine signaling, for example, electrical stimulation of dopaminergic cells with 40 Hz
(Hertz) increased extracellular concentrations of dopamine in the rat striatum more effectively than
the same amount of stimulation with 10 Hz [4, 5]. In vitro experiments, dopamine neurons exhibit
regular firing with frequency from 1 to 7 Hz [6–9]. However, in living organisms, different
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distribution patterns are observed, and these include regular single spiking firing, irregular single
spiking firing, and bursting, which are present in both freely moving [10, 11] and anesthetized [12, 13]
rats.

Under different conditions, dopamine neurons exhibit a variety of oscillatory patterns. For example,
after blocking the spiking with TTX (Tetrodotoxin), the neurons exhibit a slow wave firing that is
approximately sinusoidal and calcium-mediated [8,14,15]. This oscillation is in the frequency range of
the spike. On the other hand, in both in vivo and ex vivo experiments, blocking [16–18] or minimizing
[8, 19, 20] the small conductance SK (small conductance calcium activated potassium, SK) potassium
channels increases the tendency of the bursting to rhythmic firing rhythms. These bursts usually end
in a depolarizing blockade, similar to the bursting seen in rats on long-term antipsychotic drugs [21,
22]. Depolarizing blockage refers to a state in which the resting state of the membrane potential is
programmed to support a more depolarization of the active potential generation. Clues to the bursting
mechanism include: (1) blocking the spike firing and SK channels and triggering a plateau potential
oscillation in the bottom layer [8, 23, 24], during which the depolarization phase can last for several
seconds, and (2) L-type calcium channel agonists are also sufficient to trigger bursting behavior. L-type
calcium channel-sparing agents disrupt the bursting behavior triggered by the SK channel blockade
[25, 26]. The dopamine neuron model proposed by Yu and Canavier [27, 28] is the only model that
captures the behavior of the SK channel blocking to mediate bursting in the dopamine neuron. The
most notable feature of the model is that the resting phase is more depolarized than the membrane
potential during the inter-spike.

In many mathematical models of bursting emanation, the membrane potential has a slow oscillation
below, during which the spike of the bursts appear during depolarization, and the inter-spike intervals
without emanation are more hyperpolarized than the inter-spike interval, which are often called square-
wave bursts [29–32]. A class of anomalous bursting is considered, in which the non-emitting inter-
spike intervals are more depolarized than the mean membrane potential observed during the interspike
interval. The single atrial compartment model of dopamine neurons studied in this chapter is derived
from the model constructed by Yu and Canavier [33, 34].

Due to the complexity of neurons, neuron models are often characterized by high-dimensional
complex nonlinear dynamical systems. The research process of a high-dimensional model is very
difficult, so we use the method in the literature [35]: a projection method to reduce dimension. The
dopamine neuron model studied in this chapter is a 13-dimensional nonlinear dynamical system. The
original 3D system simulates the biological properties of the dopamine neuron very well. However, it
is very difficult to study the kinetic properties of this model directly. We first use variable correlation
to reduce the original 3D model in two steps to obtain a simplified system. Then, we discuss the
variation rule of the spikes in the simplified system. By changing the parameters VLeak and gNa

simultaneously, it is found that the number of spikes in the simplified model of the action potential
varies regularly during a single week, and a number of turbid regions are created. Finally, the
birfucation of equilibrium points of the simplified system are studied. The remaining
two-dimensional bifurcation of the simplified system, such as the CP bifurcation (cusp bifurcation),
the BT bifurcation (Bogdanov-Takens bifurcation), and the GH bifurcation (generalized Hopf
bifurcation), are obtained by calculation. A detailed analysis of the topological structure in the
vicinity of the BT point is carried out to obtain the specific structure of the bifurcation on the central
manifold in the vicinity of the point.
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2. Materials and methods

The model presented in this paper is a single-compartment midbrain dopamine neuron (cylinder of
diameter d = 15 µm and length L = 25 µm) described by the following transmembrane potential [33]:

Cm
dV
dt
= −INa − ICaL − IKDR − IKA − IKERG − IKS K − IH − ILeak + 0.1Is/πdL (2.1)

where INa = gNam3hhs(V−VNa) and ICaL = gCaLl(V−VCa) are fast sodium and L-type calcium currents,
and IKDR = gKDRn3(V − VK), IKA = gKA p(q1/2 + q2/2)(V − VK), IKERG = gKERGo(V − VK), IKS K =

gKS K(V − VK)/(1 + (0.00019/[Ca])4) are delayed rectifier, A-type, ether-a-go-go-related, and small
conductance calcium dependent potassium currents, respectively. IH = gHm2

H(V − VH) is a nonspecific
hyperpolarization-activated cation current and leak current ILeak is comprised of a calcium ion specific
component ILCa = gLCa(V − VCa) and a nonspecific component ILNS = gLNS (V − VLeak). Is denotes a
small external stimulus current. In this paper, we assume that without the external stimuli, namely,
Is = 0, the membrane capacitance Cm = 1 µF/cm2.

The voltage-dependent conductances are described using the Hodgkin-Huxley formalation:
dx
dt
=

x∞ − x
τx
, x = m, h, hs, n, l,mH, p, q1, q2 (2.2)

with x∞ = 1/[1+ exp(−V−xhal f

xk
)], in which xhal f and xk represent the half-activation voltage and slope of

the steady-state Boltzmann fit to x∞. Time constants:

τm = 0.01 +
1

15.6504+0.4043V
1−exp(−19.565−0.50542V) + 3.0212 exp(−7.463e − 3V)

,

τh = 0.4 +
1

5.0754e − 4 exp(−6.3213e − 2V) + 9.7529 exp(0.13442V)
,

τhs = 20 +
580

1 + exp(V)
,

τn =
22.7165

1 + exp(−V+61.1253
4.4429 )

[
1

1 + exp(V+36.8869
9.7083 )

+ 0.0052] + 0.7397,

τl =
1

0.020876(V+39.726)
1−exp(− V+39.726

4.711 )
+ 0.19444 exp(−V+15.338

224.21 )
,

τmH = 26.21 +
3136

1 + exp(−V+22.686
29.597 )

,

τp =
95.5813

1 + exp(−V+71.5402
26.0594 )

[
1

1 + exp(V+62.5026
6.5199 )

− 0.5108] + 48.2438,

τq1 = 6.1 exp(0.015V),

τq2 = 294.0087 +
55.8321

1 + exp(V−84.8594
35.3239 )

[
1

1 + exp(V+52.5933
4.9104 )

− 5.2348].

The current IKERG uses a kinetic scheme described previously [33]. The current description requires
following two differential equations:

do
dt
= αo(1 − o − i) + βii − o(αi + βo), (2.3)
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di
dt
= αio − βii, (2.4)

where o and i represent the fraction of ERG (Ether-a-go-go-RelatedGene) channels in the open and
inactivated states, and αo, βo, αi, βi denote the corresponding reaction rates:

αo = 0.0036 exp(0.0759V),
βo = 1.2523e − 5 exp(−0.0671V),
αi = 91.11 exp(0.1189V),
βi = 12.6 exp(0.0733V).

The Ca2+ balance is described by:

d[Ca]
dt
= −2 fCa(ILCa + ICap + ICaL)/(Fd), (2.5)

where [Ca] denotes the Ca2+ concentration in mM (mM/L), and fCa = 0.018 and F are the fraction of
the unbuffered free calcium and Faraday constant. ICap represents extrusion of Ca2+, which is modeled
by a non-electrogenic pump:

ICap = ICapmax/(1 + 0.0005/[Ca]),

where ICapmax = 11 µA/cm2.
The parameters for each current are listed in Table 1.

Table 1. Parameter values for the dopamine neuron model.

Maximal conductances (µS/cm2)
gCaL = 139, gKDR = 1117, gKA = 1680,gKS K = 70,
gNa = 6000, gKERG = 130, gH = 78, gLNS = 280, gLCa = 2.45

Reversal potentials (mV) VNa = 60, VCa = 50, VK = −90, VH = −29, VLeak = −65

Half-activation voltages (mV)
mhal f = −30.09, hhal f = −54, hshal f = −54.8, nhal f = −25,
lhal f = −45, mHhal f = −77.6, phal f = −35.1, q1hal f = q2hal f = −80

Slopes (mV)
mk = 13.2, hk = −12.8, hsk = −1.57, nk = 12, lk = 7.5,
mHk = −17.317, pk = 13.4, q1k = q2k = −6

Simulations and dimensionality reduction for the original 13-dimensional single-compartment
model was performed using the NEURON software [36], and data processing was conducted using
ORIGIN [37] and MATLAB softwares [38]. The bifurcation diagrams for the slow plateau potential
was calculated with XPPAUT. The bifurcation diagrams for the reduced three-dimensional system
were generated by the MATCONT package [39].

3. Results

3.1. Model reduction

Combined Eqs (2.1)–(2.5) obtaining the original 13-dimensional model, using the formulas and
parameters in Section 2, simulated the discharge properties of the original model; for specifics, see
references [33].
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Given the dimension reduction experience of the Hodgkin-Huxley model, the four-dimensional
reduced to three-dimensional, see references [35, 40]. To start, consider the alternative method with
the appropriate variable reduced dimensionality.

In order to better hold and explore the firing properties of the original model, this paper adopts
two-step dimensionality reduction. The first step is reduced to eight-dimension and keeps the firing
characteristics of the original model; in order to be convenient for dynamic analysis of the reduced
model, the second step is reduced to three-dimensional.

Figure 1. Phase portraits of gating variables and membrane potential. Red lines are the
corresponding fitted curves (m, q1, q2, o, i).

Step one: Use membrane potential dimensionality reduction. Based on the initial parameters of the
original model, draw a phase portrait of each variable and membrane potential (Figure 1). As can be
seen from Figure 1, gating variables m, q1, q2, o, i are closely related to membrane potential, but others
have no significant relationship. Utilizing software ORIGIN curve fitting can be drawn:

m = 0.91149 + 0.00724V − 3.35746e − 4V2 − 3.81279e − 6V3,

q1 = exp(−12.87201 − 0.15835V),
q2 = 0.0125 + 1.7482e − 7 exp(−0.19914V),
o = 0.01527 − 7.54913e − 4V + 5.86583e − 6V2,

i = 0.11024 + 0.00119V.

Take these five variables into the original equation reduced to the 8-dimensional model. In order
to make discharge properties of the 8-dimensional reduced model consistent with the original model,
we adjust gNa = 5400 µS/cm2, VK = −85 mV (Millivolt), and other parameters remain unchanged. As
can be seen from Figure 2, when spiking, firing properties of the 8-dimensional model and the original
model are almost exactly the same (frequency and amplitude). gKS K = 0, the original model appears
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bursting; gKS K = 17.905 µS/cm2, the 8-dimensional model appears bursting, which is consistent with
the original model (frequency, period, duty cycle).

Figure 2. Firing patterns of the original model and 8-dimensional model. (a) spiking of the
original model with gKS K = 0 µS/cm2, the frequency is 3 Hz; (b) bursting of the original
model with gKS K = 0 µS/cm2, the period is 6.98 S , the Duty ratio is 0.65; (c) spiking of the
the 8-dimensional model with gKS K = 17.905 µS/cm2, the frequency is 4 Hz; (d) bursting
of the the 8-dimensional model with gKS K = 17.905 µS/cm2, the period is 6.72 S , the Duty
ratio is 0.61;

Step two: Use gating variables n and [Ca] dimensionality reduction. Similar to the first step, draw a
phase portrait of remaining variables and n or [Ca]. It can be seen from phase portraits, gating variables
h, l, p strongly depends on n, and hs, mH depends on [Ca]. Similarly, it can be obtained by curve fitting:

h = 0.74295 − 3.39187n + 6.43961n2 − 4.51583n3,

l = 0.083 + 0.1n + 2.1n2,

p = 0.1 + 1.8n − 3n2 + 2.3n3,

hs = 7.78317 − 120581.5037[Ca] + 6.96398e − 8[Ca]2 − 1.35265e − 12[Ca]3,

mH = 0.26401 − 4.19362e − 6 exp(41537.6367[Ca]).

Take these five variables into the 8-dimensional model and obtain a reduced three-dimensional
system as follows:
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dV
dt
=

1
Cm

(−INa − ICaL − IKDR − IKA − IKERG − IKS K − IH − ILeak),

dn
dt
=

n∞ − n
τn
,

d[Ca]
dt
=
−2 fCa(ILCa + ICap + ICaL)

Fd
,

(3.1)

where specific ion channel models are shown above.
In order to better explore dynamic properties of the system Eq (3.1), adjust parameters ICapmax =

21 µA/cm2, gNa = 6000 µS/cm2 (the original value), gCaL = 60 µS/cm2, gKDR = 17 µS/cm2, and other
parameters remain unchanged.

3.2. Influence of two-parameter on firing pattern

First, we consider the impact of parameter changes on the firing pattern of the three-dimensional
system. By examining the system’s firing patterns under various parameters, it is found that they are
essentially similar. In this paper, we select the parameters VLeak and gNa, and observe the changes
in the firing pattern of the simplified model as the parameters change. By statistically analyzing the
number of peaks within a single cluster for each combination of VLeak and gNa parameters, we obtain the
distribution of the number of spikes within a single burst of the system’s firing on a two-dimensional
plane (VLeak, gNa) (Figure 3).

Figure 3. Spike-counting diagram with two-parameter VLeak and gNa. The color bar in
the right column shows the number of spikes within a burst. The number of 0 signifies
no firing; the number 1 represents spiking; the number 2–34 indicates regular bursting, while
the number 35 denotes chaotic bursting.

Electronic Research Archive Volume 32, Issue 7, 4237–4254.



4244

Figure 3 shows the transient pattern of the discharge mode of the system with the change of gNa

and VLeak. In Figure 3, the horizontal and vertical axes are gNa and VLeak, with values ranging from
−70 to −50 mV and 0–6000 µS/cm2, respectively. From Figure 3, it can be seen that with the increase
of the parameters, the system exhibits a firing pattern from resting to spiking, then to bursting, and
finally to resting again. The different colors in Figure 3 represent the number of spikes in a single
burst, and the specific number of spikes indicated by each color is shown on the right side of the
ribbon marking the value, in which the light blue color marked with 0 represents that the system is
not firing, 1 represents that the peaks are spiking, 2–34 represents that the system is in the regular
bursting state at this time, and 35 indicates that the system enters into a chaotic bursting state. When
VLeak = −58 mV, with the increase of gNa, when gNa > 1850 µS/cm2, the system shows a regular
additive period firing phenomenon, the number of spikes in a single burst starts to increase gradually
from 2, and the different numbers of regions are separated by the chaotic region, which means that
each time the number of peaks changes, the system has to go through a chaotic region. Therefore, the
’comb’ shaped chaotic region can be clearly seen in Figure 3. In addition, the system also generates
three chaotic regions around VLeak values of −55 to −54, −52 to −51 mV, and values of gNa are from
1000 to 2000 µS/cm2, and there is also a conical chaotic region between values of VLeak from −63 to
−55 mV and gNa values of 2000 to 6000 µS/cm2.

Figure 4. Two-parameter (VLeak, gNa) bifurcation diagram of the oscillatory regime. (a)
Global view; (b) a partial amplification of panel (a). The blue curve, SN, corresponds to
the saddle-node bifurcation. The red curve H marks the Hopf bifurcation curve. The green
curve PD denotes the different period-doubling bifurcation curves of different limit cycle, the
yellow curve HC denotes the homoclinic bifurcation curve, the light blue LPC curve denotes
the folding bifurcation curve of the limit cycle, the CP point denotes the Cusp bifurcation,
the BT point denotes the Bogdanov-Takens bifurcation, the GH1 and GH2 points denote the
Generalized Hopf bifurcation, and the CPC denotes the Cusp bifurcation of the limit cycle.

Second, we branch out to system Eq (3.1). On the basis of dimensionality reduction, we select
the two parameters VLeak and gNa above for the co-dimension-2 bifurcation analysis, and the results
are shown in Figure 4. Figure 4(a) shows the co-dimension-2 bifurcation diagrams for the values of
VLeak in the range of [−70,50] mV and g in the range of [0,6000] µS/cm2. Figure 4(b) is a localized
enlargement of Figure 4(a). From Figure 4(a), it can be seen that the system exhibits a rich variation of

Electronic Research Archive Volume 32, Issue 7, 4237–4254.



4245

equilibrium points as the parameters are varied. From the figure, it can be seen that the co-dimension-2
bifurcation points of the system appear in CP (−57.549678, 961.58291), BT (−63.413152, 2476.1036),
GH1 (−60.217081, 5015.182), and GH2 (−55.831514, 778.22531), respectively.

Figure 5. Influence of two-parameter on firing pattern.

Then, we superimpose Figure 3 on Figure 4 to investigate the effect of system bifurcation on the
firing behavior, and the results are shown in Figure 5. It can be seen that the chaotic region I1 is formed
by the PD bifurcation, because when the system generates PD bifurcation, the PD cascade is formed
by it. With the increase of VLeak, another chaotic region I2 is formed when the system passes through
the LPC, and with the decrease of parameter VLeak, I3 region is formed when the system passes through
the H-curve. As can be seen from Figure 5, when the system passes through the Hopf bifurcation curve
from resting to spiking, the system changes from a resting state to a firing state, and the system starts
the firing behavior; when the system passes through the PD curve, the spiking changes to a bursting
state; and when the system passes through the H curve from left to right, the system transitions to either
a resting or a spiking state.

Figure 6 uses the bifurcation diagram of the sequence of the inter-spike interval to further delineate
the change of the firing behavior of the system. Figure 6(a) presents the firing pattern of the system
exhibiting a PD bifurcation when VLeak = −58 mV , Figure 6(b) shows the adding-period bifurcation
related to gNa, and Figure 6(c) shows the maximum Lyapunov exponent. It is seen that the system
exhibits the formation of chaotic region from the PD bifurcation with the increase of g, which
corresponds well to the maximum Lyapunov exponent. Figure 6(d) is a local enlargement of Figure
6(a), which shows a clearer bifurcation of the PD bifurcation phenomenon.
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Figure 6. ISI (interspike interval) bifurcation diagram versus gNa. (a) The PD bifurcation
diagram; (b) adding PD diagram; (c) the largest Lyapunov exponent corresponding PD
bifurcation diagram in panel (a); (d) the partial enlargement of the PD bifurcation diagram in
panel(a).

3.3. Bifurcation analysis

The Bogdanov-Takens bifurcation point BT appears when
(VLeak, gNa)T = (−63.413152, 2476.1036)T ≜ µ0, with corresponding equilibrium coordinate
(V, n, [Ca])T = (−56.177560, 0.069258865, 0.000022315168)T ≜ X0. Rewrite the system Eq (3.1) as:

dX
dt
= F(X, µ) =


f1(X, µ)
f2(X, µ)
f3(X, µ)

 ,
where X = (V, n, [Ca])T , µ = (VLeak, gNa)T , and

f1(X, µ) = −
1

Cm
(INa + ICaL + IKDR + IKA + IKERG + IKS K + IH + ILeak),

f2(X, µ) =
n∞ − n
τn
,

f3(X, µ) =
−2 fCa(ILCa + ICap + ICaL)

Fd
.

Consider the Taylor series of F(X, µ) around (X0, µ0):

F(X, µ) =DF(X0, µ0)(X − X0) + Fµ(X0, µ0)(µ − µ0)
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+
1
2

D2F(X0, µ0)(X − X0, X − X0) + FµX(X0, µ0)(µ − µ0)(X − X0) + · · ·.

Note matrix

A ≜DF(X0, µ0) =


∂ f1
∂V

∂ f1
∂n

∂ f1
∂[Ca]

∂ f2
∂V

∂ f2
∂n

∂ f2
∂[Ca]

∂ f3
∂V

∂ f3
∂n

∂ f3
∂[Ca]


∣∣∣∣∣∣∣∣∣
(X0,µ0)

=


0.0362113781 −6.139680873 −25231.15614

0.0003385368880 −0.06302066178 0
−2.101106203 × 10−9 6.191978014 × 10−7 −0.009570132519

 ,

Fµ(X0, µ0) =


∂ f1
∂VLeak

∂ f1
∂gNa

∂ f2
∂VLeak

∂ f2
∂gNa

∂ f3
∂VLeak

∂ f3
∂gNa


∣∣∣∣∣∣∣∣∣∣
(X0,µ0)

=


0.28 0.0006022539009

0 0
0 0

 .
The matrix A has three eigenvalues, that is, 0, 0, and −0.0363794162. Let P = (p1, p2, p0) be an

invertible matrix, which satisfies P−1AP = J, where J =
(

J0 0
0 J1

)
, J1 = −0.0363794162, p1 and

p2 are generalized eigenvectors of the matrix A corresponding to the double-zero eigenvalues, and p0

contains the generalized eigenvectors of the matrix J1. We have

p1 = (1, 0.005371826285, 1.280151594 × 10−7)T ,

p2 = (1,−0.07986728884,−0.00001876357667)T ,

p0 = (78.69525161, 1,−0.0000169288641)T .

If P−1 = (q1, q2, qT
0 )T , then

q1 = (1.523089493,−110.5217903, 5.516093986 × 105)T ,

q2 = (0.01657847663,−2.044581349,−43708.42341)T ,

q0 = (−0.006857694193, 1.430408689,−6454.023143).

By calculating expressions (28) and (29) in [41], then we obtain

a =
1
2

pT
1 (q2 · D2F(X0, µ0))p1 = 0.0003695666038,

b = pT
1 (q1 · D2F(X0, µ0))p1 + pT

1 (q2 · D2F(X0, µ0))p2 = 0.07459975788,

S 1 = FT
µ (X0, µ0)q2 = (0.004641973456, 0.000009984452221)T ,

S 2 =

[2a
b

(pT
1 (q1 · D2F(X0, µ0))p2 + pT

2 (q2 · D2F(X0, µ0))p2)
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−pT
1 (q2 · D2F(X0, µ0))p2)

]
FT
µ (X0, µ0)q1

−
2a
b

2∑
i=1

(qi · (FµX(X0, µ0) − ((p0J−1
1 q0)Fµ(X0, µ0))T × D2F(X0, µ0)))pi

+(q2 · (FµX(X0, µ0) − ((p0J−1
1 q0)Fµ(X0, µ0))T × D2F(X0, µ0)))p1

= (−16887.39227,−1.949460563 × 106)T .

If we choose λ1 and λ2 as bifurcation parameters, where λ1 = VLeak + 63.413152, λ2 = gNa −

2476.1036, then

β1 = S T
1 (µ − µ0) = 0.004641973456λ1 + 0.000009984452221λ2,

β2 = S T
2 (µ − µ0) = −16887.39227λ1 − 1.949460563 × 106λ2.

Using the Theorem 1 in [41], the reduced system (6) near (X0, µ0) is locally topologically equivalent
to 

dz1

dt
= z2,

dz2

dt
= β1 + β2z1 + az2

1 + bz1z2

= 0.004641973456λ1 + 0.000009984452221λ2

+(−16887.39227λ1 − 1.949460563 × 106λ2)z1

+0.0003695666037z2
1 + 0.07459975786z1z2.

(3.2)

Further, using a coordinate transformation and time reparametrization

t =
b
a

t1 =
0.07459975786

0.0003695666037
t1,

z1 =
a
b2η1 =

0.0003695666037
(0.07459975786)2η1,

z2 = sign(
b
a

)
a2

b3η2 =
(0.0003695666037)2

(0.07459975786)3 η2,

system Eq (3.2) becomes 
dη1

dt1
= η2,

dη2

dt2
= β̄1 + β̄2η1 + η

2
1 + sη1η2,

where

β̄1 =
b4

a3β1 = 2848.224171λ1 + 6.126264706λ2,

β̄2 =
b2

a2β2 = −6.881006842 × 108λ1 − 7.943352803 × 1010λ2,

s = sign(ab) = 1.
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Since

4β̄1 − β̄2
2
⇐⇒λ1 + 0.002150906789λ2 − 4.155945278 × 1013λ2

1

− 9.595148018 × 1015λ1λ2 − 5.538262614 × 1017λ2
2 = 0,

β̄1 = 0⇐⇒ λ1 = −0.002150906789λ2,

β̄2 < 0⇐⇒ λ1 + 115.4388157λ2 > 0,

β̄1 +
6

25
β̄2

2
= o(β̄2

2)⇐⇒λ1 + 0.002150906789λ2 + 3.989707465 × 1013λ2
1

+ 9.211342093 × 1015λ1λ2 + 5.316732107 × 1017λ2
2

= o(|λ1, λ2|
2).

According to the theory on the BT bifurcation in [42] and the preceding analysis, we have the
following.

Theorem 3.1. Let λ1 = VLeak + 63.413152 and λ2 = gNa − 2476.1036. If bifurcation parameters
(VLeak, gNa) vary around (−63.413152, 2476.1036), then the system (6), at the Bogdanov-Takens
bifurcation point BT, is locally topologically equivalent to the following system:

dη1

dt1
= η2,

dη2

dt2
= 2848.224171λ1 + 6.126264706λ2

+(−6.881006842 × 108λ1 − 7.943352803 × 1010λ2)η1 + η
2
1 + η1η2.

(3.3)

System (8) has the following local representation of bifurcation curves in a small neighborhood of the
origin:

(1) There is a fold bifurcation curve

S N ={(λ1, λ2) : λ1 + 0.002150906789λ2 − 4.155945278 × 1013λ2
1

− 9.595148018 × 1015λ1λ2 − 5.538262614 × 1017λ2
2 = 0};

(2) There is a nondegenerate Hopf-bifurcation curve

H = {(λ1, λ2) : λ1 = −0.002150906789λ2, λ1 + 115.4388157λ2 > 0};

(3) There is a saddle homoclinic-bifurcation curve

HL ={(λ1, λ2) : λ1 + 0.002150906789λ2 + 3.989707465 × 1013λ2
1

+ 9.211342093 × 1015λ1λ2 + 5.316732107 × 1017λ2
2

= o(|λ1, λ2|
2), λ1 + 115.4388157λ2 > 0}.

In Section 3.3, we conduct a bifurcation analysis of the model, with a specific focus on the BT
bifurcation of the system. Through calculations on the simplified model, we obtain an in-depth analysis
of the opening and breaking behavior associated with the BT bifurcation. Furthermore, we clarify the
topological structure near the bifurcation point, particularly by calculating the homoclinic orbit curve
and resolving issues related to its computation.
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4. Discussion and conclusions

In this paper, the kinetic properties of a class of dopamine neurons were investigated and abundant
results were obtained. Due to the complexity of neurons, neuronal models are often characterized by
high latitude and high complexity. We mainly focused on the dynamical properties of high-dimensional
systems squeezing a reduced dimensional system. It is very difficult to study the dynamics of the model
directly, so we first use the correlation of variables to downsize the original system in two steps and
obtain a simplified system in three dimensions.

The first step is to consider the dimensionality reduction using the membrane potential. By
drawing the phase diagram of each gating variable with respect to the membrane potential and
substituting the appropriate data fitting, a simplified system in eight dimensions is obtained and the
system retains the characteristic properties of the original system. The second step of dimensionality
reduction is carried out with the help of the gating variables of the potassium channel n, and the
calcium concentration [Ca] to obtain the simplified model in three dimensions. It can be seen that the
chaotic regions are generated due to the PD bifurcation, and the SN bifurcation on the LPC. Then, we
study the equilibrium bifurcation of the system on the basis of a simplified model. The CP
bifurcation, BT bifurcation, GH bifurcation, and other residual co-dimension-2 bifurcations of the
simplified system are obtained through computation, the topology near the BT bifurcation is analyzed
in detail, and the specific structure of each bifurcation on the central manifold near the neighborhood
of this point is obtained.

To sum up, we give a method to study a high-dimensional nonlinear neuron model, and by
comparing the action potentials generated by the model before and after simplification (the model
after the second step of dimensionality reduction loses the firing characteristics of the original model),
it is found that the chaotic regions are generated by the cascade formation of PD bifurcation generated
by PD bifurcation (Figure 5, VLeak = [−60,−54] mV), and the chaotic regions generated by SN
bifurcation on the LPC (VLeak = [−56,−54] mV). The inter-spike interval of the membrane potential
of the system is studied to characterize the process of chaos generated by the PD cascade at
VLeak = 58 mV . However, there is no further comparison of these differences in the generation of
chaos, which can be further investigated. In addition, although the article gives the reason for the
generation of chaos by combining co-dimension-2 bifurcation, it is difficult to analyze the dynamics
of the original high-dimension neuron model, and the generality of the model simplification needs to
be further proved.
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