Research article

Lie $ n $-centralizers of generalized matrix algebras

  • Received: 24 February 2023 Revised: 30 March 2023 Accepted: 07 April 2023 Published: 20 April 2023
  • MSC : 16W25, 47B47

  • In this paper, we introduce the notion of Lie $ n $-centralizers. We then give a description of Lie $ n $-centralizers on a generalized matrix algebra and present the necessary and sufficient conditions for a Lie $ n $-centralizer to be proper. As applications, we determine generalized Lie $ n $-derivations on a generalized matrix algebra and Lie $ n $-centralizers of some operator algebras.

    Citation: He Yuan, Zhuo Liu. Lie $ n $-centralizers of generalized matrix algebras[J]. AIMS Mathematics, 2023, 8(6): 14609-14622. doi: 10.3934/math.2023747

    Related Papers:

  • In this paper, we introduce the notion of Lie $ n $-centralizers. We then give a description of Lie $ n $-centralizers on a generalized matrix algebra and present the necessary and sufficient conditions for a Lie $ n $-centralizer to be proper. As applications, we determine generalized Lie $ n $-derivations on a generalized matrix algebra and Lie $ n $-centralizers of some operator algebras.



    加载中


    [1] A. Jabeen, Lie (Jordan) centralizers on generalized matrix algebras, Comm. Algebra, 49 (2020), 278–291. https://doi.org/10.1080/00927872.2020.1797759 doi: 10.1080/00927872.2020.1797759
    [2] A. Fošner, W. Jing, Lie centralizers on triangular rings and nest algebras, Adv. Oper. Theory, 4 (2019), 342–350. https://doi.org/10.15352/aot.1804-1341 doi: 10.15352/aot.1804-1341
    [3] L. Liu, On nonlinear Lie centralizers of generalized matrix algebras, Linear Multilinear Algebra, 70 (2022), 2693–2705. https://doi.org/10.1080/03081087.2020.1810605 doi: 10.1080/03081087.2020.1810605
    [4] L. Liu, K. T. Gao, Characterizations of Lie centralizers of triangular algebras, Linear Multilinear Algebra, 2022. https://doi.org/10.1080/03081087.2022.2104788 doi: 10.1080/03081087.2022.2104788
    [5] H. Ghahramani, W. Jing, Lie centralizers at zero products on a class of operator algebras, Ann. Funct. Anal., 12 (2021), 12–34. https://doi.org/10.1007/s43034-021-00123-y doi: 10.1007/s43034-021-00123-y
    [6] B. Fadaee, H. Ghahramani, Lie centralizers at the zero products on generalized matrix algebras, J. Algebra Appl., 21 (2022), 2250165. https://doi.org/10.1142/S0219498822501651 doi: 10.1142/S0219498822501651
    [7] D. Benkovič, Generalized Lie derivations of unital algebras with idempotents, Oper. Matrices, 12 (2018), 357–367.
    [8] B. Fadaee, H. Ghahramani, W. Jing, Lie triple centralizers on generalized matrix algebras, Quaest. Math., 2021 (2021), 1–20. https://doi.org/10.2989/16073606.2021.2013972 doi: 10.2989/16073606.2021.2013972
    [9] Z. K. Xiao, F. Wei, Commuting mappings of generalized matrix algebras, Linear Algebra Appl., 433 (2010), 2178-2197. https://doi.org/10.1016/j.laa.2010.08.002 doi: 10.1016/j.laa.2010.08.002
    [10] D. Benkovič, N. Širovnik, Jordan derivations of unital algebras with idempotents, Linear Algebra Appl., 437 (2012), 2271–2284. https://doi.org/10.1016/j.laa.2012.06.009 doi: 10.1016/j.laa.2012.06.009
    [11] D. Benkovič, Lie triple derivations of unital algebras with idempotents, Linear Multilinear Algebra, 63 (2015), 141–165. https://doi.org/10.1080/03081087.2013.851200 doi: 10.1080/03081087.2013.851200
    [12] D. Benkovič, D. Eremita, Multiplicative Lie $n$-derivations of triangular rings, Linear Algebra Appl., 436 (2012), 4223–4240. https://doi.org/10.1016/j.laa.2012.01.022 doi: 10.1016/j.laa.2012.01.022
    [13] Y. Wang, Lie $n$-derivations of unital algebras with idempotents, Linear Algebra Appl., 458 (2014), 512–525. https://doi.org/10.1016/j.laa.2014.06.029 doi: 10.1016/j.laa.2014.06.029
    [14] X. F. Qi, J. C. Hou, Characterization of Lie derivations on prime rings, Comm. Algebra, 39 (2011), 3824–3835. https://doi.org/10.1080/00927872.2010.512588 doi: 10.1080/00927872.2010.512588
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1141) PDF downloads(63) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog