The C3 parametric interpolation spline function is presented this paper, which has the similar properties of the classical cubic Hermite interpolation spline with additional flexibility and high approximation rates. Moreover, a group of eighth-degree bases with three parameters is constructed. Then, the interpolation spline function is defined based on the proposed basis functions. And the interpolation error and the technique for determining the optimal interpolation are also given. The results show that when the interpolation conditions remain unchanged, the proposed interpolation spline functions retain C3 continuity, and the shape of the curve can be controlled by the parameters. When the optimal values of parameters are chosen, the interpolation spline function can achieve higher approximation rates.
Citation: Jin Xie, Xiaoyan Liu, Lei Zhu, Yuqing Ma, Ke Zhang. The C3 parametric eighth-degree interpolation spline function[J]. AIMS Mathematics, 2023, 8(6): 14623-14632. doi: 10.3934/math.2023748
The C3 parametric interpolation spline function is presented this paper, which has the similar properties of the classical cubic Hermite interpolation spline with additional flexibility and high approximation rates. Moreover, a group of eighth-degree bases with three parameters is constructed. Then, the interpolation spline function is defined based on the proposed basis functions. And the interpolation error and the technique for determining the optimal interpolation are also given. The results show that when the interpolation conditions remain unchanged, the proposed interpolation spline functions retain C3 continuity, and the shape of the curve can be controlled by the parameters. When the optimal values of parameters are chosen, the interpolation spline function can achieve higher approximation rates.
[1] | M. Usman, M. Abbas, K. T. Miura, Some engineering applications of new trigonometric cubic Bézier-like curves to free-form complex curve modeling, J. Adv. Mech. Des. Syst., 14 (2020), JAMDSM0048. https://doi.org/10.1299/jamdsm.2020jamdsm0048 doi: 10.1299/jamdsm.2020jamdsm0048 |
[2] | X. Q. Qin, G. Hu, N. J. Zhang, X. L. Shen, Y. Yang, A novel extension to the polynomial basis functions describing Bézier curves and surfaces of degree n with multiple shape parameters, Appl. Math. Comput., 223 (2013), 1–16. https://doi.org/10.1016/j.amc.2013.07.073 doi: 10.1016/j.amc.2013.07.073 |
[3] | J. Cao, G. Z. Wang, Non-uniform B-spline curves with multiple shape parameters, J. Zhejiang Univ.-Sci. C, 12 (2011), 800–808. https://doi.org/10.1631/jzus.C1000381 doi: 10.1631/jzus.C1000381 |
[4] | X. L. Han, Normalized B-basis of the space of trigonometric polynomials and curve design, Appl. Math. Comput., 251 (2015), 336–348. https://doi.org/10.1016/j.amc.2014.11.070 doi: 10.1016/j.amc.2014.11.070 |
[5] | R. A. Lorentz, Multivariate Hermite interpolation by algebraic polynomials: A survey, J. Comput. Appl. Math., 122 (2000), 167–201. https://doi.org/10.1016/S0377-0427(00)00367-8 doi: 10.1016/S0377-0427(00)00367-8 |
[6] | A. Gfrerrer, O. Röschel, Blended Hermite interpolants, Comput. Aided Geom. Des., 18 (2001), 865–873. https://doi.org/10.1016/S0167-8396(01)00068-1 doi: 10.1016/S0167-8396(01)00068-1 |
[7] | J. H. Yong, F. H. Cheng, Geometric Hermite curves with minimum strain energy, Comput. Aided Geom. Des., 21 (2004): 281–301. https://doi.org/10.1016/j.cagd.2003.08.003 doi: 10.1016/j.cagd.2003.08.003 |
[8] | Q. Duan, L. Wang, E. H. Twizell, A new C2 rational interpolation based on function values and constrained control of the interpolation curves, Appl. Math. Comput., 161 (2005), 311–322. https://doi.org/10.1016/j.amc.2003.12.030 doi: 10.1016/j.amc.2003.12.030 |
[9] | Q. Duan, X. Liu, F. Bao, Local shape control of the rational interpolation curves with quadratic denominator, Int. J. Comput. Math., 87 (2010), 541–551. https://doi.org/10.1080/00207160802132897 doi: 10.1080/00207160802132897 |
[10] | F. X. Bao, Q. H. Sun, J. X. Pan, Q. Duan, Point control of rational interpolating curves using parameters, Math. Comput. Model., 52 (2010), 143–151.https://doi.org/10.1016/j.mcm.2010.02.003 doi: 10.1016/j.mcm.2010.02.003 |
[11] | J. Xie, J. Q. Tan, S. F. Li, Rational cubic Hermite interpolating spline and its approximation properties, Chin. J. Eng. Math., 28 (2011), 385–392. https://doi.org/10.3969/j.issn.1005-3085.2011.03.013 doi: 10.3969/j.issn.1005-3085.2011.03.013 |
[12] | J. Xie, J. Q. Tan, Z. Liu, S. F. Li, A class of rational cubic trigonometric Hermite interpolating splines with parameters, Math. Numer. Sin., 33 (2011), 125–132. https://doi.org/10.12286/jssx.2011.2.125 doi: 10.12286/jssx.2011.2.125 |
[13] | J. Xie, J. Q. Tan, S. F. Li, A kind of rational cubic spline with parameters and its applications, Acta Math. Appl. Sin., 33 (2010), 847–854. https://doi.org/10.12387/C2010099 doi: 10.12387/C2010099 |
[14] | J. Xie, X. Y. Liu, The EH Interpolation spline and its Approximation. Abstr. Appl. Anal., 2014 (2014), 745765. https://doi.org/10.1155/2014/745765 doi: 10.1155/2014/745765 |
[15] | J. C. Li, Y. E. Zhong, C. Xie, Cubic trigonometric Hermite interpolating splines curves with shape parameters, Comput. Eng. Appl., 50 (2014), 182–185. https://doi.org/10.3778/j.issn.1002-8331.1209-0067 doi: 10.3778/j.issn.1002-8331.1209-0067 |
[16] | J. C. Li, W. Xie, The automatic C2 continuous quintic Hermite interpolating spline with parameters, J. Zhejiang Univ., 43 (2016), 175–180. https://doi.org/10.3785/j.issn.1008-9497.2016.02.009 doi: 10.3785/j.issn.1008-9497.2016.02.009 |
[17] | J. C. Li, C. Z. Liu, The C3 piecewise seventh-degree Hermite interpolating splines with parameters, J. Comput.-Aided Des. Comput. Graph., 29 (2017), 2204–2215. https://doi.org/10.3724/SP.J.1089.2017.16427 doi: 10.3724/SP.J.1089.2017.16427 |