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Abstract: Intrinsic bursting neurons represent a common neuronal type that displays bursting patterns
upon depolarization stimulation. These neurons can be described by a system of seven-dimensional
equations, which pose a challenge for dynamical analysis. To overcome this limitation, we employed
the projection reduction method to reduce the dimensionality of the model. Our approach demonstrated
that the reduced model retained the inherent bursting characteristics of the original model. Following
reduction, we investigated the bi-parameter bifurcation of the equilibrium point in the reduced model.
Specifically, we analyzed the Bogdanov-Takens bifurcation that arises in the reduced system. Notably,
the topological structure of the neuronal model near the bifurcation point can be effectively revealed
with our proposed method. By leveraging the proposed projection reduction method, we could explore
the bursting mechanism in the reduced Pospischil model with greater precision. Our approach offers
an effective foundation for generating theories and hypotheses that can be tested experimentally. Fur-
thermore, it enables links to be drawn between neuronal morphology and function, thereby facilitating
a deeper understanding of the complex dynamical behaviors that underlie intrinsic bursting neurons.

Keywords: intrinsic bursting; neuronal model; projection reduction method; Bogdanov-Tankens
bifurcation; homoclinic orbit

1. Introduction

The human nervous system represents one of the most intricate and complex systems in the body,
forming the foundation of our perception, cognition, learning, and action. The fundamental electrical
activity of neurons forms the basis of nervous system function. The interactions between neurons can
form neural networks that support important functions including sensation, movement, learning, and
memory [1, 2]. Neuron dysfunction can lead to a range of neurological disorders, including severe de-
pression [3, 4], and Parkinson’s disease [5, 6]. Consequently, extensive research has been conducted in
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the field of neuroscience investigating the electrical activity of fundamental neurons and the relation-
ship between neural networks and behavior. These investigations are significant in comprehending the
functional mechanisms of the nervous system and in the treatment of related neurological disorders.

Neurons, as the fundamental units of the nervous system, are key to understanding the physiology
and functional mechanisms of the nervous system. Communication and information exchange between
neurons occur through a series of electrical and chemical signals. Neuronal firing refers to the process
of membrane potential changes. In order to investigate neuronal properties in greater depth, mathe-
matical models of the neuron’s electro-chemical activity are typically used. The dynamic properties
of neurons can be described by a set of differential equations. These mathematical models provide
the theoretical framework for investigating neuronal interactions and developing computer simulation
programs to mimic the behavior of single neurons and neuronal networks [7,8]. By exploring neuronal
models and related computer programs, we can gain a deeper understanding of the intrinsic mech-
anisms underlying neuronal activity, assisting in the development of theoretical foundations for the
entire nervous system.

The electrical activity of neurons is complex and diverse, exhibiting various forms of firing such
as spiking, bursting, and mixed-mode oscillations [9–13]. These rhythms generated by such electrical
activity are also highly diversified, ranging from chaos to period-doubling bifurcations, and period
adding bifurcations [9,14]. The mechanisms underlying the production and evolution of these rhythms
involve the interaction among neurons and the characteristics of dynamical systems. Thus, the study of
bifurcation phenomena is essential to understand various physiological functions displayed by neurons.
Bifurcation analysis not only enables the comprehension of the electrical activity of neurons, but also
provides a new perspective and useful tools for investigating complex issues related to other neural
systems. For instance, in the modeling of neurological diseases like epilepsy through the construction
of neural models and networks, bifurcation dynamics can be employed to analyze the stability of
the models and to investigate the impact of parameter changes on the progression and treatment of
neurological disorders.

The dynamical models of neurons are often characterized by high-dimensional and highly nonlin-
ear features, while bifurcation theory is commonly used for low-dimensional systems, such as two-
dimensional or three-dimensional dynamical systems. Therefore, when studying high-dimensional
neuronal systems, the problem of dimensionality reduction inevitably arises. Additionally, many vari-
ables in neuronal models are unobservable, rendering parameter estimation in neuronal models infea-
sible. Moreover, because the complex dynamics and processes of neuronal activity involve numerous
details and factors, it is challenging to analyze and characterize them in a simple manner. These fac-
tors contribute to the high dimensionality of neuronal models and necessitate dimensionality reduction
techniques for better understanding and analysis. Common dimensionality reduction methods are:
the dimension reduction method based on the central manifold theory [15, 16], Lyapunov-Schmidt
(LS) method [17], Nonlinear Galerkin method [18, 19], Proper Orthogonal Decomposition (POD)
method [20, 21], fast and slow dynamics analysis method and geometric singular perturbation the-
ory [10, 11, 13, 14].

The focus of this study is the intrinsic bursting neuron model, also referred to as the Pospischil
model after its creator [22]. Intrinsic bursting neurons are a prevalent type of nerve cell that can gen-
erate bursts of activity in response to depolarizing stimuli, with accompanying frequency adjustments.
This firing pattern has been observed in both in vivo and ex vivo experiments in the primary sensory
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cortex. Experiments in guinea pig somatosensory cortex have recorded these patterns, as have studies
of the core visual cortex in cats [23, 24]. Similar patterns have been observed in neocortical neurons
as well, where bursting due to frequency adjustment after spike under depolarization has been noted.
Mathematical modeling can aid in the understanding of the intrinsic bursting neurons. In this paper,
we investigate the dynamic properties of a seven-dimensional Pospischil model, which is first reduced
in dimensionality to facilitate analysis. Through correlation analysis between channel gating variables,
the Pospischil model is reduced to a three-dimensional model, which is subjected to bifurcation analy-
sis to explore the bursting mechanism of the model.

The rest of this paper is organized as follows. Section 2 presents the model and method. The results
are provided in Section 3. Section 4 presents the conclusion and discussion.

2. Model and methodology

High-dimensional Pospischil neurons studied in this paper are based on the mathematical model of
ion channel, which is based on the minimum set of voltage-dependent conductance. In order to enable
it to generate bursting behavior, based on the RS model, according to the experiment [25] the L-type
calcium current is added to the model. The Pospischil model is a single-compartment neuron model
whose membrane potential and Gates equations are

dV
dt
= −

1
Cm

[
gleak(V − Vleak) + INa + IKd + IM + IL − I

]
, (2.1)

dm
dt
= αm(V)(1 − m) − βm(V)m, (2.2)

dh
dt
= αh(V)(1 − h) − βh(V)h. (2.3)

dn
dt
= αn(V)(1 − n) − βn(V)n, (2.4)

dp
dt
=

p∞(V) − p
τp

, (2.5)

dq
dt
= αq(V)(1 − q) − βq(V)q, (2.6)

dr
dt
= αr(V)(1 − r) − βr(V)r, (2.7)

where V is the membrane potential, Cm is the membrane capacitance, I denotes the external stimulus,
gleak denotes the leak conductance, Vleak is the leak reversal potential, and these parameters depend on
the input resistance. INa and IKd are the sodium ion current and potassium current which are responsible
for generating the action potential. IM and IL are the slow non-inactivation of potassium current and
the high threshold calcium ion current, respectively [26–28], which is expressed as:

INa = gNam3h(V − VNa)
IKd = gKdn4(V − VK),
IM = gM p(V − VK),
IL = gLq2r(V − VCa),
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where αx(V) and βx(V), (x = m, h, n, q, r) indicate the rates of gating of various ion channels from
inactivation to activation and from activation to deactivation, respectively, and they are related to the
variable V . m and h denote the activation gated and inactivated gated variables of the sodium ion
channel, respectively. n denotes the gated variable of the potassium ion. q and r denote the activation
gated and inactivated gated variables of the calcium ion. The sodium ion gated conversion rate is
expressed as:

αm =
−0.32(V − VT − 13)

exp[−(V − VT − 13)/4] − 1
,

βm =
0.28(V − VT − 40)

exp[−(V − VT − 40)/5] − 1
,

αh = 0.128exp[−(V − VT − 17)/18],

βh =
4

exp[−(V − VT − 40)/5] + 1,

where VT is the parameter that adjusts the firing threshold. Steady state and the time constant of x can
be written as:

x∞(V) =
αx(V)

αx(V) + βx(V)
, τx(V) =

1
αx(V) + βx(V)

, x = m, h, n, q, r.

αn =
−0.032(V − VT − 15)

exp[−(V − VT − 15)/5] − 1
,

βn = 0.5exp[−(V − VT − 10)/40].

p∞ =
1

exp[−(V + 35)/10] + 1
,

τp =
4000

3.3exp[(V + 35)/20] + exp[−(V + 35)/20
.

αq =
0.055(−27 − V)

exp[−(−27 − V)/3.8] − 1
,

βq = 0.94exp[(−75 − V)/17],
αr = 0.000457exp[(−13 − V)/50],

βr = −
0.0065

exp[(−15 − V)/28] + 1
.

The system (2.1)–(2.7) can be used to describe the fire activity of the intrinsic bursting neuron, and
it can also produce the corresponding intrinsic firing characteristics, where gNa, gKd, gM and gL are the
maximal conductance for the various types of channels, VNa, VK and VCa are the reversal potential for
the various types of channels. The specific parameter values of the model are shown in the Table 1,
The temperature corresponding to all kinetic parameters is 36 ◦C. The default values of the parameters
are taken from the values in the Table 1.

In this paper, the model is numerically calculated using Python software and fourth-order Runge-
Kutta methond, and the step is 0.001 ms. NEURON is used to process the correlation between gated
variables [29], Matcont [30] and XPPAUT [31] are used to the bifurcation analysis.
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Table 1. Parameters of the intrinsic bursting model.

Parameters Values Parameters Values
Cm 1 µF · cm−2 I 0.5 nA
gleak 0.01 mS · cm−2 Vleak −60 mV
gNa 50 mS · cm−2 VNa 50 mV
gKd 4 mS · cm−2 VK −90 mV
gL 0.15 mS · cm−2 VCa 120 mV
gM 0.07 mS · cm−2 VT −55 mV

3. Results

3.1. Reducing the model

3.1.1. Projection reduction method

In order to be able to use fewer ion channels to form the Pospischil model, the original 7-
dimensional model needs to be dimensionally reduced. The idea of dimensionality reduction is from
the Hodgkin-Huxley model to the simplified method of the FitzHugh-Nagumo model [32]. By NEU-
RON, the data of various gated variables at the same time can be obtained. By processing the data, a
definite functional relationship with each other can be found. Using these relationships, one variable
can be represented by additional variables, thereby the dimensionality of the system of equations can
be reduced. The operation method is reproduced below. Consider n dimensional differential equations:

dx1

dt
= f1(x1, x2, · · · xn),

dx2

dt
= f2(x1, x2, · · · xn),

· · · · · ·

dxn

dt
= fn(x1, x2, · · · xn).

(3.1)

Suppose there is a functional relationship between xi and x j, 1 ≤ i, j ≤ n, i , j, i.e.,

ϕ(xi, x j) = 0, (3.2)

Substitute (3.2) into (3.1), then the original model becomes an algebraic differential equation:

dx1

dt
= f1(x1, x2, · · · xn),

· · · · · ·

dx j−1

dt
= f2(x1, x2, · · · xn),

dx j+1

dt
= f2(x1, x2, · · · xn),

· · · · · ·

dxn

dt
= fn(x1, x2, · · · xn),

ϕ(xi, x j) = 0.
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This means using (3.2) to project the system (3.1) to (n − 1) dimension space spanned by
{x1, x2, · · · , x j−1, x j+1, · · · , xn} . So the reducing the model can be used to find the relationship between
different variables.

3.1.2. Reducing Pospischil model

In the neuron model, the relationship between the gated variables reflects the regulatory mechanism
of the corresponding ion channel. Therefore, the model can be simplified by quantifying the regulatory
relationship between the ion channels. Figure 1b gives the relationship between the potassium channel
gating variable n and the sodium ion channel inactivation gating variable h. Combined with the regu-
lation mechanism of potassium ion and sodium ion gating variables, the seven-dimensional Pospischil
model is reduced to a six-dimensional model by using the projection dimensionality reduction method,
and the similarities and differences between the reduced-dimensional model and the original model are
compared.

The seven-dimensional Pospischil model (2.1)–(2.7) is

dV
dt
= −

1
Cm

[gleak(V − Vleak) + INa + IKd + IM + IL − I],

dm
dt
= αm(V)(1 − m) − βm(V)m,

dh
dt
= αh(V)(1 − h) − βh(V)h,

dn
dt
= αn(V)(1 − n) − βn(V)n,

dp
dt
=

p∞(V) − p
τp

,

dq
dt
= αq(V)(1 − q) − βq(V)q,

dr
dt
= αr(V)(1 − r) − βr(V)r.

Let’s consider the gating variable n in the Eqs (2.1)–(2.7), by means of the control mechanism
between different gating variables, making it a six-dimensional model. Then compare the similarities
and differences between the firing generated by the model after dimension reduction and the the original
model.

First, we consider that the regulation mechanism between the sodium ion inactivation gated variable
h and the potassium ion gated variable n is linear, so that we can get:

n = −0.85 × h + 0.85. (3.3)

The diagram of Eq (3.3) is the black straight line in Figure 1b). A simplified six dimensional
model can be obtained by substituting Eq (3.3) into the Pospischil model (2.1)–(2.7). When gL =

0.365 mS/cm2, The firing of the new model is shown in Figure 1c).
Then a more complex regulatory mechanism is considered. If the sodium ion inactivation gating

variable h and the potassium ion gating variable n change as follows:
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Figure 1. Time course under different fitting functions. a) Time course of the original model.
b) Data fit for h and n, red scatter is calculated data. c)–f) Time course of membrane potential
of the reduced model under different control relationships, respectively.

n = −1.35 × h3 + 2.941 × h2 − 2.49 × h + 0.9217. (3.4)

The diagram of Eq (3.4) is the purple curve in Figure 1b). The adjusted fitting coefficient is 0.9666.
A simplified six dimensional model can be obtained by Substituting Eq (3.4) into the Pospischil model
(2.1)–(2.7). When gL = 0.165 mS/cm2, The firing of the new model is shown in Figure 1d).

Next the regulatory mechanism in an exponential form is considered:

n = a · exp(b · h) + c · exp(d · h), (3.5)
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where a = 0.8956, b = −2.487, c = −2.174 × 10−14, d = 28.57. The diagram of Eq (3.5) is the
light blue curve in Figure 1b). When gL = 0.175 mS/cm2, The firing of the new model is shown
in Figure 1e). From the data of (h, n) in Figure 1b), the regulatory relationship between h and n is
approximated as an ellipse. So just try to use elliptic functions to control the gated variables. The
mechanism is characterized. Since the ellipse corresponds to a multi-valued function, the explicit
relationship between n and h cannot be directly given, and the relationship between them is calculated
by means of its first derivative. Suppose the variables h and n satisfy the function

F(h, n) = 0. (3.6)

Take the derivative of both ends of the Eq (3.6) respect to t , we can get

∂F
∂n
·

dn
dt
+
∂F
∂h
·

dh
dt
= 0. (3.7)

By mean of (2.3), (2.4), (3.6) and (3.7) explicit relationship between h and n can be obtained:

F(h, n) = h2 + B · nh +C · n2 + D · h + E · n + F = 0, (3.8)

Take the derivative of both ends of Eq (3.8) respect to t, we obtain:

2h
dh
dt
+ Bn

dh
dt
+ Bh

dn
dt

nh + 2Cn
dn
dt
+ D

dh
dt
+ E

dn
dt
= 0. (3.9)

Substituting Eqs (2.3) and (2.4) into (3.9), we can get

(αh + βh)h2 +
B
2
[
(αh + βh) + (αn + βn)

]
nh +C(αn + βn)n2 −

Dαh

2
−

Eαn

2

−

[
αh +

Bαn

2
−

D
2

(αh + βh)
]

h −
[
Cαn +

Bαh

2
−

E
2

(αn + βn)
]

n = 0.
(3.10)

The final relationship between n and h can be obtained by simultaneous Eqs (3.8) and (3.10):

n = −
N(h)[B

2
αh + (C +

E
2

)αn +
E
2
βn

]
+

B
2

[(αn + βn) − (αh + βh)]h
,

N(h) = [(αn + βn) − (αh + βh)]h2 +

[
(1 −

D
2

)αh −
D
2
βh + (D −

B
2

)αn + Dβn

]
h

+
D
2
αh + (

E
2
+ F)αn + Fβn.

with B = 1,C = 1,D = −2, E = −2, F = 1. When gL = 0.095 mS/cm2, the time course of reduced
model can be shown in Figure 1f), and the fitting curve is the green curve in Figure 1b).

The present study investigated the regulation of bursting activity in seven-dimensional neuronal
models through a multi-valued control mechanism. Our analysis revealed that the essential features
of basic bursting neurons, such as the generation and frequency adjustment of bursts during depo-
larization, were retained regardless of the regulatory mechanism employed. Moreover, by tuning the
parameter gL, the form of the bursting, including its start time, duration, and number of spikes, could
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be consistently maintained through all models. However, the shape of a spike was found to differ from
that produced by the original system, owing to the use of multi-valued functions to regulate. Specifi-
cally, we found that the Pospischil model can be effectively simplified by reducing its dimensionality
without increasing its nonlinearity, while retaining all intrinsic bursting characteristics, through the use
of linear control between two gated variables.

In conclusion, Figure 1 illustrates the period-9 bursting produced by the original seven-dimensional
model, as well as the bursting profiles produced by simplified models under various regulatory mech-
anisms. Our work highlights the utility of multi-valued control mechanisms in regulating bursting
activity in neuronal models, while maintaining essential features of such neurons. Specifically, our
findings suggest that simplification of neuronal models can be achieved by reducing their dimension-
ality through linear regulatory mechanisms, without compromising on their intrinsic bursting features.
These insights could inform the development of simplified neuronal models with applications in the
study of neuronal dynamics and in neural engineering.

Step 1: Collecting information on the associated ion channel gated variables. The NEURON soft-
ware is used to process the model and record the time course of gated variables of the ion channel .
The results are shown in Figure 2. Figure 2a)–c) gives the relationship between the gated variables h
and q, m and its steady state m∞ and p and r, respectively.

Figure 2. Time course diagram of simplified model and the data fitting diagram. a) Linear
regulation mechanism of (h, q). b) Linear regulation mechanism of (m∞, m). c)Linear
regulation mechanism of (p, r) . d) Time course diagram of reduced model.

Step 2: Combined with the Figure 1b), the relationship of the relevant gated variables can be ob-
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tained:
m = m∞, n = c0(1 − h), q = c1(1 − h), r = c2 p + c3,

where c0 = 0.85, c1 = 0.95, c2 = −0.3243 and c3 = 0.5485.
Step 3: Replace n and q in the original seven-dimensional Eqs (2.1)–(2.7) with h by the projection

reduction method, and m with m∞. And r is replaced with p, so the system (2.1)–(2.7) is reduced to a
three-dimensional model:

dV
dt
= −

1
Cm

[gleak(V − Vleak) + INa + IKd + IM + IL − I], (3.11)

dh
dt
= αh(V)(1 − h) − βh(V)h, (3.12)

dp
dt
=

p∞(V) − p
τp

, (3.13)

The specific ion channel models are:

INa = gNam3
∞h(V − VNa),

IKd = gKdc0(1 − h)4(V − VK),
IM = gM p(V − VK),
IL = gLc1(1 − h)2(c2 p + c3)(V − VCa),

where c0 = 0.85, c1 = 0.95, c2 = −0.3243 and c3 = 0.5485. The bursting generated by system
(3.11)–(3.13) is shown in Figure 2d). It can be seen from the figure that the bursting generated by the
reduced system still retains the basic characteristics of the intrinsic bursting neurons, and the shape of
the burst is basically the same as that of the seven-dimensional original model. Therefore, the reduced
three-dimensional model is studied below.

3.2. Codimension 2 Bifurcation of reduced Pospischil model

The present study focuses on the analysis of dynamical properties of the Pospischil model (3.11)–
(3.13) after dimensionality reduction, which facilitates a better understanding of its dynamics. To
delve further into the dynamics of the reduced model, we introduce the consideration of the slow
non-inactivation potassium current, which when added to the model, enables the adjustment of the
firing frequency. In this context, the maximum conductance of the ion channel (gM) is selected as the
primary parameter of interest in studying the dynamics of the three-dimensional model. Additionally,
we examine the impact of varying external stimuli on the firing pattern of the model by considering I
as a second parameter.

Building on the foundation of the equilibrium point single-parameter bifurcation diagram, we ex-
tend our analysis to include a bi-parameter bifurcation diagram of equilibrium points for the reduced
system in the parameter plane (gM, I) as shown in Figure 3.

It’s shown in Figure 3, a bi-parameter bifurcation diagram of the equilibria of the reduced model.
The abscissa is gM and the ordinate is I. On the (gM, I) plane, the red curve represents the saddle
node bifurcation. They are denoted as S N1 and S N2 respectively. The blue curve represents the Hopf
bifurcation, denoted as H1 and H2 respectively. There is a neutral saddle on the curve, and the corre-
sponding parameter coordinates are (0.36467, 2.54933). Two Bogdanov-Takens bifurcations appear
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Figure 3. Bi-parameter bifurcation diagram of the reduced model on the (gM, I) plane. b) is
a partial enlargement of a).

at the intersection of the saddle-node bifurcation curve S N1 and the Hopf curve H1, denoted as BT1

and BT2, respectively, and the corresponding parameter coordinates are BT1 (0.002628, 0.043215) and
BT2(−4.930709,−0.285314). Following consideration of the physiological significance of the param-
eter gM, we study the dynamical behavior of the system at BT1. Figure 3b) is a partial enlargement of
Figure 3a). According to the bifurcation theory [16], in addition to the saddle note curve and the Hopf
curve at the Bogdanov-Takens bifurcation, there will be a homoclinic bifurcation curve, but because
the distance between the saddle-note curve S N1 and the Hopf curve H1 is very small, it is difficult to
describe the homoclinic bifurcation curve with the accuracy of the existing computer. Therefore, the
bifurcation behavior of the reduced system at the Bogdanov-Takens bifurcation BT1 is analysed on its
central manifold [33].

By calculation, BT1 can be gotten in the Figure 3, where (gM, I)T =

(0.002628, 0.043215)T ≜ µ0, and the corresponding equilibrium point coordinates are
(V, h, p)T = (−54.898367, 0.995835, 0.120274)T ≜ X0, rewrite the system (3.11)–(3.13) as:

dX
dt
= F(X, µ), (3.14)

where X = (V, h, p)T , µ = (gM, I)T , and

F(X, µ) =


gleak(V − Vleak) + INa + IKd + IM + IL − I

αh(V)(1 − h) − βh(V)h
p∞(V) − p
τp

 .
The Taylor expansion of F(X, µ) around (X0, µ0) is

F(X, µ) = DF(X0, µ0)(X − X0) + Fµ(X0, µ0)(µ − µ0) +
1
2

D2F(X0, µ0)

(X − X0, X − X0) + FµX(X0, µ0)(µ − µ0, X − X0) + · · · ,
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where

A ≜


0.00047868759 −0.4756833294 −0.09287462727

−0.0003482835 −0.3286529804 0

0.00001038161532 0 −0.0009811726252

 .
The eigenvalues of matrix A are 0, 0, and −0.3291554654.
Let P = (p1, p2, p0) and P is an invertible matrix. We change matrix A into the Jordan normal form.

we can obtain

P−1AP =


0 1 0

0 0 0

0 0 −0.3291554654

 ,
with

J0 ≜

 0 1

0 0

 , J1 ≜ −0.05963869695.

So
p1 =

(
1, −0.001059615349, 0.0157967824

)T
,

p2 =
(

1, 0.002164385816, −10.77210712
)T
,

p0 =
(

1.442747073, 1, −0.000045641
)T
.

Let P−1 = (q1, q2, qT
0 )T . Then we have

q1 =
(

0.9974984512, −1.439133758, 0.09231096567
)T
,

q2 =
(

0.000979675044, −0.001417656081, −0.09274168759
)T
,

q0 =
(

0.001054844275, 0.9984781401, 0.00029854291
)
.

By a straightforward calculation as described, we obtain

a =
1
2

pT
1 (q2·D2F(X0, µ0))p1 = 3.15717087 × 10−6,

b = pT
1 (q1·D2F(X0, µ0))p1 + pT

1 (q2·D2F(X0, µ0))p2 = 0.006559032755,

S 1 = FT
µ (X0, µ0)q2 = (−0.004136005627, 0.000979675044)T ,

S 2 =

[
2a
b

(pT
1 (q1·D2F(X0, µ0))p2 + pT

2 (q2·D2F(X0, µ0))p2)

−pT
1 (q2·D2F(X0, µ0))p2

]
FT
µ (X0, µ0)q1

−
2a
b

2∑
i=1

(qi·(FµX(X0, µ0) − ((p0J−1
1 q0)Fµ(X0, µ0))T × D2F(X0, µ0)))pi

+(q2·(FµX(X0, µ0) − ((p0J−1
1 q0)Fµ(X0, µ0))T

×D2F(X0, µ0)))p1 = (−0.0002453859407,−0.00001785858382)T .
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Note that λ1 = gM − 0.002628 and λ2 = I − 0.043215. It gives

β1 = S T
1 (µ − µ0) = −0.004136005627λ1 + 0.000979675044λ2,

β2 = S T
2 (µ − µ0) = −0.0002453859407λ1 − 0.00001785858382λ2.

So the dynamics on the center manifold of system (3.11)–(3.13) is locally topologically equivalent
to the following system at the Bogdanov-Tankens bifurcation (X0, µ0):


ż1 = z2,

ż2 = β1 + β2z1 + az2
1 + bz1z2

= −0.004136005627λ1 + 0.000979675044λ2 − (0.0002453859407λ1+

0.00001785858382λ2)z1 + 3.15717087 × 10−6z2
1 + 0.006559032755z1z2.

(3.15)

Furthermore, by virtue of the transformations

t =
0.006559032755

3.15717087 × 10−6 t1, z1 =
3.15717087 × 10−6

(0.006559032755)2η1, z2 = −
(3.15717087 × 10−6)2

(0.006559032755)3 η2

the system (3.15) can be rewritten to
dη1

dt1
= η2,

dη2

dt1
= β̄1 + β̄2η1 + η

2
1 − η1η2,

(3.16)

where β̄1 = −2.432461968 × 105λ1 + 57616.51458λ2 and β̄2 = −1059.090571λ1 − 77.07800081λ2.
Applying the theory on the Bogdanov-Tankens bifurcation [33], we get

Theorem 3.1. Let λ1 = gM − 0.002628 and λ2 = I − 0.043215. If the values of parameters (gM, I)
changes around (0.002628, 0.043215), and other parameters in system (3.11)–(3.13) are indicated as
in Section 2. Then system (3.11)–(3.13) is locally topologically equivalent to the following system at
the Bogdanov-Tankens bifurcation BT1:

dη1

dt1
= η2,

dη2

dt1
= −2.432461968 × 105λ1 + 57616.51458λ2

+(1059.090571λ1 − 77.07800081λ2)η1 + η
2
1 − η1η2,

(3.17)

which has the following local bifurcation behaviors in a small neighborhood of the origin:

(i) There is a saddle-node bifurcation curve

S N = {(λ1, λ2) : λ1 − 0.2368650171λ2 + 1.152816419λ2
1

+0.1677982738λ1λ2 + 0.00610597235λ2
2 = 0}.

(ii) There is an Andronov-Hopf bifurcation curve

H = {(λ1, λ2) : λ1 = 0.2368650172λ2, λ2 > 0}.

Electronic Research Archive Volume 31, Issue 10, 5928–5945.



5941

(iii) There is a homoclinic bifurcation curve

HL = {(λ1, λ2) : λ1 − 0.2368650172λ2 − 1.106703762λ2
1 − 0.1610863429λ1λ2

−0.005861733457λ2
2 = o(|λ1, λ2|

2), λ1 + 0.07277753473λ2 > 0}.

This method can be used at the Bogdanov-Tankens bifurcation BT2.

4. Discussion

This article presents a study on the dimensionality reduction of high-dimensional neuron models
and their dynamical oscillation phenomena. Specifically, the Pospischil neuron model is analyzed to
demonstrate the dimensionality reduction of the model along with bifurcation analysis and bursting
mechanism after dimension reduction. It is important to note that the bursting neuron model is not
limited to any particular neuron type, but rather describes the discharge characteristics common to a
class of neurons found in various physiological experiments on the cerebral cortex. These neurons are
also major in constructing thalamic-cortical circuits. In modeling such neurons, they are powered by
a seven-dimensional system description taking into account various ion channels. However, since it
is difficult to theoretically study high-dimensional dynamic systems, it is necessary to streamline the
model.

In this study, we begin with a seven-dimensional Pospischil model and apply a method of dimen-
sionality reduction that differs from previous methods. Specifically, we utilize a method that examines
the correlation between discrete gated variables in the model. By comparing various ion channels gated
variables, we identified a regulatory mechanism that allows us to simplify the model using a simple
linear relationship. As a result, the original model was reduced to a three-dimensional model by con-
sidering h and n, h and q, p and r, and m∞ and m as a single variable. Our reduced model preserves
the intrinsic bursting characteristics of the original model, which includes burst under depolarization
stimulation, discharge, and frequency adjustment. Therefore, we are able to make a simplified single
parameter adjustment (changing the value of gL) to ensure that the reduced model produces a sub-
stantially uniform bursting that maintains a considerable degree of consistency regardless of the am-
plitude of the firing, the frequency of the bursting, and the duration. Although the three-dimensional
model cannot fully inherit the complex dynamic phenomena in the original model, we find that such
dimensionality reduction methods have certain universality and provide an opportunity for studying
high-dimensional neuron models.

The present study investigates the bifurcation of equilibrium points for the reduced model, focusing
on bi-parameter bifurcation. As the calcium ion channel and external stimulus act as the primary fac-
tors in generating bursting, the maximum conductance of slow non-inactivated potassium channel (gM)
and external stimulus (I) are explored as bifurcation parameters. Moving on to bi-parameter bifurcation
analysis, we investigate the system’s generation of Bogdanov-Takens bifurcation. Theoretical analy-
sis reveals that the system is generated in close proximity to the Bogdanov-Takens bifurcation, and
conditions for saddle bifurcation, Hopf bifurcation and homoclinic bifurcation are derived. Numerical
simulation is used to verify the correctness of the theory and analysis.

In the study of the model, not only the characteristics of the intrinsic bursting neurons but also
the bifurcation characteristics of other neuronal types can be observed. However, it is imperative to
note that dimensionality reduction techniques could suffer from the issue of information loss. For
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example, the ISIs of sequence of the membrane potential in the two systems is basically the same, and
its main features–double period bifurcation, add-period bifurcation and chaotic area–are present in both
systems, indicating the reduced model can better reflect the essential features of the original model.
However, a little difference can be observed in the Figure 4. First, the period-doubling bifurcation
of the original model appears at gM = 0.0338 mS/cm2 Nearby, the chaotic area appears in gM =

0.03425 mS/cm2 Recently. Second, the original model forms a chaotic region at the same time when
the first period of bifurcation is generated, but the chaotic region is simplified in the reduced model.
This may be explained by the complexity of the high-dimensional model itself, so this property is
difficult to observe after dimension reduction. Looking for the hidden chaotic attractors is the future
work [34–36].

Figure 4. A bifurcation diagram of ISIs sequence with the gM. a) in the original system; b)
in the reduced system.

The autonomous neuronal model is considered in this paper, but for the non-autonomous systems,
the incremental integral transformation is the appropriate method [37–39]. Therefore, reducing the
dimensionality of neuronal dynamics models can be challenging. This challenge arises since it is nec-
essary to maintain a detailed description of specific behaviors while attempting to simplify the model
for better operability and comprehensibility. Thus, discovering a reasonable approach for effectively
reducing the dimensionality of neuronal dynamics models for improved analysis and comprehension
of their behavior is an essential facet of studying neurons. Nonetheless, the precise influential mecha-
nisms of the reduction practices require further scholarly investigation.
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