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Abstract: The 𝐶3  parametric interpolation spline function is presented this paper, which has the 

similar properties of the classical cubic Hermite interpolation spline with additional flexibility and 

high approximation rates. Moreover, a group of eighth-degree bases with three parameters is 

constructed. Then, the interpolation spline function is defined based on the proposed basis functions. 

And the interpolation error and the technique for determining the optimal interpolation are also given. 

The results show that when the interpolation conditions remain unchanged, the proposed interpolation 

spline functions retain 𝐶3 continuity, and the shape of the curve can be controlled by the parameters. 

When the optimal values of parameters are chosen, the interpolation spline function can achieve higher 

approximation rates. 
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1. Introduction  

In CAGD and CAD, it is always important to be able to adjust and control the shape of designs. 

The original method is to alter the position of the control points to meet the requirements of 

modification, which is out dated. In recent decades, it is feasible to modify the shape by introducing 

parameters, such as Bézier curve with parameters in [1–3], B-spline curve with parameters in [4–6]. 

However, these methods are complicated in the design and computation processes. The cubic splines 

are widely applied because of its simplicity and convenience. Nevertheless, the limitations are the 

inflexibility and low degree of continuity in [7–9]. In order to take full advantages and overcome the 
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shortcomings of the cubic splines, many authors have studied Hermite splines with parameters, such 

as piecewise rational cubic Hermite interpolation splines with parameters in [10,11], piecewise Quartic 

Hermite interpolation splines with parameters in [12], and piecewise cubic trigonometric Hermite 

interpolation splines with parameters in [13]. 

Although these interpolation splines can control the shape of the spline with the given 

interpolation condition and have 𝐶1  continuity, it is essential to impose certain constraints on the 

parameters to make the spline 𝐶2  continuous. Furthermore, in order to simultaneously solve the 

shortcomings of interpolation splines in shape control and continuity, the papers [14,15] proposed 

quintic Hermite interpolation splines with parameters and cubic trigonometric Hermite interpolation 

splines with parameters respectively. These two types of Hermite interpolation splines can not only 

regulate the shape of the spline via the parameters, but also automatically possesses 𝐶2 continuity. 

Nonetheless, in some practical engineering, interpolation splines with 𝐶3 continuity are required. For 

example, in the process of acceleration and turning of automatic vehicles such as cars and trains, in 

order to make passengers feel comfortable, it is necessary to maintain the uniform change of 

acceleration, while 𝐶2 continuity can merely maintain the uniform change of speed. Therefore, it is 

necessary to consider the continuity of acceleration (i.e., 𝐶3continuity) when designing highway and 

railway routes [16]. The article [17] constructed a class of seventh-degree interpolation splines with 

𝐶3 continuity, but the shape of the interpolation curve can only be adjusted globally. If the curve shape 

needs to be modified locally, this kind of spline is insufficient. 

The eighth-degree polynomial interpolation splines with three parameters are constructed in this 

paper, which has the following characteristics: 

(1) The interpolation function reach 𝐶3 continuity; 

(2) Given the interpolated function, the method of choosing the parameter values is provided so 

that the interpolation function has a high degree of approximation.  

2. The Eighth-degree interpolation basis functions 

Definition 1. For any given parameter , ,    and 0 ≤  𝑡 ≤  1 , the following four functions with 

variable t 

{

𝑓0(𝑡) = 𝑎0(𝑡)𝛼 + 𝑏0(𝑡) + 𝛾𝑒(𝑡)
𝑓1(𝑡) = 𝑎1(𝑡)𝛼 + 𝑏1(𝑡) + 𝛾𝑒(𝑡)
𝑔0(𝑡) = 𝑐0(𝑡)𝛽 + 𝑑0(𝑡) + 𝛾𝑒(𝑡)
𝑔1(𝑡) = 𝑐1(𝑡)𝛽 + 𝑑1(𝑡) + 𝛾𝑒(𝑡)

 (1) 

are called eighth-degree interpolation basis functions with parameters, where 
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{
 
 
 
 
 

 
 
 
 
 
𝑎0(𝑡) = 𝑡2 − 10𝑡4 + 20𝑡5 − 15𝑡6 + 4𝑡7

𝑏0(𝑡) = 1 − 35𝑡4 + 84𝑡5 − 70𝑡6 + 20𝑡7

𝑎1(𝑡) = 5𝑡
4 − 14𝑡5 + 13𝑡6 − 4𝑡7

𝑏1(𝑡) = 35𝑡
4 − 84𝑡5 + 70𝑡6 − 20𝑡7

𝑐0(𝑡) = 𝑡
3 − 4𝑡4 + 6𝑡5 − 4𝑡6 + 𝑡7

𝑑0(𝑡) = 𝑡 − 20𝑡4 + 45𝑡5 − 36𝑡6 + 10𝑡7

𝑐1(𝑡) = −𝑡
4 + 3𝑡5 − 3𝑡6 + 𝑡7

𝑑1(𝑡) = −15𝑡4 + 39𝑡5 − 34𝑡6 + 10𝑡7

𝑒(𝑡) = 𝑡4 − 4𝑡5 + 6𝑡6 − 4𝑡7 + 𝑡8

 

Also, when 𝛾 =  0, Equation (1) degenerates to the seventh-degree Hermite basis functions 

in Eq (1) in the paper [16].  

Theorem 1. The eighth-degree interpolation basis functions have the properties of end-points as 

follows: 

(i) {
𝑓0(0) = 1, 𝑓1(1) = 0, 𝑔0(0) = 0, 𝑔1(1) = 0
𝑓0(0) = 0, 𝑓1(1) = 1, 𝑔0(0) = 0, 𝑔1(1) = 0

,  

(ii) {
𝑓0
′(0) = 0, 𝑓1

′(1) = 0, 𝑔0
′(0) = 1, 𝑔1

′(1) = 0

𝑓0
′(0) = 0, 𝑓1

′(1) = 0, 𝑔0
′(0) = 0, 𝑔1

′(1) = 1
,  

(iii) {
𝑓0
′′(0) = 2𝛼, 𝑓1

′′(0) = 0, 𝑔0
′′(0) = 0, 𝑔1

′′(1) = 0

𝑓0
′′(0) = 0, 𝑓1

′′(1) = 2𝛼, 𝑔0
′′(0) = 0, 𝑔1

′′(1) = 0
,  

(iv) {
𝑓0
′′′(0) = 0, 𝑓1

′′′(1) = 0, 𝑔0
′′′(0) = 6𝛽, 𝑔1

′′′(1) = 0

𝑓0
′′′(0) = 0, 𝑓1

′′′(1) = 0, 𝑔0
′′′(0) = 0, 𝑔1

′′′(1) = 6𝛽
. 

            
   

3. Parametric eighth-degree interpolation spline functions 

3.1. Definition of the eighth-degree interpolation spline function 

Based on the eighth-degree basis functions (1), we can also define the corresponding interpolation 

spline function. 

Definition 2. Let the function ( )y f x=  be defined on the interval [𝑎, 𝑏]，and 𝑎 = 𝑥0 < 𝑥1 < ⋯ <

𝑥𝑛 = 𝑏  be a subdivision of the interval [𝑎, 𝑏] . Denote ℎ𝑖 = 𝑥𝑖+1 − 𝑥, 𝑡 =
𝑥−𝑥𝑖

ℎ𝑖
 , then the following 

functions on the interval [𝑥𝑖, 𝑥𝑖+1](𝑖 = 0,1,⋯ , 𝑛 − 1)  

𝑠𝑖(𝑥) = 𝑓0(𝑡, 𝛼𝑖 , 𝛾𝑖)𝑦𝑖 + 𝑓1(𝑡, 𝛼𝑖 , 𝛾𝑖)𝑦𝑖+1 + 𝑔0(𝑡, 𝛽𝑖, 𝛾𝑖)ℎ𝑖𝑚𝑖 + 𝑔1(𝑡, 𝛽𝑖, 𝛾𝑖)ℎ𝑖𝑚𝑖+1 (2) 

are the eighth-degree interpolation spline function to the interpolated function 𝑦 = 𝑓(𝑥),where 𝑓𝑖(𝑡) 

and 𝑔𝑖(𝑡)(𝑖 = 0,1) are the basis function expressed in Eq (1), and 𝛼𝑖, 𝛽𝑖, 𝛾𝑖 are the parameters. 

  



14626 

AIMS Mathematics Volume 8, Issue 6, 14623–14632. 

3.2. Error estimation of interpolation spline function 

When the interpolation spline function satisfies certain conditions, the error estimation of the 

function (3) can be discussed. 

According to Theorem 1 and the function (2), we can get that for any parameter 𝛼𝑖, 𝛽𝑖, 𝛾𝑖 ∈ 𝑅, the 

eighth-degree interpolation spline function interpolates the given data  (𝑥𝑖 , 𝑦𝑖, 𝑚𝑖)  and always 

maintains 1C  continuity. 

Furthermore, we can obtain that 𝑠𝑖
′′(𝑥𝑖+1) =

ℎ𝑖𝛼𝑖+1

ℎ𝑖+1𝛼𝑖
𝑠𝑖+1

′′(𝑥𝑖+1)
  

and 𝑠𝑖
′′′(𝑥𝑖+1) =

ℎ𝑖𝛽𝑖+1

ℎ𝑖+1𝛽𝑖
𝑠𝑖+1

′′′(𝑥𝑖+1), which show that the interpolation spline function (2) is 𝐺2 and 3G  continuous. 

Particularly, for any parameter i  , when 1i i  +=  , 1i i  +=   and 1i ih h +=  , the interpolation 

spline function (2) is 𝐶3 continuous. 

When the interpolation spline function satisfies certain conditions, the error estimation of the 

function (3) can be discussed. 

Theorem 2. Assume 𝑦 = 𝑓(𝑥) be a function with continuously 4th derivatives on the interval [𝑎, 𝑏], 

and𝑎 = 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑛 = 𝑏  be a subdivision of the interval [𝑎, 𝑏] . Denote ℎ𝑖 = 𝑥𝑖+1 − 𝑥 ,𝑡 =
𝑥−𝑥𝑖

ℎ𝑖
, ( )i if x y= , ( )i if x m = . For 𝛼𝑖, 𝛽𝑖, 𝛾𝑖 ∈ 𝑅, [𝑥𝑖 , 𝑥𝑖+1](𝑖 = 0,1,⋯ , 𝑛 − 1), the error estimation of 

interpolation function (2) can be represented in the form 

𝑅𝑖(𝑥) = 𝑓(𝑥) − 𝑠𝑖(𝑥) =
𝑓(4)(𝜉𝑖) − 𝑠𝑖

(4)(𝜉𝑖)

4!
(𝑥 − 𝑥𝑖)

2(𝑥 − 𝑥𝑖+1)
2 (3) 

for some 𝜉𝑖 ∈ [𝑥𝑖 , 𝑥𝑖+1].The error term (3) have the following useful bounds on its magnitude 

|𝑅𝑖(𝑥)| ≤
𝑀𝑖+𝐴𝑖

244!
ℎ𝑖
4, 

where 𝑀𝑖 = 𝑚𝑎𝑥
𝑥𝑖≤𝑥≤𝑥𝑖+1

|𝑓(𝑥)| , 𝐴𝑖 = 𝑚𝑎𝑥
𝑥𝑖≤𝑥≤𝑥𝑖+1

|𝑠𝑖(𝑥)|. 

Proof. According to Theorem 1, it can be obtained by simple calculation 

1 1 1

1 1 1

( ) ( ) ( ) 0

( ) ( ) ( ) 0

( ) ( ) ( ) 0

( ) ( ) ( ) 0

i i i i i

i i i i i

i i i i i

i i i i i

R x f x s x

R x f x s x

R x f x s x

R x f x s x

+ + +

+ + +

= − =


= − =


  = − =
   = − =

. (4) 

That is to say the Eq (4) is trivially satisfied if x coincides with one of the interpolation points

( 0,1, , 1)ix i n= − . We need to be concerned only with the case where x does not coincide with one 

of the interpolation points. Let 

2 2

1( ) ( ) ( ) ( )( ) ( )i i i iR x f x s x k x x x x x += − = − − , (5) 
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where ( )k x  is the selected function. 

Keeping x fixed, consider 1( , )i iu x x +  given ( 0,1, , 1)i n= −  by 

2 2

1( ) ( ) ( ) ( )( ) ( )i i iu f u s u k x u x u x += − − − − . (6) 

By the assumption on ( )f x , the ( )u has also continuously 4th derivatives. Obviously, ( )u  

has at least five zeros on the interval 1[ , ]i ix x + . Then by Rolle’s the theorem the derivative ( )u  has 

at least four zeros. Repeating the argument, by induction we deduce that the derivative 
(4) ( )u  has at 

least one zero in 1[ , ]i ix x + , which we denote by i . For this zero we have that  

(4) (4) (4)( ) ( ) ( ) ( ) 4! 0i i i if s k x   = − −  = . (7) 

Namely 

(4) (4)( ) ( )
( )

4!

i i if s
k x

 −
= . (8) 

From this we obtain (4). 

For 1[ , ]( 0,1, , 1)i ix x x i n+ = −  , we have 
4

2 2

1 4
( ) ( )

2

i
i i

h
x x x x +− −   . Then the differentiable 

function ( )f x  can be estimated by  

4

4
( )

2 4!

i i
i i

M A
R x h

+
 , 

where 
1

max ( )
i i

i
x x x

M f x
+ 

= ， 
1

max ( )
i i

i i
x x x

A s x
+ 

= . 

The interpolation function 𝑠𝑖(𝑥)  converges to the interpolated function ( )f x   on the interval

1[ , ]i ix x +  as ℎ𝑖 approaches zero. 

4. The optimal interpolation function 

Because the interpolation basis function contains different parameters, the shape of the 

interpolation spline function will change globally or locally when the parameters take different values. 
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Example 1. Considering the interpolated function 

𝑓(𝑥) =
1

1 + 𝑥2
, −5 ≤ 𝑥 ≤ 5 

with equidistant interpolation points 𝑥𝑖 = −5 + 2𝑖(𝑖 = 0,1,⋯ ,5) . The graph of the corresponding 

eight interpolation function is shown in Figure 1, where the solid line is the interpolated function, all 

parameters of the blue line are set as 0, and all parameters of the red line are set as 0 except 𝛾2 = 8. 

We can see that the shape of the interpolation function in the third segment has changed. 

 

Figure 1. Locally adjustable eighth-degree Hermite interpolation functions. 

Obviously, the interpolation function should be able to approximate the interpolated function very 

well when the parameters are set appropriately. So how do you measure the effectiveness? In general, 

the smaller the overall interpolation error, the better the interpolation is. Usually, the overall 

interpolation error between the piecewise interpolation function𝑠𝑖(𝑥) and the interpolated function 

𝑦 = 𝑓(𝑥) can be expressed as 

𝑒(𝛼𝑖, 𝛽𝑖, 𝛾𝑖) = ∑ ∫ (𝑠𝑖(𝑥) − 𝑓(𝑥))
2d𝑥

𝑥𝑖+1
𝑥𝑖

𝑛−1
𝑖=0 . (9) 

In order to obtain the optimal interpolation effect of the parametric eight-degree Hermite spline 

interpolation function, it is necessary to determine the appropriate value of the parameters 
i i i

  , ,  to 

minimize the overall interpolation error, and then there is an optimization model 

{
𝑚𝑖𝑛 𝑒 (𝛼𝑖, 𝛽𝑖, 𝛾𝑖) = ∑ ∫ (𝑠𝑖(𝑥) − 𝑓(𝑥))

2d𝑥
𝑥𝑖+1
𝑥𝑖

𝑛−1
𝑖=0

𝑠. 𝑡. 𝛼𝑖, 𝛽𝑖, 𝛾𝑖 ∈ R
. (10) 

On the interval  1
0 1 1

i i
x x i n

+
= −, ( , , , ) , take the partial derivatives with respect to 

i i
 , and

i
 , 

and let them equal to 0, the following system of equations is obtained 

{
 
 

 
 
∂𝑒(𝛼𝑖,𝛽𝑖,𝛾𝑖)

∂𝛼𝑖
= 0,

∂𝑒(𝛼𝑖,𝛽𝑖,𝛾𝑖)

∂𝛽𝑖
= 0, 𝑖 = 0,1,⋯ , 𝑛 − 1

∂𝑒(𝛼𝑖,𝛽𝑖,𝛾𝑖)

∂𝛾𝑖
= 0,

. (11) 
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The optimal values 0 1 1
i i i

i n   = −, , ( , , , )  are solved by Eq (11). 

Example 2. For the interpolation conditions given in Example 1, the optimal parameter values and 

interval interpolation errors of each segment can be obtained by solving Eq (11) as shown in Table 1 

below. The graph of the eighth-degree interpolation function and the interpolated function is shown in 

Figure 2. 

Table 1. The optimal parameter values and interval interpolation errors of each segment. 

Interval 

i
  

i
  

i
  

Interval interpolation errors 

[−5, −3] 0.738 522 93 −1.930 292 72 −0.927 999 19 1.039 85 × 10−7 

[−3, −1] 1.668 589 48 −1.712 593 25 −1.132 861 38 1.772 22 × 10−7 

[−1, 1] 2.773 918 45 −6.814 726 78 33.882 831 54 1.289 05 × 10−7 

[1, 3] 1.668 589 47 −1.712 593 25 3.747 156 76 1.768 85 × 10−7 

[3, 5] 0.738 522 89 −1.930 292 69 24.029 255 75 5.033 19 × 10−8 

 

Figure 2. Graphs of the eighth-degree interpolation spline function and the interpolated function. 

 

Figure 3. The overall error curve of the eighth-degree interpolation function. 
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By adding the interpolation errors of each interval in Table 1, the overall interpolation error of the 

interpolation function to the interpolated function is obtained, and the overall interpolation error is 

6.373 × 10−7. Under the same interpolation conditions, the quintic Hermite interpolation [15], cubic 

trigonometric Hermite interpolation spline [16], piecewise seventh-degree Hermite interpolation 

spline [17] and parametric eighth-degree Hermite interpolation spline proposed in this paper are 

respectively used to interpolate the function of Example 1 The optimal values of parameters and overall 

interpolation errors of various methods are shown in Table 2. 

It can be seen from Figure 3 that the best interpolation function almost coincides with the 

interpolated function, which indicates that the parametric eighth-degree interpolation function has a 

better interpolation effect when the parameters are properly chosen. As shown in Table 2 the overall 

interpolation error of the parametric eighth-degree interpolation function is smaller than that of the 

quintic Hermite interpolation spline function [14] and the cubic trigonometric Hermite interpolation 

spline function [15]. This is because when approximating the interpolated function, the parametric 

eighth-degree Hermite interpolation function achieves 𝐶3 continuity, which has better approximation 

than the 𝐶2 quartic Hermite interpolation spline function [14] and the cubic trigonometric Hermite 

interpolation spline function [15]. 

Table 2. Comparison of the overall interpolation errors of various methods. 

Method The overall interpolation errors 

The quintic hermite interpolation [14] 4.551 × 10−1 

Cubic trigonometric hermite interpolation spline [15] 2.974 × 10−1 

Piecewise seventh-degree hermite interpolation spline [16] 2.032 × 10−2 

Ours 6.373 × 10−7 

5. Conclusions  

The parametric eighth-degree interpolation splines constructed in this paper inherit the main 

properties of the classical cubic Hermite splines and overcome the shortcomings. Compared with the 

classical cubic Hermite spline, which is 𝐶1  continuous, the presented spline curve can reach C3 

continuity. Therefore, it is appropriate for applications requiring high degree of smoothness. 

Furthermore, when the control points and their tangent vectors are given, the shape of the constructed 

spline curve can be adjusted globally and locally by adapting different parameters, addressing the issue 

of inflexibility of the shape of the classical cubic Hermite spline curve. Therefore, when the problems 

arise that interpolation effect should be adjusted properly in practical engineering designs, the proposed 

splines are very valuable tools. In addition, the eighth-degree parametric splines still adopt the 

piecewise polynomial form, which not only have a relatively simple expression, but also stays in line 

with the standard Bézier curve, B-spline curve and other polynomial parameter curves in CAD/CAM 

system. 
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