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1. Introduction

Let R be a unital commutative ring, A be an algebra over R and Z(A) be the center of A. Let
[x, y] = xy − yx denote the Lie product of elements x, y ∈ A. An R-linear map ϕ : A → A is called
a left (right) centralizer if ϕ(xy) = ϕ(x)y(ϕ(xy) = xϕ(y)) holds for all x, y ∈ A. Further, an R-linear
map ϕ : A → A is called a Lie centralizer if ϕ([x, y]) = [ϕ(x), y] for all x, y ∈ A. It is easy to
prove that ϕ is a Lie centralizer on A if and only if ϕ([x, y]) = [x, ϕ(y)] for all x, y ∈ A. Suppose that
λ is an element of Z(A) and τ : A → Z(A) is a linear map vanishing at commutators [x, y] for all
x, y ∈ A. Then, the linear map ϕ : A → A satisfying ϕ(a) = λa + τ(a) is a Lie centralizer and is called
the proper Lie centralizer. However, not every Lie centralizer is necessarily a proper Lie centralizer.
Recently, the structure of Lie centralizers on triangular algebras and generalized matrix algebras has
been studied by many mathematicians. In 2020, Jabeen studied Lie centralizers on generalized matrix
algebras and obtained the necessary and sufficient conditions for a Lie centralizer to be proper (see [1]).
Fošner and Jing investigated the additivity of Lie centralizers on triangular rings and characterized both
centralizers and Lie centralizers on triangular rings and nest algebras in [2]. Liu gave a description of
nonlinear Lie centralizers for a certain class of generalized matrix algebras in [3]. Some special Lie
centralizers on triangular algebras and generalized matrix algebras were studied in [4–7]. Fadaee et
al. extended the results of Jabeen to Lie triple centralizers and characterized generalized Lie triple
derivations on generalized matrix algebras in [8]. Accordingly, we can further develop the definition
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of Lie n-centralizers. Let us define the following sequence of polynomials:

p1(x1) = x1,

p2(x1, x2) = [p1(x1), x2] = [x1, x2],
p3(x1, x2, x3) = [p2(x1, x2), x3] = [[x1, x2], x3],

· · · · · ·

pn(x1, x2, . . . , xn) = [pn−1(x1, x2, . . . , xn−1), xn].

The polynomial pn(x1, x2, . . . , xn) is said to be an (n− 1)-th commutator (n ≥ 2). A Lie n-centralizer is
an R-linear map ϕ : A→ A which satisfies the rule

ϕ(pn(x1, x2, . . . , xn)) = pn(ϕ(x1), x2, . . . , xn)

for all x1, x2, . . . , xn ∈ A. If there exists an element λ ∈ Z(A) and an R-linear map τ : A → Z(A)
vanishing on each (n−1)-th commutator pn(x1, x2, . . . , xn) such that ϕ(x) = λx+τ(x) for all x ∈ A, then
the Lie n-centralizer ϕ is called a proper Lie n-centralizer.

In this paper, we extend the results of Jabeen [1] and Fadaee et al. [8] and give the necessary and
sufficient conditions for a Lie n-centralizer to be proper on a generalized matrix algebra.

Let A be an algebra. An R-linear map L : A→ A is a Lie derivation if L([x, y]) = [L(x), y]+ [x, L(y)]
holds for all x, y ∈ A. An R-linear map G : A → A is a generalized Lie derivation with an associated
Lie derivation L on A if G([x, y]) = [G(x), y] + [x, L(y)] holds for all x, y ∈ A. A Lie n-derivation is an
R-linear map Ψ : A→ A which satisfies the rule

Ψ(pn(x1, x2, . . . , xn)) =
n∑

k=1

pn(x1, . . . , xk−1,Ψ(xk), xk+1, . . . , xn)

for all x1, x2, . . . , xn ∈ A. One can give the definition of generalized Lie n-derivations in an analogous
manner. An R-linear map Φ : A → A is called a generalized Lie n-derivation if there exists a Lie
n-derivation Ψ such that

Φ(pn(x1, x2, . . . , xn)) = pn(Φ(x1), x2, . . . , xn) +
n∑

k=2

pn(x1, . . . , xk−1,Ψ(xk), xk+1, . . . , xn)

for all x1, x2, . . . , xn ∈ A. We say that Ψ is an associated Lie n-derivation of Φ. They are part of an
important class of maps on algebras. It is easily checked that G is a generalized Lie derivation with an
associated Lie derivation L if and only if G − L is a Lie centralizer. Therefore, if we characterize Lie
centralizers and Lie derivations, then we can get the characterization of a generalized Lie derivation
on an algebra. Likewise, there is a similar relationship between a Lie n-derivation Ψ and a generalized
Lie n-derivation Φ, that is, Φ is a generalized Lie n-derivation with an associated Lie n-derivation Ψ if
and only if Φ − Ψ is a Lie n-centralizer (Lemma 4.1). We can describe generalized Lie n-derivations
by Lie n-centralizers.

In this paper, we set out the preliminaries in Section 2. We then characterize the structure of a Lie
n-centralizer ϕ (Theorem 3.1) and obtain the necessary and sufficient conditions for ϕ to be proper
(Theorem 3.3). In Section 4, we use the results obtained to determine generalized Lie n-derivations
(Theorem 4.2) and apply our results to some other algebras (Theorem 4.3).

AIMS Mathematics Volume 8, Issue 6, 14609–14622.



14611

2. Preliminaries

A Morita context consists of two R-algebras A and B, two bimodules M and N, where M is an
(A, B)-bimodule and N is a (B, A)-bimodule, and two bimodule homomorphisms called the pairings
ΦMN : M ⊗B N → A and ΨNM : N ⊗A M → B satisfying the following commutative diagrams:

M ⊗B N ⊗A M

IM⊗ΨNM

��

ΦMN⊗IM // A ⊗A M

�

��
M ⊗B B � // M

and
N ⊗A M ⊗B N

IN⊗ΦMN

��

ΨNM⊗IN // B ⊗B N

�

��
N ⊗A A � // N.

If (A, B,M,N,ΦMN ,ΨNM) is a Morita context, then the set

G =
{ (

a m
n b

)
: a ∈ A,m ∈ M, n ∈ N, b ∈ B

}
forms an algebra under matrix-like addition and multiplication, where at least one of the two bimodules
M and N is distinct from zero. Such an algebra is called a generalized matrix algebra and is usually

denoted by G =
(
A M
N B

)
. Obviously, when M = 0 or N = 0, G exactly degenerates to the so-called

triangular algebra. For a detailed introduction on generalized matrix algebras, we refer the reader
to [9].

If A and B are unital algebras with unities 1A and 1B, respectively, then
(
1A 0
0 1B

)
is the unity of

the generalized matrix algebra G. Set e =
(
1A 0
0 0

)
, f =

(
0 0
0 1B

)
. Then, G can be written as G =

eGe ⊕ eG f ⊕ fGe ⊕ fG f , where eGe is a subalgebra of G isomorphic to A, fG f is a subalgebra of
G isomorphic to B, eG f is an (eGe, fG f )-bimodule isomorphic to the bimodule M, and fGe is an
( fG f , eGe)-bimodule isomorphic to the bimodule N.

Let D be a unital algebra with an idempotent e , 0, 1 and let f denote the idempotent 1 − e. In this
case D can be represented in the so-called Peirce decomposition form D = eDe ⊕ eD f ⊕ f De ⊕ f D f .
The following property was introduced by Benkovič and Širovnik in [10].

exe · eD f = 0 = f De · exe⇒ exe = 0,
eD f · f x f = 0 = f x f · f De⇒ f x f = 0.

(2.1)
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Some specific examples of unital algebras with nontrivial idempotents having the property (2.1) are
triangular algebras, matrix algebras and prime algebras with nontrivial idempotents. It is worth
mentioning that generalized matrix algebras can be regarded as special unital algebras with nontrivial
idempotents having the property (2.1) (see [9]). Therefore, (2.1) can be rewritten as follows on the

generalized matrix algebra G =
(
A M
N B

)
.

a ∈ A, aM = 0 and Na = 0⇒ a = 0,
b ∈ B, Mb = 0 and bN = 0⇒ b = 0.

(2.2)

If G is a generalized matrix algebra satisfying the property (2.2), then the result [11, Proposition 2.1]
tells us that the center of G is

Z(G) =
{ (

a 0
0 b

)
: am = mb, na = bn for all m ∈ M, n ∈ N

}
.

Define two natural projections πA : G → A and πB : G → B by πA

( (a m
n b

) )
= a and πB

( (a m
n b

) )
= b.

It is easy to see that πA(Z(G)) is a subalgebra of Z(A) and that πB(Z(G)) is a subalgebra of Z(B).
According to [11, Proposition 2.1], there exists a unique algebraic isomorphism η : πA(Z(G)) →
πB(Z(G)) such that am = mη(a) and na = η(a)n for all a ∈ πA(Z(G)),m ∈ M, n ∈ N.

Let S be a subset of an algebra D. We set

Zn−1(S ) = {a ∈ S |pn(a, a1, . . . , an−1) = 0 for all a1, . . . , an−1 ∈ S }.

3. Lie n-centralizers

Theorem 3.1. Let G =
(
A M
N B

)
be a generalized matrix algebra over a commutative ring R. If an

R-linear map ϕ : G → G is a Lie n-centralizer, then ϕ has the form

ϕ

(
a m
n b

)
=

(
f1(a) + k1(b) g2(m)

h3(n) f4(a) + k4(b)

)
,

where f1 : A→ A, k1 : B→ Zn−1(A), g2 : M → M, h3 : N → N, f4 : A→ Zn−1(B) and k4 : B→ B are
R-linear maps satisfying the following conditions:

(i) f1 is a Lie n-centralizer on A, pn( f4(a), b1, . . . , bn−1) = 0, f4(pn(a1, a2, . . . , an)) = 0, and f1(mn) −
k1(nm) = g2(m)n = mh3(n) for all a, a1, . . . , an ∈ A, b1, b2, . . . , bn−1 ∈ B, m ∈ M, n ∈ N.

(ii) k4 is a Lie n-centralizer on B, pn(k1(b), a1, . . . , an−1) = 0, k1(pn(b1, b2, . . . , bn)) = 0, and k4(nm) −
f4(mn) = ng2(m) = h3(n)m for all a1, . . . , an−1 ∈ A, b, b1, . . . , bn ∈ B, m ∈ M, n ∈ N.

(iii) g2(am) = ag2(m) = f1(a)m − m f4(a), and g2(mb) = g2(m)b = mk4(b) − k1(b)m for all a ∈ A,m ∈
M, b ∈ B.

(iv) h3(na) = h3(n)a = n f1(a)− f4(a)n, and h3(bn) = bh3(n) = k4(b)n− nk1(b) for all a ∈ A, n ∈ N, b ∈
B.
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Proof. Assume that ϕ has the form

ϕ

(
a m
n b

)
=

(
f1(a) + g1(m) + h1(n) + k1(b) f2(a) + g2(m) + h2(n) + k2(b)
f3(a) + g3(m) + h3(n) + k3(b) f4(a) + g4(m) + h4(n) + k4(b)

)
,

where f1 : A → A, f2 : A → M, f3 : A → N, f4 : A → B; g1 : M → A, g2 : M → M, g3 : M → N,
g4 : M → B; h1 : N → A, h2 : N → M, h3 : N → N, h4 : N → B, and k1 : B → A, k2 : B → M,
k3 : B→ N, k4 : B→ B are R-linear maps. Since ϕ is a Lie n-centralizer, we have

ϕ(pn(X1, X2, . . . , Xn)) = pn(ϕ(X1), X2, . . . , Xn) (3.1)

for all X1, X2, . . . , Xn ∈ G.

Let us choose X1 =

(
a 0
0 0

)
, X2 =

(
0 m
0 0

)
, X3 = . . . = Xn =

(
0 0
0 1B

)
in (3.1). Then, we get

(
g1(am) g2(am)
g3(am) g4(am)

)
=ϕ(pn(X1, X2, . . . , Xn)) = pn(ϕ(X1), X2, . . . , Xn)

=pn

((
f1(a) f2(a)
f3(a) f4(a)

)
,

(
0 m
0 0

)
, . . . ,

(
0 0
0 1B

))
=

(
0 f1(a)m − m f4(a)
0 0

)
.

Comparing both sides, we get g2(am) = f1(a)m − m f4(a) and g1(am) = g3(am) = g4(am) = 0 for all
a ∈ A and m ∈ M. Now, if we set a = 1A, then we find that

g1(m) = g3(m) = g4(m) = 0 and g2(m) = f1(1A)m − m f4(1A) (3.2)

for all m ∈ M. Similarly, taking X1 =

(
0 m
0 0

)
, X2 =

(
a 0
0 0

)
, X3 = . . . = Xn =

(
0 0
0 1B

)
in (3.1), we have

g2(am) = ag2(m) for all a ∈ A,m ∈ M.

If we take X1 =

(
0 m
0 0

)
, X2 =

(
0 0
0 b

)
, X3 = . . . = Xn =

(
0 0
0 1B

)
and X1 =

(
0 0
0 b

)
, X2 =

(
0 m
0 0

)
,

X3 = . . . = Xn =

(
0 0
0 1B

)
in (3.1), respectively, then we obtain

(
0 g2(mb)
0 0

)
= ϕ(pn(X1, X2, . . . , Xn)) = pn(ϕ(X1), X2, . . . , Xn) =

(
0 g2(m)b
0 0

)
and (

0 −g2(mb)
0 0

)
=ϕ(pn(X1, X2, . . . , Xn)) = pn(ϕ(X1), X2, . . . , Xn)

=

(
0 k1(b)m − mk4(b)
0 0

)
.

Hence, g2(mb) = g2(m)b = mk4(b) − k1(b)m for all m ∈ M, b ∈ B. In particular, we have

g2(m) = mk4(1B) − k1(1B)m (3.3)
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for all m ∈ M.

Setting X1 =

(
a 0
0 0

)
, X2 =

(
0 0
n 0

)
, X3 = . . . = Xn =

(
1A 0
0 0

)
in (3.1), we get

(
−h1(na) −h2(na)
−h3(na) −h4(na)

)
=ϕ(pn(X1, X2, . . . , Xn)) = pn(ϕ(X1), X2, . . . , Xn)

=

(
0 0

f4(a)n − n f1(a) 0

)
.

Comparing both sides, we have h3(na) = n f1(a) − f4(a)n and h1(na) = h2(na) = h4(na) = 0 for all
a ∈ A, n ∈ N. Putting a = 1A leads to

h1(n) = h2(n) = h4(n) = 0 and h3(n) = n f1(1A) − f4(1A)n (3.4)

for all n ∈ N. Similarly, considering X1 =

(
0 0
n 0

)
, X2 =

(
a 0
0 0

)
, X3 = . . . = Xn =

(
1A 0
0 0

)
in (3.1), we

find h3(na) = h3(n)a for all a ∈ A, n ∈ N.

Let us consider X1 =

(
0 0
n 0

)
, X2 =

(
0 0
0 b

)
, X3 = . . . = Xn =

(
1A 0
0 0

)
and X1 =

(
0 0
0 b

)
, X2 =

(
0 0
n 0

)
,

X3 = . . . = Xn =

(
1A 0
0 0

)
in (3.1), respectively. Then, we arrive at h3(bn) = bh3(n) and h3(bn) =

k4(b)n − nk1(b) for all n ∈ N, b ∈ B. In particular, we obtain

h3(n) = k4(1B)n − nk1(1B) (3.5)

for all n ∈ N.

Let X1 =

(
a 0
0 0

)
, X2 =

(
0 0
0 b1

)
, X3 =

(
0 0
0 b2

)
, . . . , Xn =

(
0 0
0 bn−1

)
in (3.1). Then, we deduce that

0 =ϕ(pn(X1, X2, . . . , Xn)) = pn(ϕ(X1), X2, . . . , Xn)

=

(
0 f2(a)b1b2 . . . bn−1

(−1)n−1bn−1 . . . b2b1 f3(a) pn( f4(a), b1, . . . , bn−1)

)
for all a ∈ A, b1, b2, . . . , bn−1 ∈ B. It follows that

f2(a)b1b2 . . . bn−1 = (−1)n−1bn−1 . . . b2b1 f3(a) = 0 and pn( f4(a), b1, . . . , bn−1) = 0.

If we take b1 = b2 = . . . = bn−1 = 1B, then we have

f2(a) = f3(a) = 0 (3.6)

for all a ∈ A.

If X1 =

(
0 0
0 b

)
, X2 =

(
a1 0
0 0

)
, X3 =

(
a2 0
0 0

)
, . . . , Xn =

(
an−1 0

0 0

)
in (3.1), then we arrive at

0 =ϕ(pn(X1, X2, . . . , Xn)) = pn(ϕ(X1), X2, . . . , Xn)

=

(
pn(k1(b), a1, . . . , an−1) (−1)n−1an−1 . . . a1k2(b)

k3(b)a1 . . . an−1 0

)
.
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Hence, k3(b)a1 . . . an−1 = (−1)n−1an−1 . . . a1k2(b) = 0 and pn(k1(b), a1, . . . , an−1) = 0 for all
b ∈ B, a1, . . . , an−1 ∈ A. Taking a1 = . . . = an−1 = 1A, we see that k2(b) = k3(b) = 0 for all b ∈ B.

Assume that X1 =

(
a1 0
0 0

)
, X2 =

(
a2 0
0 0

)
, . . . , Xn =

(
an 0
0 0

)
in (3.1), and then we get from (3.6) that

(
f1(pn(a1, a2, . . . , an)) 0

0 f4(pn(a1, a2, . . . , an))

)
=ϕ(pn(X1, X2, . . . , Xn))

= pn(ϕ(X1), X2, . . . , Xn) =
(
pn( f1(a1), a2, . . . , an) 0

0 0

)
for all a1, a2, . . . , an ∈ A. From the above relation, we deduce that f1 is a Lie n-centralizer on A and

f4(pn(a1, a2, . . . , an)) = 0 for all a1, a2, . . . , an ∈ A. Similarly, setting X1 =

(
0 0
0 b1

)
,

X2 =

(
0 0
0 b2

)
, . . . , Xn =

(
0 0
0 bn

)
in (3.1), we obtain that k4 is a Lie n-centralizer on B and

k1(pn(b1, b2, . . . , bn)) = 0 for all b1, b2, . . . , bn ∈ B.

Let us take X1 =

(
0 m
0 0

)
, X2 = . . . = Xn−1 =

(
0 0
0 1B

)
, Xn =

(
0 0
n 0

)
in (3.1). Then, we have

(
f1(mn) − k1(nm) 0

0 f4(mn) − k4(nm)

)
=ϕ(pn(X1, X2, . . . , Xn))

= pn(ϕ(X1), X2, . . . , Xn) =
(
g2(m)n 0

0 −ng2(m)

)
.

It follows that f1(mn) − k1(nm) = g2(m)n and k4(nm) − f4(mn) = ng2(m) for all m ∈ M and n ∈ N.

Similarly, taking X1 =

(
0 0
n 0

)
, X2 = . . . = Xn−1 =

(
1A 0
0 0

)
, Xn =

(
0 m
0 0

)
in (3.1), we obtain that

k4(nm) − f4(mn) = h3(n)m and f1(mn) − k1(nm) = mh3(n) for all m ∈ M and n ∈ N. □

In the case that G satisfies (2.2), we will show in the next corollary that the conditions
f4(pn(a1, a2, . . . , an)) = 0 and k1(pn(b1, b2, . . . , bn)) = 0 can be omitted, and k1 : B → Z(A) and
f4 : A→ Z(B) hold.

Corollary 3.2. Let G =
(
A M
N B

)
satisfy

a ∈ A, aM = 0 and Na = 0⇒ a = 0,

b ∈ B, Mb = 0 and bN = 0⇒ b = 0.

Suppose that an R-linear map ϕ : G → G is a Lie n-centralizer, and then ϕ has the form

ϕ

(
a m
n b

)
=

(
f1(a) + k1(b) g2(m)

h3(n) f4(a) + k4(b)

)
,

where f1 : A → A, k1 : B → Z(A), g2 : M → M, h3 : N → N, f4 : A → Z(B) and k4 : B → B are
R-linear maps satisfying the following conditions:

AIMS Mathematics Volume 8, Issue 6, 14609–14622.
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(i) f1 is a Lie n-centralizer on A, and f1(mn) − k1(nm) = g2(m)n = mh3(n) for all m ∈ M, n ∈ N.

(ii) k4 is a Lie n-centralizer on B, and k4(nm) − f4(mn) = ng2(m) = h3(n)m for all m ∈ M, n ∈ N.

(iii) g2(am) = ag2(m) = f1(a)m − m f4(a), and g2(mb) = g2(m)b = mk4(b) − k1(b)m for all a ∈ A,m ∈
M, b ∈ B.

(iv) h3(na) = h3(n)a = n f1(a)− f4(a)n, and h3(bn) = bh3(n) = k4(b)n− nk1(b) for all a ∈ A, n ∈ N, b ∈
B.

Proof. Since ϕ is a Lie n-centralizer, it follows that ϕ satisfies Theorem 3.1. First, we claim that

g2(pn(a1, a2, . . . , an)m) = pn( f1(a1), a2, . . . , an)m (3.7)

for all a1, a2, . . . , an ∈ A and m ∈ M. In fact, we can proceed by induction with n. If n = 2, then we can
get from g2(am) = ag2(m) = f1(a)m − m f4(a) that

g2([a1, a2]m) =g2(a1a2m) − g2(a2a1m)
= f1(a1)a2m − a2m f4(a1) − a2( f1(a1)m − m f4(a1))
=[ f1(a1), a2]m.

This shows that (3.7) is true for n = 2. We now assume that
g2(pn−1(a1, a2, . . . , an−1)m) = pn−1( f1(a1), a2, . . . , an−1)m. Then,

g2(pn(a1, a2, . . . , an)m)
= g2(pn−1(a1, a2, . . . , an−1)anm − an pn−1(a1, a2, . . . , an−1)m)
= pn−1( f1(a1), a2, . . . , an−1)anm − ang2(pn−1(a1, a2, . . . , an−1)m)
= pn−1( f1(a1), a2, . . . , an−1)anm − an pn−1( f1(a1), a2, . . . , an−1)m
= pn( f1(a1), a2, . . . , an)m.

Next, according to g2(am) = f1(a)m − m f4(a) and (3.7), we have

f1(pn(a1, a2, . . . , an))m − m f4(pn(a1, a2, . . . , an))
= g2(pn(a1, a2, . . . , an)m)
= pn( f1(a1), a2, . . . , an)m

for all a1, a2, . . . , an ∈ A and m ∈ M. Since f1 is a Lie n-centralizer on A, we have
f1(pn(a1, a2, . . . , an)) = pn( f1(a1), a2, . . . , an). This implies that M f4(pn(a1, a2, . . . , an)) = 0. Similarly,
we obtain f4(pn(a1, a2, . . . , an))N = 0 for all a1, a2, . . . , an ∈ A. Finally, we arrive at
f4(pn(a1, a2, . . . , an)) = 0 from the hypothesis. In an analogous way, we can easily get that
k1(pn(b1, b2, . . . , bn)) = 0 for all b1, b2, . . . , bn ∈ B.

According to the condition (iii) of Theorem 3.1, we have

f1(a)mb − mb f4(a) =g2(amb) = ( f1(a)m − m f4(a))b
= f1(a)mb − m f4(a)b

for all a ∈ A,m ∈ M, b ∈ B. It follows that M(b f4(a) − f4(a)b) = 0. Similarly, by the argument above
and the condition (iv) of Theorem 3.1, we get (b f4(a) − f4(a)b)N = 0. Therefore, b f4(a) − f4(a)b = 0.
This yields that f4(a) ∈ Z(B) for all a ∈ A. In a similar way, we can deduce that k1(b) ∈ Z(A) for all
b ∈ B. □
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Now we give the necessary and sufficient conditions for a Lie n-centralizer on a generalized matrix
algebra to be proper.

Theorem 3.3. Let G =
(
A M
N B

)
be a generalized matrix algebra over a commutative ring R. Suppose

that G satisfies the following conditions:

a ∈ A, aM = 0 and Na = 0⇒ a = 0,

b ∈ B, Mb = 0 and bN = 0⇒ b = 0.

If an R-linear map ϕ : G → G is a Lie n-centralizer, then the following statements are equivalent:

(i) ϕ is a proper Lie n-centralizer, that is, ϕ(X) = λX + θ(X) for all X ∈ G, where λ ∈ Z(G) and
θ : G → Z(G) is a linear map which annihilates all (n − 1)-th commutators.

(ii) f4(A) ⊆ πB(Z(G)), and k1(B) ⊆ πA(Z(G)).

(iii) f4(1A) ∈ πB(Z(G)), and k1(1B) ∈ πA(Z(G)).

Proof. According to Corollary 3.2, ϕ has the following form:

ϕ

(
a m
n b

)
=

(
f1(a) + k1(b) g2(m)

h3(n) f4(a) + k4(b)

)
,

where f1 : A→ A, k1 : B→ Z(A), g2 : M → M, h3 : N → N, f4 : A→ Z(B) and k4 : B→ B are linear
maps with the properties mentioned in Corollary 3.2.

(i)⇒(ii). Suppose that ϕ is a proper Lie n-centralizer on G. Then, there exists an element λ =(
a1 0
0 η(a1)

)
∈ Z(G) and a linear map θ : G → Z(G) such that ϕ(X) = λX + θ(X) for all X ∈ G, where

a1 ∈ πA(Z(G)). Now, let us take X =
(

0 am
na 0

)
∈ G and θ(X) =

(
a2 0
0 η(a2)

)
, a2 ∈ πA(Z(G)), and then

we have

ϕ(X) =
(

0 g2(am)
h3(na) 0

)
=

(
0 f1(a)m − m f4(a)

n f1(a) − f4(a)n 0

)
and

ϕ(X) = λX + θ(X) =
(
a1 0
0 η(a1)

) (
0 am

na 0

)
+

(
a2 0
0 η(a2)

)
=

(
a2 a1am

η(a1)na η(a2)

)
for all a1, a2 ∈ πA(Z(G)), a ∈ A, m ∈ M, n ∈ N. Comparing the above relations, we conclude that
f1(a)m − m f4(a) = a1am and n f1(a) − f4(a)n = η(a1)na = na1a. Thus,

( f1(a) − a1a)m = m f4(a) and n( f1(a) − a1a) = f4(a)n

for all a1 ∈ πA(Z(G)), a ∈ A, m ∈ M, n ∈ N. By the definition of Z(G), we obtain f4(a) ∈ πB(Z(G)) for
all a ∈ A.
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If we choose X =
(

0 mb
bn 0

)
and θ(X) =

(
a3 0
0 η(a3)

)
, a3 ∈ πA(Z(G)), then we arrive at

ϕ(X) =
(

0 g2(mb)
h3(bn) 0

)
=

(
0 mk4(b) − k1(b)m

k4(b)n − nk1(b) 0

)
and

ϕ(X) = λX + θ(X) =
(

a3 a1mb
η(a1)bn η(a3)

)
for all a1, a3 ∈ πA(Z(G)), m ∈ M, n ∈ N, b ∈ B. Combining the last two equations, we find that
mk4(b) − k1(b)m = a1mb = mη(a1)b and k4(b)n − nk1(b) = η(a1)bn. It follows that

m(k4(b) − η(a1)b) = k1(b)m and (k4(b) − η(a1)b)n = nk1(b)

for all a1 ∈ πA(Z(G)), m ∈ M, n ∈ N, b ∈ B. Hence, k1(b) ∈ πA(Z(G)) for all b ∈ B.
(ii)⇒(iii) It is clear.
(iii)⇒ (i) According to the hypothesis, we define

λ =

(
f1(1A) − η−1( f4(1A)) 0

0 k4(1B) − η(k1(1B))

)
.

We claim that λ ∈ Z(G). Indeed, using (3.2)–(3.5), we get

f1(1A)m − η−1( f4(1A))m = g2(m) = mk4(1B) − mη(k1(1B)),
n f1(1A) − nη−1( f4(1A)) = h3(n) = k4(1B)n − η(k1(1B))n

for all m ∈ M, n ∈ N. It follows that λ ∈ Z(G).
Suppose that θ(X) = ϕ(X) − λX for all X ∈ G. We assert that θ(X) ∈ Z(G). Applying Corollary 3.2

yields that

θ(X) =
(

f1(a) − f1(1A)a + η−1( f4(1A))a 0
0 f4(a)

)
+

(
k1(b) 0

0 k4(b) − k4(1B)b + η(k1(1B))b

)
.

Moreover, according to Corollary 3.2, we get

( f1(a) − f1(1A)a + η−1( f4(1A))a)m − m f4(a)
= f1(a)m − m f4(a) + am f4(1A) − f1(1A)am

=g2(am) − g2(am) = 0,

n( f1(a) − f1(1A)a + η−1( f4(1A))a) − f4(a)n
=n f1(a) − f4(a)n + f4(1A)na − n f1(1A)a
=h3(na) − h3(n)a = 0,
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m(k4(b) − k4(1B)b + η(k1(1B))b) − k1(b)m
=mk4(b) − k1(b)m + k1(1B)mb − mk4(1B)b
=g2(mb) − g2(m)b = 0

and

(k4(b) − k4(1B)b + η(k1(1B))b)n − nk1(b)
=k4(b)n − nk1(b) + bnk1(1B) − k4(1B)bn

=h3(bn) − h3(bn) = 0.

From the above expressions, we have(
f1(a) − f1(1A)a + η−1( f4(1A))a 0

0 f4(a)

)
∈ Z(G)

and (
k1(b) 0

0 k4(b) − k4(1B)b + η(k1(1B))b

)
∈ Z(G).

Thus, θ(X) ∈ Z(G) for all X ∈ G.
Finally, by the fact that ϕ is a Lie n-centralizer and ϕ(X) = λX + θ(X), we obtain

θ(pn(X1, X2, . . . , Xn)) = ϕ(pn(X1, X2, . . . , Xn)) − λpn(X1, X2, . . . , Xn)
= pn(ϕ(X1), X2, . . . , Xn) − λpn(X1, X2, . . . , Xn)
= pn(λX1 + θ(X1), X2, . . . , Xn) − λpn(X1, X2, . . . , Xn)
= 0

for all X1, X2, . . . , Xn ∈ G. □

Theorem 3.4. Let G =
(
A M
N B

)
be a generalized matrix algebra over a commutative ring R. Suppose

that G satisfies the following conditions:

a ∈ A, aM = 0 and Na = 0⇒ a = 0,

b ∈ B, Mb = 0 and bN = 0⇒ b = 0.

If we assume that

(i) πB(Z(G)) = Z(B) or pn(A, A, . . . , A) = A,

(ii) πA(Z(G)) = Z(A) or pn(B, B, . . . , B) = B,

then an R-linear map ϕ : G → G is a Lie n-centralizer if and only if ϕ is proper.

Proof. Let ϕ be a Lie n-centralizer. Suppose that πB(Z(G)) = Z(B), and then it follows from
Corollary 3.2 that f4(A) ⊆ Z(B) = πB(Z(G)). That is, f4(A) ⊆ πB(Z(G)). If pn(A, A, . . . , A) = A, then
we can get f4(A) = f4(pn(A, A, . . . , A)) = 0 from the proof of Corollary 3.2. Therefore,
f4(A) ⊆ πB(Z(G)). Similarly, by the condition (ii), we have k1(B) ⊆ πA(Z(G)). It follows from
Theorem 3.3 that ϕ is proper. The converse is clear. □
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4. Applications

In this section, we refer to some applications of Theorem 3.4. First, we characterize generalized
Lie n-derivations on generalized matrix algebras. Let D be an algebra. An R-linear map ψ : D → D
is called a Jordan derivation if it satisfies ψ(x ◦ y) = ψ(x) ◦ y + x ◦ ψ(y) for all x, y ∈ D. We say
that a Jordan derivation ψ : D → D is a singular Jordan derivation according to the decomposition
D = eDe + eD f + f De + f D f if ψ(eDe + f D f ) = 0, ψ(eD f ) ⊆ f De, ψ( f De) ⊆ eD f . Benkovič and
Eremita in [12] introduced the following useful condition:

[x,D] ∈ Z(D)⇒ x ∈ Z(D) for all x ∈ D. (4.1)

Note that (4.1) is equivalent to the condition that there do not exist nonzero central inner derivations
of D. The usual examples of algebras satisfying (4.1) are commutative algebras, prime algebras, and
triangular algebras. To prove our result, we need the following lemma.

Lemma 4.1. Let D be an algebra. The linear map Φ is a generalized Lie n-derivation with an
associated Lie n-derivation Ψ if and only if Φ − Ψ is a Lie n-centralizer.

Proof. Suppose that Φ − Ψ is a Lie n-centralizer. Set ϕ = Φ − Ψ. It follows that

Φ(pn(x1, x2, . . . , xn)) =Ψ(pn(x1, x2, . . . , xn)) + ϕ(pn(x1, x2, . . . , xn))
=pn(Ψ(x1), x2, . . . , xn) + pn(x1,Ψ(x2), . . . , xn)
+ . . . + pn(x1, x2, . . . ,Ψ(xn)) + pn(ϕ(x1), x2, . . . , xn)
=pn(Φ(x1), x2, . . . , xn) + pn(x1,Ψ(x2), . . . , xn)
+ . . . + pn(x1, x2, . . . ,Ψ(xn))

for all x1, x2, . . . , xn ∈ D. Hence,Φ is a generalized Lie n-derivation with an associated Lie n-derivation
Ψ. The converse is clear. □

According to [13, Theorem 2.1], we have the following result.

Theorem 4.2. Let G =
(
A M
N B

)
be an (n − 1)-torsion free generalized matrix algebra satisfying the

following conditions:

a ∈ A, aM = 0 and Na = 0⇒ a = 0,
b ∈ B, Mb = 0 and bN = 0⇒ b = 0.

Let us assume that

(i) πA(Z(G)) = Z(A) and πB(Z(G)) = Z(B).

(ii) Either A or B contains no central ideals.

(iii) Either A or B satisfies (4.1) when n ≥ 3.

Then, every generalized Lie n-derivation Φ : G → G with an associated Lie n-derivation Ψ is of the
form Φ(X) = λX + d(X) + ψ(X) + γ(X), where λ ∈ Z(G), d : G → G is a derivation, ψ : G → G is a
singular Jordan derivation, and γ : G → Z(G) is a linear map that vanishes on pn(G,G, . . . ,G).
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Proof. By Lemma 4.1, ϕ = Φ − Ψ is a Lie n-centralizer on G. According to Theorem 3.4, we have
ϕ(X) = λX + θ(X) for all X ∈ G, where λ ∈ Z(G), and θ : G → Z(G) is a linear map which annihilates
all (n−1)-th commutators. It follows from [13, Theorem 2.1] thatΨ = d+ψ+τ, where d is a derivation,
ψ is a singular Jordan derivation, and τ : G → Z(G) is a linear map such that τ(pn(G,G, . . . ,G)) = 0.
Define γ = θ + τ. It follows that γ : G → Z(G) is a linear map satisfying γ(pn(G,G, . . . ,G)) = 0 and

Φ(X) =Ψ(X) + ϕ(X)
=d(X) + ψ(X) + τ(X) + λX + θ(X)
=λX + d(X) + ψ(X) + γ(X)

for all X ∈ G. □

In view of [9] and [14], we obtain the following

Theorem 4.3. Let G be any of the following algebras:

(i) Mn(A) (n ≥ 2), the full matrix algebra over A, where A is a 2-torsion free unital algebra.

(ii) Tn(A) (n ≥ 2), the upper triangular matrix algebra over A, where A is a 2-torsion free unital
algebra.

(iii) Bnk̄(A) (n ≥ 3), the block upper triangular matrix algebra defined over A with Bnk̄(A) , Mn(A).

(iv) Standard operator algebra on a complex Banach space.

(v) Factor von Neumann algebra.

(vi) Nontrivial nest algebra on a complex Hilbert space.

Then, an R-linear map ϕ : G → G is a Lie n-centralizer if and only if ϕ is proper.

5. Conclusions

This paper gives the notion of Lie n-centralizers and characterizes the structure of a Lie n-centralizer
ϕ on a generalized matrix algebra. The necessary and sufficient conditions for ϕ to be proper are
obtained. Using the results obtained, we can determine generalized Lie n-derivations on a generalized
matrix algebra and Lie n-centralizers on some other algebras.
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12.D. Benkovič, D. Eremita, Multiplicative Lie n-derivations of triangular rings, Linear Algebra Appl.,
436 (2012), 4223–4240. https://doi.org/10.1016/j.laa.2012.01.022

13.Y. Wang, Lie n-derivations of unital algebras with idempotents, Linear Algebra Appl., 458 (2014),
512–525. https://doi.org/10.1016/j.laa.2014.06.029

14.X. F. Qi, J. C. Hou, Characterization of Lie derivations on prime rings, Comm. Algebra, 39 (2011),
3824–3835. https://doi.org/10.1080/00927872.2010.512588

© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 8, Issue 6, 14609–14622.

http://dx.doi.org/https://doi.org/10.1080/00927872.2020.1797759
http://dx.doi.org/https://doi.org/10.15352/aot.1804-1341
http://dx.doi.org/https://doi.org/10.1080/03081087.2020.1810605
http://dx.doi.org/https://doi.org/10.1080/03081087.2022.2104788
http://dx.doi.org/https://doi.org/10.1007/s43034-021-00123-y
http://dx.doi.org/https://doi.org/10.1142/S0219498822501651
http://dx.doi.org/https://doi.org/10.2989/16073606.2021.2013972
http://dx.doi.org/https://doi.org/10.1016/j.laa.2010.08.002
http://dx.doi.org/https://doi.org/10.1016/j.laa.2012.06.009
http://dx.doi.org/https://doi.org/10.1080/03081087.2013.851200
http://dx.doi.org/https://doi.org/10.1016/j.laa.2012.01.022
http://dx.doi.org/https://doi.org/10.1016/j.laa.2014.06.029
http://dx.doi.org/https://doi.org/10.1080/00927872.2010.512588
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Lie n-centralizers
	Applications
	Conclusions

