This paper is concerned with the following planar Schrödinger-Poisson equations
$ \begin{equation*} -\Delta{u}+V(x)u+\left(\ln{|\cdot|}\ast |u|^p\right)|u|^{p-2}u = f(x,u),\; \; \; x\in\mathbb{R}^{2}, \end{equation*} $
where $ p\geq2 $ is a constant, and $ V(x) $ and $ f(x, u) $ are continuous, mirror symmetric or rotationally periodic functions. The nonlinear term $ f(x, u) $ satisfies a certain monotonicity condition and has critical exponential growth in the Trudinger-Moser sense. We adopted a version of mountain pass theorem by constructing a Cerami sequence, which in turn leads to a ground state solution. Our method has two new insights. First, we observed that the integral $ \int_{\mathbb{R}^2}\int_{\mathbb{R}^2}\ln{(|x-y|)}|u(x)|^{p}|u(y)|^pdxdy $ is always negative if $ u $ belongs to a suitable space. Second, we built a new Moser type function to ensure the boundedness of the Cerami sequence, which further guarantees its compactness. In particular, by replacing the monotonicity condition with the Ambrosetti–Rabinowitz condition, our approach works also for the subcritical growth case.
Citation: Ganglong Zhou. Group invariant solutions for the planar Schrödinger-Poisson equations[J]. Electronic Research Archive, 2023, 31(11): 6763-6789. doi: 10.3934/era.2023341
This paper is concerned with the following planar Schrödinger-Poisson equations
$ \begin{equation*} -\Delta{u}+V(x)u+\left(\ln{|\cdot|}\ast |u|^p\right)|u|^{p-2}u = f(x,u),\; \; \; x\in\mathbb{R}^{2}, \end{equation*} $
where $ p\geq2 $ is a constant, and $ V(x) $ and $ f(x, u) $ are continuous, mirror symmetric or rotationally periodic functions. The nonlinear term $ f(x, u) $ satisfies a certain monotonicity condition and has critical exponential growth in the Trudinger-Moser sense. We adopted a version of mountain pass theorem by constructing a Cerami sequence, which in turn leads to a ground state solution. Our method has two new insights. First, we observed that the integral $ \int_{\mathbb{R}^2}\int_{\mathbb{R}^2}\ln{(|x-y|)}|u(x)|^{p}|u(y)|^pdxdy $ is always negative if $ u $ belongs to a suitable space. Second, we built a new Moser type function to ensure the boundedness of the Cerami sequence, which further guarantees its compactness. In particular, by replacing the monotonicity condition with the Ambrosetti–Rabinowitz condition, our approach works also for the subcritical growth case.
[1] | D. M. Cao, Nontrivial solution of semilinear elliptic equation with critical exponent in $\mathbb{R}^2$, Commun. Partial Differ. Equations, 17 (1992), 407–435. https://doi.org/10.1080/03605309208820848 doi: 10.1080/03605309208820848 |
[2] | R. Benguria, H. Brezis, E. H. Lieb, The Thomas-Fermi-von Weizsäcker theory of atoms and molecules, Commun. Math. Phys., 79 (1981), 167–180. https://doi.org/10.1007/bf01942059 doi: 10.1007/bf01942059 |
[3] | I. Catto, P. L. Lions, Binding of atoms and stability of molecules in Hartree and Thomas-Fermi type theories, Commun. Partial Differ. Equations, 18 (1993), 1149–1159. https://doi.org/10.1080/03605309308820967 doi: 10.1080/03605309308820967 |
[4] | E. H. Lieb, Thomas-Fermi and related theories of atoms and molecules, Rev. Mod. Phys., 53 (1981), 603–641. https://doi.org/10.1103/revmodphys.53.603 doi: 10.1103/revmodphys.53.603 |
[5] | V. Benci, D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal., 11 (1998), 283–293. https://doi.org/10.12775/tmna.1998.019 doi: 10.12775/tmna.1998.019 |
[6] | V. Benci, D. Fortunato, Solitary waves of the nonlinear Klein-Gordon equation coupled with Maxwell equations, Rev. Math. Phys., 14 (2002), 409–420. https://doi.org/10.1142/s0129055x02001168 doi: 10.1142/s0129055x02001168 |
[7] | P. L. Lions, Solutions of Hartree-Fock equations for Coulomb systems, Commun. Math. Phys., 109 (1987), 33–97. https://doi.org/10.1007/bf01205672 doi: 10.1007/bf01205672 |
[8] | P. A. Markowich, C. A. Ringhofer, C. Schmeiser, Semiconductor Equations, 1$^{nd}$ edition, Springer, 1990. https://doi.org/10.1007/978-3-7091-6961-2 |
[9] | G. Cerami, G. Vaira, Positive solutions for some non-autonomous Schrödinger-Poisson systems, J. Differ. Equations, 248 (2010), 521–543. https://doi.org/10.1016/j.jde.2009.06.017 doi: 10.1016/j.jde.2009.06.017 |
[10] | D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 237 (2006), 655–674. https://doi.org/10.1016/j.jfa.2006.04.005 doi: 10.1016/j.jfa.2006.04.005 |
[11] | R. P. Agarwal, A. M. Alghamdi, S. Gala, M. A. Ragusa, Regularity criteria via horizontal component of velocity for the Boussinesq equations in anisotropic Lorentz spaces, Demonstr. Math., 56 (2023), 20220221. https://doi.org/10.1515/dema-2022-0221 doi: 10.1515/dema-2022-0221 |
[12] | A. Ambrosetti, D. Ruiz, Multiple bound states for the Schrödinger-Poisson problem, Commun. Contemp. Math., 10 (2008), 391–404. https://doi.org/10.1142/s021919970800282x doi: 10.1142/s021919970800282x |
[13] | A. El-Abed, A. A. B. Ali, M. Dammak, Schrödinger equation with asymptotically linear nonlinearities, Filomat, 36 (2022), 629–639. https://doi.org/10.2298/FIL2202629E doi: 10.2298/FIL2202629E |
[14] | G. C. Yang, S. Z. Duan, Existence solutions for a class of Schrödinger-Maxwell systems with steep well potential, J. Funct. Spaces, 2022 (2022), 6791308. https://doi.org/10.1155/2022/6791308 doi: 10.1155/2022/6791308 |
[15] | L. G. Zhao, F. K. Zhao, On the existence of solutions for the Schrödinger-Poisson equations, J. Math. Anal. Appl., 346 (2008), 155–169. https://doi.org/10.1016/j.jmaa.2008.04.053 doi: 10.1016/j.jmaa.2008.04.053 |
[16] | M. Colin, L. Jeanjean, Solutions for a quasilinear Schrödinger equation: A dual approach, Nonlinear Anal., 56 (2004), 213–226. https://doi.org/10.1016/j.na.2003.09.008 doi: 10.1016/j.na.2003.09.008 |
[17] | L. Zhang, Y. Q. Li, Z. Q. Wang, Multiple normalized solutions for a quasi-linear Schrödinger equation via dual approach, Topol. Methods Nonlinear Anal., 61 (2023), 465–489. https://doi.org/10.12775/tmna.2022.052 doi: 10.12775/tmna.2022.052 |
[18] | X. G. Zhang, L. S. Liu, Y. H. Wu, Y. J. Cui, Existence of infinitely solutions for a modified nonlinear Schrödinger equation via dual approach, Electron. J. Differ. Equations, 2018 (2018), 1–15. |
[19] | X. G. Zhang, L. S. Liu, Y. H. Wu, B. Wiwatanapataphee, Multiple solutions for a modified quasilinear Schrödinger elliptic equation with a nonsquare diffusion term, Nonlinear Anal. Model. Control, 26 (2021), 702–717. https://doi.org/10.15388/namc.2021.26.22520 doi: 10.15388/namc.2021.26.22520 |
[20] | X. G. Zhang, L. S. Liu, Y. H. Wu, B. Wiwatanapataphee, Y. J. Cui, Solvability and asymptotic properties for an elliptic geophysical fluid flows model in a planar exterior domain, Nonlinear Anal. Model. Control, 26 (2021), 315–333. https://doi.org/10.15388/namc.2021.26.21202 doi: 10.15388/namc.2021.26.21202 |
[21] | J. Stubbe, Bound states of two-dimensional Schrödinger-Newton equations, arXiv preprint, (2008), arXiv: 0807.4059. https://doi.org/10.48550/arXiv.0807.4059 |
[22] | S. Cingolani, T. Weth, On the planar Schrödinger-Poisson system, in Annales de l'Institut Henri Poincaré C, Analyse non Linéaire, (2016), 169–197. https://doi.org/10.1016/j.anihpc.2014.09.008 |
[23] | S. T. Chen, X. H. Tang, Axially symmetric solutions for the planar Schrödinger-Poisson system with critical exponential growth, J. Differ. Equations, 269 (2020), 9144–9174. https://doi.org/10.1016/j.jde.2020.06.043 doi: 10.1016/j.jde.2020.06.043 |
[24] | S. L. Yadava, Multiplicity results for semilinear elliptic equations in a bounded domain of $\mathbb{R}^2$ involving crtical exponents, Ann. Sc. Norm. Super. Pisa Cl. Sci., 17 (1990), 481–504. |
[25] | D. M. Cao, W. Dai, Y. Zhang, Existence and symmetry of solutions to 2-D Schrödinger-Newton equations, Dyn. Partial Differ. Equations, 18 (2021), 113–156. https://doi.org/10.4310/dpde.2021.v18.n2.a3 doi: 10.4310/dpde.2021.v18.n2.a3 |
[26] | E. H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. Math., 118 (1983), 349–374. https://doi.org/10.2307/2007032 doi: 10.2307/2007032 |
[27] | J. M. B. do Ó, N-Laplacian equations in $\mathbb{R}^N$ with critical growth, Abstr. Appl. Anal., 2 (1997), 301–315. https://doi.org/10.1155/s1085337597000419 doi: 10.1155/s1085337597000419 |
[28] | S. Adachi, K. Tanka, Trudinger type inequalities in $\mathbb{R}^N$ and their best exponents, Proc. Am. Math. Soc., 128 (2000), 2051–2057. https://doi.org/10.1090/s0002-9939-99-05180-1 doi: 10.1090/s0002-9939-99-05180-1 |
[29] | D. Cassani, F. Sani, C. Tarsi, Equivalent Moser type inequalities in $\mathbb{R}^2$ and the zero mass cases, J. Funct. Anal., 267 (2014), 4236–4263. https://doi.org/10.1016/j.jfa.2014.09.022 doi: 10.1016/j.jfa.2014.09.022 |
[30] | L. C. Evans, Partial Differential Equations, 2$^{nd}$ edition, American Mathematical Society, 2010. https://doi.org/10.1090/gsm/019 |
[31] | S. T. Chen, X. H. Tang, On the planar Schrödinger-Poisson system with the axially symmetric potentials, J. Differ. Equations, 268 (2020), 945–976. https://doi.org/10.1016/j.jde.2019.08.036 doi: 10.1016/j.jde.2019.08.036 |
[32] | E. A. B. Silva, G. F. Vieira, Quasilinear asymptotically periodic Schrödinger equations with critical growth, Calc. Var. Partial Differ. Equations, 39 (2010), 1–33. https://doi.org/10.1007/s00526-009-0299-1 doi: 10.1007/s00526-009-0299-1 |
[33] | S. T. Chen, J. P. Shi, X. H. Tang, Ground state solutions of Nehari-Pohozaev type for the planar Schrödinger-Poisson system with general nonlinearity, Discrete Contin. Dyn. Syst., 39 (2019), 5867–5889. https://doi.org/10.3934/dcds.2019257 doi: 10.3934/dcds.2019257 |
[34] | L. Nirenberg, On elliptic partial differential equations, Ann. Sc. Norm. Super. Pisa Cl. Sci., 13 (1959), 115–162. |
[35] | M. Willem, Minimax Theorems, 1$^{nd}$ edition, Springer, 1996. https://doi.org/10.1007/978-1-4612-4146-1 |
[36] | D. G. de Figueiredo, O. H. Miyagaki, B. Ruf, Elliptic equations in $\mathbb{R}^2$ with nonlinearities in the critical growth range, Calc. Var. Partial Differ. Equations, 3 (1995), 139–153. https://doi.org/10.1007/BF01205003 doi: 10.1007/BF01205003 |