In this paper, we introduce the notion of Lie $ n $-centralizers. We then give a description of Lie $ n $-centralizers on a generalized matrix algebra and present the necessary and sufficient conditions for a Lie $ n $-centralizer to be proper. As applications, we determine generalized Lie $ n $-derivations on a generalized matrix algebra and Lie $ n $-centralizers of some operator algebras.
Citation: He Yuan, Zhuo Liu. Lie $ n $-centralizers of generalized matrix algebras[J]. AIMS Mathematics, 2023, 8(6): 14609-14622. doi: 10.3934/math.2023747
In this paper, we introduce the notion of Lie $ n $-centralizers. We then give a description of Lie $ n $-centralizers on a generalized matrix algebra and present the necessary and sufficient conditions for a Lie $ n $-centralizer to be proper. As applications, we determine generalized Lie $ n $-derivations on a generalized matrix algebra and Lie $ n $-centralizers of some operator algebras.
[1] | A. Jabeen, Lie (Jordan) centralizers on generalized matrix algebras, Comm. Algebra, 49 (2020), 278–291. https://doi.org/10.1080/00927872.2020.1797759 doi: 10.1080/00927872.2020.1797759 |
[2] | A. Fošner, W. Jing, Lie centralizers on triangular rings and nest algebras, Adv. Oper. Theory, 4 (2019), 342–350. https://doi.org/10.15352/aot.1804-1341 doi: 10.15352/aot.1804-1341 |
[3] | L. Liu, On nonlinear Lie centralizers of generalized matrix algebras, Linear Multilinear Algebra, 70 (2022), 2693–2705. https://doi.org/10.1080/03081087.2020.1810605 doi: 10.1080/03081087.2020.1810605 |
[4] | L. Liu, K. T. Gao, Characterizations of Lie centralizers of triangular algebras, Linear Multilinear Algebra, 2022. https://doi.org/10.1080/03081087.2022.2104788 doi: 10.1080/03081087.2022.2104788 |
[5] | H. Ghahramani, W. Jing, Lie centralizers at zero products on a class of operator algebras, Ann. Funct. Anal., 12 (2021), 12–34. https://doi.org/10.1007/s43034-021-00123-y doi: 10.1007/s43034-021-00123-y |
[6] | B. Fadaee, H. Ghahramani, Lie centralizers at the zero products on generalized matrix algebras, J. Algebra Appl., 21 (2022), 2250165. https://doi.org/10.1142/S0219498822501651 doi: 10.1142/S0219498822501651 |
[7] | D. Benkovič, Generalized Lie derivations of unital algebras with idempotents, Oper. Matrices, 12 (2018), 357–367. |
[8] | B. Fadaee, H. Ghahramani, W. Jing, Lie triple centralizers on generalized matrix algebras, Quaest. Math., 2021 (2021), 1–20. https://doi.org/10.2989/16073606.2021.2013972 doi: 10.2989/16073606.2021.2013972 |
[9] | Z. K. Xiao, F. Wei, Commuting mappings of generalized matrix algebras, Linear Algebra Appl., 433 (2010), 2178-2197. https://doi.org/10.1016/j.laa.2010.08.002 doi: 10.1016/j.laa.2010.08.002 |
[10] | D. Benkovič, N. Širovnik, Jordan derivations of unital algebras with idempotents, Linear Algebra Appl., 437 (2012), 2271–2284. https://doi.org/10.1016/j.laa.2012.06.009 doi: 10.1016/j.laa.2012.06.009 |
[11] | D. Benkovič, Lie triple derivations of unital algebras with idempotents, Linear Multilinear Algebra, 63 (2015), 141–165. https://doi.org/10.1080/03081087.2013.851200 doi: 10.1080/03081087.2013.851200 |
[12] | D. Benkovič, D. Eremita, Multiplicative Lie $n$-derivations of triangular rings, Linear Algebra Appl., 436 (2012), 4223–4240. https://doi.org/10.1016/j.laa.2012.01.022 doi: 10.1016/j.laa.2012.01.022 |
[13] | Y. Wang, Lie $n$-derivations of unital algebras with idempotents, Linear Algebra Appl., 458 (2014), 512–525. https://doi.org/10.1016/j.laa.2014.06.029 doi: 10.1016/j.laa.2014.06.029 |
[14] | X. F. Qi, J. C. Hou, Characterization of Lie derivations on prime rings, Comm. Algebra, 39 (2011), 3824–3835. https://doi.org/10.1080/00927872.2010.512588 doi: 10.1080/00927872.2010.512588 |